
Fast Intersection Checking for Parametric Deformable Models

Douglas P Perrina and Andrew M. Laddb and Lydia E. Kavrakib and Robert D. Howeb and Jeremy
W. Cannonb

aDivision of Engineering Applied Sciences, Harvard University,Cambridge,MA 02138;
bDepartment Of Computer Science, Rice University, Houston, Texas 77005

Abstract

Parametric active deformable models for image-based segmentation offer a distinct advantage over level sets: speed.
This paper presents an extension to active deformable models that makes real-time volume segmentation possible on
mid-range off-the-shelf hardware and without the use of specialized graphics hardware. The proposed method uses region-
based parametric deformable models. A region-based parametric model, represented by a polygon, must remain non-self
intersecting (simple) while undergoing deformation. The simplicity constraint can be enforced by allowing topological
changes or by restricting motions of the curve. In either case, intersections of curve segments must be detected otherwise
catastrophic divergence results. Good performance relies on the efficiency of the intersection check operation. This paper
presents a parameter-free and efficient technique for on-line simplicity checking of polygons undergoing motion. We present
timing results validating our approach; in particular, we segment3-D ultrasound data at 20 volumes per second.

1. INTRODUCTION

Active deformable models are a robust method for segmenting imagery and for tracking regions across sequences. Active
deformable models can be divided into two groups1: parametric models (snakes)1–4 and level-set models (geometric con-
tours).5, 6 While the limitations of parametric models are well documented in the literature, the computational efficiency
of parametric models is ideal for real-time computer vision where processing cycles need to be completed in milliseconds.
Although level sets provide excellent segmentation, perform well in the presence of weak gradients,7 and can incorporate
topological constraints,8 they still remain too inefficient for real-time volume segmentation.

In this work, we enhance the performance of locally constant curvature snakes4 to make them suitable for real-time
applications. In this implementation the snake is approximated by a piecewise constant curve (a polygon). The propagation
equations are only well-defined on simple polygons.9 The efficiency of snake convergence is highly dependent on the
efficiency of checking whether the contour polygon is simple.4, 9

Definition: LetP be a planar polygon with verticesp1, ..., pn. si denotes the segment betweenpi andpi+1. A polygon
is simple if it is not self-intersecting, in other words, all non-adjacent pairs of segments are disjoint.

The intersection problem for a simple polygon with control points (vertices) undergoing motion at discrete time steps
can be described as follows. The input consists of an initial position for the polygon,P0, which will be simple. A data
structure is built and the time taken for initialization is not considered important. Afterward, a sequence of updates is
processed incrementally. Each update consists of a change in position for a single vertex;pi becomesp′i. If P = p1...pn is
a simple polygon before the update then the we must compute whetherP ′ = p′1...p

′
i...p

′
n is simple. In the case whereP ′ is

not simple then the update does not occur and the snake simulation adjusts itself appropriately.

This paper addresses the minimization of the time required to process the control point update, modify the data struc-
ture, and determine whether the polygon is simple. We provide an intersection checking algorithm that has excellent
experimental performance when applied to snake point motion. Our solution is an exact and parameter-free method which
does not use any discretization of the polygon vertex/segment locations. The speed of our algorithm makes slice-wise
segmentation of volumes possible in real-time. We demonstrate this with the segmentation of 3D ultrasound data at 20
volumes per second.

Further author information: (Send correspondence to Douglas Perrin E-mail:dperrin@deas.harvard.edu, Telephone: 1 617 496 9098



Figure 1. Simple (left) and non-simple (right) curves with normals

2. BACKGROUND

2.1. Snakes

The traditional deformable snake model was first proposed by Kass2 and is a curveS parameterized byu of the form

S(u) = I(x(u), y(u))′, u ∈ [0, 1], (1)

whereI is an image containing the coordinatesx andy. This curve is allowed to change shape and position, minimizing
an energy defined along its length. The energy function in2 is:

E =
∫ 1

0

[Eint(S(u)) + Eimg(S(u), I)] du (2)

Eint =
α

2

∣∣∣∣ ∂

∂u
S(u)

∣∣∣∣2 +
β

2

∣∣∣∣ ∂2

∂u2
S(u)

∣∣∣∣2 . (3)

E is the sum of internal energy (tension and curvature) and image energy.α andβ are free weighting parameters.Eimg is
the potential induced by the image values.

To improve the behavior in the absence of strong image energy, Ivins and Porrill’s9 proposed solution was the dynamic
pressure model. This method incorporated a pressure term that computed the similarity of pixel values around the snake
control points to create a force that pushed points toward region boundaries.

