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Abstract. Mathematically describing the mechanical behavior of soft tissues 
under large deformations is of paramount interest to the medical simulation 
community. Most of the data available in the literature apply small strains 
(<10%) to the tissue of interest to assume a linearly elastic behavior. This paper 
applies a nonlinear hyperelastic 8-chain network constitutive law to model soft 
tissues undergoing large indentations. The model requires 2 material  parameters 
(initial modulus, locking stretch) to reflect the underlying physics of 
deformation over a wide range of stretches. A finite element model of soft 
tissue indentation was developed and validated employing this constitutive law. 
Ranges of the initial shear modulus and locking stretches were explored based 
on values found for breast tissue [17, 25]. Results of the model are shown with 
a lookup table containing third order polynomial coefficient fits. This work 
serves as an initial method to determine the unique material parameters of 
breast tissue from indentation experiments.  

1. Introduction 

Accurate mathematical descriptions of the mechanical behavior of soft tissues remain 
the limiting factor in the advancement of realistic medical simulations and non-
invasive diagnostic tools. This is due to the complex nonlinear material properties of 
soft tissues when they undergo large mechanical deformations during minimally 
invasive procedures and diagnostic palpations. 

A phenomenological approach is implemented to realize the material parameters of 
soft tissues. Inverse finite element modeling (FEM) is used to fit mathematical 
expressions in the form of a constitutive law to experimental data. Soft tissues are 
most often tested in an ex-vivo state with specimens of finite thickness under 
controlled loading and boundary conditions [8, 15, 18]. Selecting the appropriate 
constitutive law allows FEM to then be used to predict the tissue’s response to modes 
of deformation not capable of being experimentally measured. We are interested in 
modeling the indentation of soft tissues by a rigid flat-ended cylindrical punch. 

This paper provides a method for determining an initial estimate of the material 
parameters of soft tissue using the Arruda-Boyce constitutive model. A range of the 
two physically based material parameters of this model were explored based on data 
found in the literature on normal and pathologic breast tissue [17, 21, 22, 25].  The 
resulting force-nominal strain plots were fitted to 3rd order polynomials whose 
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coefficients and the resulting material parameters are presented. Others have 
attempted to model breast tissue under uniaxial compression and assumed linear 
elasticity [3, 20]. Han assumed quasilinear viscoelasticity with an exponential elastic 
response and modeled the breast under plain strain conditions because he used a 
rectangular shaped probe on thick specimens [10]. 

 Results indicated here should serve as a means for identifying an estimate of the 
physiologically based material parameters of the Arruda-Boyce model.  

2. Background  

There exists a well-defined analytic solution for indentation by a rigid flat punch 
assuming infinitesimal strains, frictionless contact, and a semi-infinite incompressible 
elastic half -space [14, 24]. To account for the finite thickness in indentation 
experiments on cartilage, Hayes expanded the analytical solution to include a term 
that is dependant on the sample thickness: 
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where P is the applied force, E is the elastic modulus, a is the radius of the indenter, w 
is the depth of indentation, and κ is a dimensionless term to account for sample 
thickness (Fig. 1) [11]. Zheng created a finite element model using equation (1) to 
explore the effects of nonlinear geometry, namely large deformations up to 15% 
nominal strain, compressibility, and friction on the indentation of cartilage attached to 
a semi-infi nite rigid half space [28]. Our goal is to further this approach by 
introducing both larger strains (~50%), and material nonlinearities into a FEM of soft 
tissue under indentation. 

It is well understood that soft tissues are viscoelastic, anisotropic, inhomogeneous, 
and have nonlinear force displacement characteristics [9]. To simplify the 
mathematical analysis, many researchers assume an initial isotropy, local 
homogeneity, and study tissue deformations in the linear regime of <10% nominal 
strain [17, 19, 25]. However, typical surgical manipulations are often much larger 
than 10% nominal strain. It has been shown that at larger strains an elastic contrast 

Fig. 1. Conceptual diagram of the soft tissue indentation model. 
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exists between tissues of different pathologic states [17, 25, 27]. Therefore more 
accurate representations of soft tissue behavior are needed.  

Holzapfel suggests that only biological materials and solid polymers (rubber-like 
materials) undergo finite strains relative to an equilibrium state [12] . Therefore it 
should not be surprising that the hyperelastic constitutive models developed for 
elastomers have frequently been used to study soft tissues [5, 8, 9, 13, 15, 16, 18, 23]. 
Hyperelastic materials are considered initially isotropic and exhibit a nonlinear 
instantaneous response up to large strains. There are two ways in which the strain 
energy functions for hyperelastic materials are derived: one based on continuum 
mechanics and the other based on statis tical mechanics. 

We have created a FEM with a hyperelastic constitutive model based on statistical 
mechanics. We describe that model and the predictions it makes for large strain 
indentations of pathologic breast tissues. 

3. Materials and Methods 

3.1 Creating and Validating the Finite Element Model 

Using commercial finite-element software (ABAQUS 6.3-1, HKS, Rhode Island), the 
present investigation created an axisymmetric rigid indenter model to analyze the 
indentation of soft tissue (Fig. 2). The model was validated against the analytical 
solution presented in equation 1 (with both κ=1.0 and κ>1.0) and compared to Zheng 
et al’s [28] finite element model under infinitesimal strains before adding a nonlinear 
constitutive law. 

The indenter was modeled as an analytical rigid body with a flat-ended cylindrical 
shape 12 mm in diameter. Initially the tissue (cartilage) was modeled as a deformable 
meshed layer and was assumed to be linearly elastic, isotropic, and incompressible 
with Young’s modulus E=100 kPa and Poisson’s ratio v=0.49991 [28]. Its mesh 
consisted of 4-noded hybrid quadrilateral axisymmetric elements (CAX4H), finely 
biased in the immediate regions underneath the indenter as shown in Figure. 2. The 
                                                                  
1 Due to ABAQUS’ limitations when v=0.5, an incompressibility of v=0.4999 was used. 

Fig. 2. Axisy mmetric FEM of rigid body indenter and soft tissue mesh with frictionless 
contact and sliding boundary conditions on the base. 
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contact between the indenter and the tissue was modeled using a “contact pair” where 
the indenter was specified as “master” and the tissue as “slave.” The contact property 
was defined as frictionless so that the tissue could freely slip beneath the indenter. 
Known displacements were then applied to the reference node of the indenter that was 
initially oriented on the surface of the tissue. The reaction forces generated by the FE 
simulation were recorded and plotted against strain.  

To validate the model against the case of the true analytical solution of a rigid flat 
punch (equation 1 where κ=1.0), the boundary condition of the bottom surface is free. 
The tissue was unconstrained in the lateral direction and an aspect ratio (indenter 
radius to sample thickness) of 0.1 was used to approximate the semi-infinite elastic 
half space. Results from the FEM und er 0.1% nominal strain are within 3.3% of the 
analytical form of the solution.  

The FEM was modified to validate against Hayes’ analytical model (κ>1.0 in 
equation 1). Fixed boundary conditions simulated the attachment of cartilage to a 
rigid bony layer [11]. Two aspect ratios w ere tested (0.2 and 1.0) to a strain of 0.1%. 
Less than 2% error occurs when the FEM accounts for finite tissue thickness and is 
compared to both Hayes’ analytical solution and Zhang’s FEM results at nominal 
strains of 0.1% (Table 1).  

Aspect ratio Model κ % Error 
Liu 1.260 - 

Zhang 1.244 1.25 
 
a/h = 0.2 
 Hayes 1.281 -1.67 

Liu 3.564 - 
Zhang 3.590 -0.72 

 
a/h = 1.0 
 Hayes 3.609 -1.24 

 
After the model was validated assuming linear elasticity under infinitesimal strains, 

the model was changed to simulate soft tissue indentation tests containing both 
geometric and material property nonlinearities. Experiments on breast tissue 
indentation found in the literature allow for frictionless contact between both the 
indenter and the specimen, and between the specimen and the testing surface [17, 25]. 
Thus, the boundary condition on the bottom surface of the tissue in the model was 
unconstrained in the lateral direction. To compare to the experimental breast tissue 
data, the indenter size was changed to 4 mm in diameter and aspect ratios of 0.5, 1.0, 
and 1.5 were created [17, 25]. The indenter fillet was increased to 2x10-4 mm to allow 
the tissue to be compressed to 50% nominal strain. The mesh bias was refined until a 
model of each aspect ratio could reach the set strain of 50%.  Strain rate tests 
performed on breast tissue suggest that viscous effects can be neglected [17, 25]. 
Hyperelastic nonlinear material parameters were added to the material property 
definitions of the tissue in the indentation model. Specifically, the Arruda-Boyce 
constitutive law was selected.  