E =
∫ 1

0

[Eint(S(u)) + Epressure(S(u))] du. (4)

When a portion of the contour lies within a negative pressure region, the curve contracts. When a portion of the contour
lies within a positive pressure region, the curve expands. Since the model now relies on inflation and deflation of the curve,
the reversed normals (Figure 1) caused by self intersection lead to catastrophic divergence. This work uses the constant
curvature dynamic pressure snakes described in Perrin.4 The performance of these snakes is dependent on efficient
simplicity checking, as are a number of other snake implimentations.1, 3, 9 Regardless of how the snake implementation
handles the crossover event an efficient method to determine curve simplicity is needed.

Previous attempts to solve this problem for snakes specifically have been the “all pairs” algorithm, the use of accumu-
lators to “draw” the lines and scan for pending intersections,9 and using griding.1, 3 There are several possible techniques
from the computational geometry literature for determining if a polygon is simple that could provide more efficient check-
ing. The näıve algorithm (all pairs) verifies if all pairs of non-adjacent line segments do not intersect. This can be done in
O(n2) time for all points on the polygon. A more refined and standard approach uses a scan line algorithm and succeeds
in time O(n log n).10 The scan-line approach from computational geometry requires significant modifications to adapt it
to an efficient on-line algorithm for single vertex updates.

A common situation in on-line algorithms in computational geometry is that the data comes from a source such that
it is continuous or, even stronger, low-degree algebraic. The framework that emerged for studying the latter is frequently
referred to as kinetic data structures (KDS).11



Several existing KDS algorithms are applicable to simplicity checking and have been proposed in the context of planar
collision detection for simple geometric objects such as triangles and segments.12 The kinetic segment tree, however,
matches our problem the most closely.13, 14

The algorithm, proposed by de Berg et al.,14 yields a data structure for kinetic collision detection for line segments
with disjoint interiors. It can process a swap of thex-coordinates of two segment endpoints inO(log n) expected time and
O(log2 n) worst case time. This improved the result of Agarwal et al.13 which hadO(log n) expected time andO(n) worst
case. The second result had an advantage in that it needed to only process a constant fraction ofx-coordinate crossings.
The model assumes that the endpoints are moving along fixed trajectories of bounded algebraic degree.

2.2. The Proposed Checking Algorithm

Our model differs from the one taken by de Berg et al. in that all points but one remain fixed over a time slice and the
intermediate positions of the polygon can be ignored. Furthermore, in the worst case, a single update may causen − 1
x-coordinate crossings. We propose a data structure better suited to this task which doesO(1) work for eachx-coordinate,
y-coordinate crossing, and segment with bounding box overlap with a segment having the updated point as an endpoint. As
with the kinetic segment tree, the data structure breaks down when there are many crossings. Our experimental observation
is that if the polygons are determined by locally constant curvature snakes4 then the update cost is a small constant.

The data structures for our algorithm consists of two integer arraysAx andAy of lengthn, and an undirected graphG
over a set ofn segments. The inductive properties that must hold true for the data structures between each update are:

Inductive Property of Ax and Ay: The arrayAx contains the indicesi of the pointspi sorted in order of increasing
x-coordinate. The same holds true forAy.

Inductive Property of G: The graphG contains an edge(i, j) if and only if segmentssi and sj have overlapping
bounding boxes.

UPDATE maintains the invariants forAx, Ay andG. It also computes whether the polygon was simple after the
update.

Algorithm 1 UPDATE(i, q)
1: SWAPx(i, qx).
2: SWAPy(i, qy).
3: for (a, b) an edge inG such thata = i− 1 or a = i do
4: if sa intersectssb then
5: return polygon is not simple.
6: end if
7: end for
8: return polygon is simple.

The subroutines SWAPx and SWAPy are identical except that they operate on different dimensions. The SWAP subroutines
will be explained below.

Proposition UPDATE maintains the inductive properties ofAx, Ay andG. Furthermore, it correctly determines if the
polygon is simple after the update.

Proof. We assume inductively that the properties ofAx, Ay, andG hold before the update occurred. After the point
with indexi is updated,i may be out of order inAx. Lines 4 and 5 of SWAPx, the corresponding lines in the implicit block
at line 17, and the outerwhile loops are an insertion sort for the indexi. Since the array is sorted except for indexi, this
produces a sortedAx. The same also holds forAy.



Algorithm 2 SWAPx(i, qx)
1: Let j be such thatAx[j] = i.
2: (pi)x is set toqx.
3: while j < n− 1 andqx > (pAx[j+1])x do
4: Let k = Ax[j + 1] and swapAx[j] with Ax[j + 1].
5: j := j + 1.
6: for (a, b) ∈ {(i− 1, k − 1), (i, k − 1), (i− 1, k), (i, k)} do
7: if sa andsb are not adjacentthen
8: if sa andsb have overlapping bounding boxesthen
9: add edge(a, b) to G.

10: else
11: remove edge(a, b) from G.
12: end if
13: end if
14: end for
15: end while
16: while j > 0 and(pAx[j−1])x > qx do
17: Identical to lines 4-14 exceptj + 1 becomesj − 1.
18: end while

Moving the ith point causes segmentssi−1 and si to change. This also causes changes to the bounding boxes of the
segments. Two bounding boxes intersect if and only if the intervals obtained by the axis projections are overlapping on both
thex andy-axes. A change in interval overlaps for all segment projections can occur when the order of the endpoints of two
segments change. During an update swaps in the order ofAx andAy correspond to potential bounding box overlap state
changes. If indexi andk swap position then segmentssa andsb where(a, b) ∈ {(i−1, k−1), (i−1, k), (i, k−1), (i, k)}
have a state change. Lines 6 through 14 in SWAPx account for this together with the corresponding lines implicit at line
17 by recomputing the state of the edge(a, b) in the graphG.

Finally, lines 3 through 8 in UPDATE correctly compute whether the polygon is simple after the update is complete.
Two segments that do not have overlapping bounding boxes cannot intersect andG contains all intersecting bounding
boxes. Furthermore, onlysi−1 andsi need to be checked since no other segments changed.

An efficient implementation of UPDATE can be achieved with the appropriate data structures.Ax andAy are rep-
resented as arrays and line 1 of the SWAPx call is implemented in constant time by using a hash table that inverts the
mappings ofAx andAy. Edge insertion and deletion inG is accomplished in constant time with a hashed implementation
of a graph. Edge enumeration of all edges touching a vertex used on line 3 of UPDATE is implemented inO(degree(i))
by using hash indexed adjacency sets stored as arrays.

The overall running time of an update is linear with respect to the total number of endpoint swaps that occur in thex
andy-axes and the number of bounding boxes that overlap with the bounding boxes ofsi−1 andsi. In the worst case, this
leads toO(n) work being done per update. However, the experimental performance isO(1).

3. EXPERIMENTAL RESULTS

We present three sets of experiments to argue the efficiency of our technique and to motivate its application. The first is a
timing test on a simple image which compares our proposed “fast” simplicity check with the naı̈ve “all-pairs” simplicity
check. The second is a test to determine the accuracy of our segmentation approach to volumetric ultrasound data. The
objects being segmented are balloon-shaped phantoms made from tissue-mimicking gelatin. The phantoms have known
volume and we compare this to the volume estimated by the segmentation. The third experiment used volumetric ultrasound
data from a beating porcine heart from a 40 kg animal taken at 20 volumes per second. The ultrasound experiments motivate
our approach by giving a concrete application in medical imaging. The experiments were performed on an Athlon 1900XP
with 512Mb of main memory running Mandrake Linux 9.0 (for the first experiment) and Windows XP (for the second and
third experiments).



Figure 2. Segmented left ventricle of a porcine heart shown without (left) and with (right) the raw ultrasound data

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of snake points

T
im

e 
in

 S
ec

on
ds

All Pairs
Proposed

Figure 3. Timings plot for snakes running on video frames

Video For the timing experiments a simple black square was placed in front of the camera. The images were captured
using a Logitech USB camera at a resolution of640 by 480 pixels. The number of iterations required for the snake
convergence, the specific parametersβ, ρ, and the initial placement of the snake are fixed for the resulting timings tests.
After a new image is captured, both the naı̈ve and the proposed method are used to iterate the snake. The resulting times
for each were recorded. The only difference between the two implementations is the simplicity check. Since both checks



Phantom No. Vol. by Weight (cc) Vol. by Imaging(cc) % Difference
1 49.45 48.94 -1.0 %
2 54.55 55.57 1.9 %
3 37.36 38.01 1.8 %
4 42.27 42.34 0.2 %
5 37.73 38.22 1.3 %
6 46.90 46.25 -1.4 %

Figure 4. Volume comparison of balloon phantoms

are correct and both snakes are applied to the same input image, the curve shape remains the same for both through the
iterations. The time taken by each algorithm is shown in Figure 3. The “all-pairs” algorithm exhibits quadratic behavior as
expected while the proposed algorithm is roughly linear.

Real-time 3D Ultrasound The ultrasound experiments were executed using data from a3-D real-time ultrasound system
(Phillips Medical Systems, Andover, MA). The system uses a fully sampled3000 element array that can acquire20-25
volumes per second at a resolution of160x208x144 voxels. We studied the volume estimation of the left ventricle; changes
in the ventricle across the heart cycle is an important measure of cardiac function. Since the ultrasound data can be acquired
in real-time, the volume estimation which is driven by the segmentation algorithm should ideally be executed in real-time as
well. The segmentations were achieved with our snakes implementation. We used40 control points on each2-D slice and
merged the resulting curves together to form the volume segmentation. Both sets of experiments used the same parameters
and ran in real-time.