Table 1. A comparison of the kappa value between our model (Liu) and the 
analytical solution of Hayes and the FEM of Zheng for 2 different aspect ratios. 
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3.2 The Arruda-Boyce Constitutive Model 

3.2.1 Motivation  
The continuum mechanics approach for developing hyperelastic strain energy 
functions are empirical, need more than one experiment to realize their many material 
parameters, and have a limited strain region over which their results are applicable. 
Although  higher order models  fit the data well, they are complex, computationally 
expensive, and unstable at high stretches [1, 4]. Despite these difficulties they are still 
widely used to describe the behavior of soft tissues [5, 8, 9, 13, 15, 16, 18, 23]. 

The statistical mechanics treatment of rubber elasticity (Langevin chain statistics) 
model the material chain segment between chemical cross-links as a rigid link with 
set length [4]. The stress-strain behavior is governed by changes in configurational 
entropy [2] . The end result reflects the underlying physics of macroscopic 
deformation from microscopic components. In particular the Arruda-Boyce model is 
an 8-chain network model where only two material parameters (the rubbery initial 
modulus and the limiting chain extensibility) are needed to describe the behavior of a 
material over a wide range of stretches given limited test data. This model lends itself 
ideally to that of soft tissues because the polymer chains mimic their main 
constituents: collagen and elastin fibers .  

3.2.2 Development 
A convenient form of the Arruda-Boyce strain energy function, U, is found by taking 
a series expansion of the inverse Langevin function to the 5th order:  
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Here µ is the initial rubbery shear modulus, n is the chain density, θ is the 
temperature, K is Boltzmann’s constant, λm is the limiting chain extensibility (locking 
stretch), N is the number of rigid links, I1 is the first deviatoric strain invariant, and λi 
are the principle stretches. D is a temperature dependant material parameter related to 
the bulk modulus, and Jel is the elastic volume ratio. For incompressible materials, Jel 
= 1 and the second term in equation 2 drops out. 

Due to symmetry each chain’s stretch is shared equally amongst all of the chains 
and an initially isotropic configuration can be assumed. We can therefore relate the 
microscopic chain length to the macroscopic principal stretches via: 
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where λchain is the chain stretch, l is the current chain length, and l0 is the initial chain 
length. The locking stretch, λm, is the value of the chain stretch when it reaches its 
fully extended state, and can be determined from a simple tension or compression 
experiment assuming incompressibility (λ1λ2λ3=1). Modeling a uniaxial compression 
state and noting from the literature that breast tissue drastically increases its stress 
response at strains on the order of 30% nominal strain for normal tissue and 10% 
nominal strain for cancerous tissue, locking stretches were calculated to be 1.05 and 
1.01 respectively. 

Literature on breast tissue material property measurements of varying pathology 
suggest that initial elastic moduli for cancerous tissue is between 3 and 7 times that of 
normal tissue [17, 21, 22, 25]. For an incompressible material Possion’s ratio is 0.5 
and the elastic modulus is equal to 3 times the shear modulus. Given initial elastic 
moduli reported in the literature of 33 kPa and 100-186 kPa for normal and infiltrating 
ductal carcinoma respectively at 5% nominal strain, we explored initial shear moduli 
between 1 kPa and 150 kPa. 

3.3 Applying the nonlinear constitutive law to the FEM 

Using the proposed FE model, we chose to model eight different combinations of the 
two material parameters of the Arruda-Boyce constitutive law over three different 
aspect ratios (a/h = 0.5, 1.0, 1.5): µ=1, 5, 10, 20 kPa with λm = 1.05, and µ=30, 60, 
100, 150 kPa with λm = 1.01. The models were deformed to 50% nominal strain and 
the displacement and reaction force in the axis of deformation were recorded.  

The Arruda-Boyce model is typically used for very large strains (i.e. tensile strains 
> 200%). We are only interested in compressive strains on the order of 50%. We can 
assume the effects from the higher order polynomial terms are therefore negligible. 
Third order polynomials were fit to the force-nominal strain curves generated from 
our FEM analysis. The coefficients of these polynomials can be compared to 
experimental data to estimate the material parameters of the substrate under study. 

 4. Results 

The force-nominal strain responses of the FEM with different values of the initial 
shear modulus and locking stretch material parameters of the Arruda-Boyce 
constitutive model are shown below in Figure 4. Eight values of the initial modulus 
ranging from 1 kPa to 150 kPa were modeled with two values of the locking stretch 
(1.01 and 1.05) based on breast tissue data found in the literature as previously stated. 
Three aspect ratios were modeled to account for different sample thickness and 
indenter geometry. Typical computation times for 50% strain on a Pentium III 
computer were on the order of 140 seconds. The coefficients of third order 
polynomials fit to the model’s response and their R2 values are shown in Table 2. 



A Nonlinear Finite Element  Model of Soft Tissue Indentation      7 

5. Conclusions and Future Work 

For realistic medical simulations to become a practical reality the acquisition of 
biomechanical information and efficient computation must be achieved . The latter is 
left to the many researchers working on deformable meshing techniques [6, 7, 26].  It 
was the intent of this paper to focus on uniquely characterizing the complex nonlinear 
behavior of soft tissues with a simple mathematical model given limited experimental 
data. We implemented such a model in finite element simulations to predict the 
behavior of soft tissues undergoing large indentation deformations across  various 
testing geometries. The model was validated in the linear regime against analytical 
solutions and another FEM. The force-nominal strain results of the model can be used 
to estimate the material parameters of the soft tissue of interest. 

An axisymmetric finite element model with frictionless contact and boundary 
conditions was created employing the hyperelastic Arruda-Boyce constitutive model. 
Unlike similar constitutive laws formulated from continuum mechanics, this statistical 
mechanics based model was chosen because its two material parameters have a 
physical interpretation that can be directly related to the constituent make-up of soft 
tissues (collagen and elastin fibers).  

Table 2. The material parameters of the Arruda-Boyce model and their resulting third order 
polynomial fit coefficients for the force-nominal strain responses of soft tissue indentation. 

a/h = 0.5
R^2 A B C lambda mu (kPa)

0.9997 1.48 0.53 0.31 1.05 1
0.9997 7.46 2.72 1.56 1.05 5
0.9997 14.80 5.28 3.11 1.05 10
0.9997 29.88 10.83 6.25 1.05 20
0.9997 57.43 20.83 10.90 1.01 30
0.9997 113.81 41.21 21.69 1.01 60
0.9997 187.01 67.21 35.87 1.01 100
0.9996 275.91 98.22 53.38 1.01 150

a/h = 1.0
R^2 A B C lambda mu (kPa)

0.9995 1.20 0.43 0.23 1.05 1
0.9995 5.92 2.10 1.16 1.05 5
0.9995 11.73 4.16 2.30 1.05 10
0.9995 23.16 8.17 4.58 1.05 20
0.9995 43.93 15.43 7.93 1.01 30
0.9995 86.04 29.99 15.71 1.01 60
0.9995 140.78 48.72 25.93 1.01 100
0.9995 207.65 71.35 38.55 1.01 150

a/h = 1.5
R^2 A B C lambda mu (kPa)

0.9995 1.19 0.44 0.22 1.05 1
0.9995 5.85 2.17 1.07 1.05 5
0.9995 11.56 4.27 2.13 1.05 10
0.9995 22.75 8.38 4.22 1.05 20
0.9994 42.98 15.75 7.31 1.01 30
0.9994 83.87 30.52 14.44 1.01 60
0.9994 136.84 49.49 23.79 1.01 100
0.9994 201.47 72.42 35.31 1.01 150
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Most of the soft tissue data published in the literature only apply nominal strains of 
up to 10%. At these low strains, the Arruda-Boyce model reduces to the linear elastic 
Neo-Hookean form and fits the data well. At strains where the usefulness of these 
elastic models is of limited value the Arruda-Boyce model continues to predict the 
nonlinear behavior of the soft tissues.  