In the first set of ultrasound experiments, the volume of balloons filled with tissue-mimicking gelatin were estimated
using the ultrasound machine and our segmentation implementation. The estimated volumes were then compared to the
volumes measured by weight. Six trials were executed and the observed difference in volume was less than2 percent. The
raw data is shown in Figure 4. The confidence interval for the ground truth volumes was95 percent by weight.

The second experiment was real-time segmentation of the left ventricle of porcine heart. Although clinical validation
of the volume estimate is beyond the scope of this work, the segmentations were stable over time and the volume estimates
were approximately correct. Two snapshots of these segmentations are shown in Figure 2.

4. DISCUSSION AND FUTURE WORK

In this paper, we present an efficient and exact algorithm for fast simplicity checking of a polygon. In the experiments,
we demonstrate the good performance of our approach and describe an application in medical imaging that our technique
enables. Although our simplicity checker may haveO(n) per iteration worst case performance, our experimental work
suggests that it works very well with the input generated by locally curvature constrained snakes. The even spacing and
curvature constraints on the control points, together with the fact that at each incremental update a control point will not
move much, leads to the good performance of the algorithm. It is possible that rigorous bounds on algorithmic performance
can be proved given appropriate bounds on curvature, spacing and control point motion.

The system that we presented can handle snakes that are simple closed curves. In the implementation, we described
certain shortcuts that can be taken by assuming the curve topology is fixed. However, all the operations in UPDATE and
SWAP can be replaced with operations of the same asymptotic complexity in order to generalize the set of simple closed
curves and to support topological changes. The main modification would be to switch the arraysAx andAy with hash
indexed doubly-linked lists. With this change, the swap and probe operations we used are still constant time and we can
now support curve surgery by list surgery.

Acknowledgments

Work on this paper by A.M. Ladd and L.E. Kavraki has been supported in part by NSF ITR #0205671 and NSF #0308237.
A.M. Ladd is also supported by FCAR. D.P. Perrin and R. Howe via NIH #1 R01 HL073647-01 and ONR #N00014-98-1-
0669 / PR-0629. The authors would like to thank C. Smith for a number of conversations on snakes and explicitly on his
ideas for color pressure.



REFERENCES
1. H. Delingette and J. Montagnat, “Shape and topology constraints on parametric active contours,”Computer Vision and Image

Understanding83, pp. 140–171, 2001.
2. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,”International Journal of Computer Vision, Vol. 1, No.

4 , pp. 321–331, 1988.
3. T. McInerney and D. Terzopoulos, “Topologically adaptable snakes,” inProceedings of IEEE International Conference on Com-

puter Vision, pp. 840–845, 1995.
4. D. Perrin and C. Smith, “Rethinking classical internal forces for active contour models,” inProceedings of of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2, pp. 615–620, 2001.
5. R. Malladi, R. Kimmel, D. Adalsteinsson, G. Sapiro, V. Caselles, and J. A. Sethian, “A geometric approach to segmentation and

analysis of 3D medic al images,” inProceedings of Mathematical Methods in Biomedical Image Ana lysis Workshop, June 1996.
6. S. Osher and J. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based o n hamilton-jaccobi fomulation,”

Journal of Computational Physics79, pp. 12–49, 1988.
7. A. Yezzi, A. Tsai, and A. Willsky, “A statistical approach to snakes for bimodal and trimodal imagery,” inProceedings of the IEEE

International Conference on Computer Vision, (898–903), 1999.
8. X. Han, C. Xu, and J. L. Prince, “A topology preserving deformable model using level set,” inProceedings of IEEE CVPR 2001,

2, pp. 765–770, 2001.
9. J. Ivins and J. Porrill, “Statistical snakes: Active region models,” inProceedings of BMVC, pp. 377–386, 1994.

10. M. de Berg, M. van Kreveld, and M. Overmars,Computational Geometry: Algorithms and Applications, Springer, Berlin, 1997.
11. L. J. Guibas, “Kinetic data structures – a state of the art report,” inProceedings of the 5th Workshop on Algorithmic Foundations

of Robotics, P. Agarwal, L. Kavraki, and M. Mason, eds., pp. 191–209, A.K. Peters, Wellesley, MA, 1998.
12. P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger, “Lower bounds for kinetic planar subdivisions,” inSympo-

sium on Computational Geometry, pp. 247–254, 1999.
13. P. K. Agarwal, L. J. Guibas, T. M. Murali, and J. S. Vitter, “Cylindrical static and kinetic binary space partitions,” inSymposium

on Computational Geometry, pp. 39–48, 1997.
14. M. de Berg, J. Comba, and L. J. Guibas, “A segment-tree based kinetic BSP,” inSymposium on Computational Geometry, pp. 134–

140, 2001.