Wellman has collected some indentation data on pathologic breast samples at 
larger strains (>35% nominal strain). A future study will analyze this data and 
compare it to nonlinear FEM simulations to determine the unique material properties 
of the tissue. The lookup tables presented in this paper will be used to obtain 
approximate initial values for the material parameters. An iterative process will then 
ensue where the models’ results will be compared to the large strain data via the 
employment a nonlin ear search scheme minimizing the sum of squares error. With an 
educated estimate of the initial value of the material parameters, convergence of a 
unique set of material parameters can be quickly obtained to within the standard error 
of the data collected. 

A preliminary set of both normal glandular and cancerous data are plotted together 
with the corresponding FEM results in Figure 5. Fitting a third order polynomial to 
the data in Figure 5 suggests that an estimate for the normal glandular tissue material 
parameters are on the order of λm=1.05 and µ=1 kPa (a/h=1.0) and for infiltrating 
ductile carcinoma λm=1.01 and µ=30 kPa (a/h=1.5).  

Fig. 4. Force versus nominal strain results for the FEM with a/h=0.5 (top), a/h=1.0 
(middle), and a/h=1.5 (bottom) across various initial shear moduli and locking 
stretches (λm =1.05 (left) and (λm =1.01 (right)) up to 50% nominal strain. 
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It is clear from this preliminary work that the model needs further development. 
The tissue appears to have a lower locking stretch than the Arruda-Boyce model 
predicts. This is most likely because the Arruda-Boyce model assumes an initial 
stress-free reference state, where as in real tissue this does not exist due to hydration 
and tension in the fibers. Accounting for this non-zero initial stress state should bring 
the model into closer agreement with the data and is currently being developed.  

6. References 

1. Anand, L.: A Constitutive Model for Compressible Elastomeric Solids. Computational 
Mechanics, 18. (1996) 339-355 

2. Arruda, E.M.Boyce, M.C.: A Three-Dimensional Constitutive Model for The Large Stretch 
Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids, 41. (1993) 389-412 

3. Azar, F.S., Metaxas, D.N.Schnall, M.D.: A Deformable Finite Element Model of the Breast 
for Predicting Mechanical Deformations under External Perturbations. Journal of Academic 
Radiology, 8. (2001) 965-975 

4. Boyce, M.C.Arruda, E.M.: Constitutive Models of Rubber Elasticity: A Review. Rubber 
Chemistry and Technology, 73. (2000) 504-523 

5. Carter, F.J., Frank, T.G., Davies, P.J., McLean, D.Cuschieri, A.: Measurements and 
Modeling of the Compliance of Human and Porcine Organs. Medical Image Analysis, 5. 
(2001) 231-236 

6. Cotin, S., Delingette, H.Ayache, N.: Real-Time Elastic Deformations of Soft Tissues for 
Surgery Simulation. IEEE Transactions on Visualization and Computer Graphics, 5. (1999) 
62-73 

7. Delingette, H.: Towards Realistic Soft Tissue Modeling in Medical Simulation. In: IEEE: 
Special Issue in on Virtual and Augmented Reality in Medicine, 86. 1998) 12 

8. Farshad, M., Barbezat, M., Flueler, P., Schmidlin, F., Graber, P.Niederer, P.: Material 
Characterization of the Pig Kidney in Relation with the Biomechanical Analysis of Renal 
Trauma. Journal of Biomechanics, 32. (1999) 417-425 

9. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. second. Springer-
Verlag, New York (1993) 

10.Han, L., Noble, J.A.Purcher, M.: A Novel Ultrasound Indentation System for Measuring 
Biomechanical Propert ies of in Vivo Soft Tissue. Ultrasound in Medicine & Biology, 29. 
(2003) 813-823 

Nominal Strain Nominal Strain 

Lambda=1 .05 Lambda=1.01 

Fig. 5. Preliminary large strain indentation data plotted for normal breast tissue with 
a/h=1.0 (left) and infiltrating ductile carcinoma (right) against FEM results with a/h=1.5. 



10      Yi Liu1, Amy E. Kerdok1, 2, Robert D. Howe1, 2 

11.Hayes, W.C., Keer, L.M., Hermann, G.Mockros, L.F.: A Mathematical Analysis for 
Indentation Tests of Articular Cartilage. J. Biomechanics, 5. (1972) 541-551 

12.Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John 
Wiley & Sons Ltd., West Sussex, England (2000) 

13.Hutter, R., Schmitt, K.-U.Niederer, P.: Mechanical Modeling of Soft Biological Tissues for 
Application in Virtual Reality Based Laparoscopy Simulators. Technology and Health Care, 
8. (2000) 15-24 

14.Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985) 
15.Kauer, M., V. Vuskovic, J. Dual, G. SzekelyM. Bajka: Inverse Finite Element 

Characterization of Soft Tissues. In: Medical Image Computing and Computer-Assisted 
Intervention - MICCAI. (Utrecht, The Netherlands, 2001) 128-136 

16.Kim, J., Tay, B., Stylopoulos, N., Rattner, D.W.Srinivasan, M.A.: Characterization of Intra-
Abdominal Tissues from in Vivo Animal Experiment for Surgical Simulation. In: MICCAI. 
2003)  

17.Krouskop, T.A., Wheeler, T.M., Kallel, F., Garra, B.S.Hall, T.: Elastic Moduli of Breast and 
Prostate Tissues under Compression. Ultrasonic Imaging, 20. (1998) 260-274 

18.Miller, K.: Biomechanics of Soft Tissues. Med. Sci. Monit, 6. (2000) 158-167 
19.Ottensmeyer, M.P.: In Vivo Data Acquisition Instrument for Solid Organ Mechanical 

Property Measurement. In: Medical Image Computing and Computer-Assisted Intervention - 
MICCAI. (Utrecht, The Netherlands, 2001) 975-982 

20.Plewes, D.B., Bishop, J., Samani, A.Sciarretta, J.: Visualization and Quantization of Breast 
Cancer Biomechanical Properties with Magnetic Resonance Elastography. Physics in 
Medicine and Biology, 45. (2000) 1591-1610 

21.Sarvazyan, A.P., Skovoroda, A.R.Pyt'ev, Y.P.: Mechanical Introscopy - a New Modality of 
Medical Imaging for Detection of Breast and Prostate Cancer. In: Eighth IEEE Symposium 
on Computer Based Medical Systems. 1997)  

22.Skovoroda, A.R., Klishko, A.N., Gusakyan, D.A., Mayevskii, Y.I., Yermilova, V.D., 
Oranskaya, G.A.Sarvazyan, A.P.: Quantitative Analysis of the Mechanical Characteristics of 
Pathologically Changed Soft Biological Tissues. Biophysics, 40. (1995) 1359-1364 

23.Szekely, G., Brechbuhler, C., Dual, J.al., e.: Virtual Reality-Based Simulation of Endoscopic 
Surgery. Presence, 9. (2000) 310-333 

24.T imoshenko, S.Goodier, J.N.: Theory of Elasticisy. McGraw-Hill, New York (1970) 
25.Wellman, P.S.: Tactile Imaging. Division of Engineering and Applied Sciences. Cambridge, 

Harvard University (1999) 137 
26.Wu, X., Downes, M.S., Goktekin, T.Tendick, F.: Adaptive Nonlinear Finite Elements for 

Deformable Body Simulation Using Dynamic Progressive Meshes. In: Eurographics 2001, 
Computer Graphics Forum, 20. 2001) 349-358 

27.Yeh, W.-C., Li, P.-C., Jeng, Y.-M., Hsu, H.-C., Kuo, P.-L., Li, M.-L., Yang, P.-M.Lee, P.H.: 
Elastic Modulus Measurements of Human Liver and Correlation with Pathology. Ultrasound 
in Medicine & Biology, 28. (2002) 467-474 

28.Zhang, M., Zheng, Y.P.Mak, A.F.: Estimating the Effective Young's Modulus of Soft 
Tissues from Indentation Tests - Nonlinear Finite Element Analysis of Effects of Friction 
and Large Deformation. Med. Eng. Phys., 19. (1997) 512-517 

7. Acknowledgements 

The authors would like to thank Parris Wellman for the use of his data, and Prof. 
Simona Socrate for her assistance with the modeling. 




