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Abstract 

Surgical repair of the mitral valve results in better outcomes than valve replacement, yet diseased valves are often 
replaced due to the technical difficulty of the repair process. A surgical planning system based on patient-specific 
medical images that allows surgeons to simulate and compare potential repair strategies could greatly improve 
surgical outcomes. The system must simulate valve closure quickly and handle the complex boundary conditions 
imposed by the chords that tether the valve leaflets. We have developed a process for generating a triangulated mesh 
of the valve surface from volumetric image data of the opened valve. The closed position of the mesh is then 
computed using a mass-spring model of dynamics. In the mass-spring model, triangle sides are treated as linear 
springs supporting only tension. Chords are also treated as linear springs, and self-collisions are detected and 
handled inelastically. The equations of motion are solved using implicit numerical integration. The simulated closed 
state is compared with an image of the same valve taken in the closed state to assess accuracy of the model. The 
model exhibits rapid valve closure and is able to predict the closed state of the valve with reasonable accuracy
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1 Introduction 

The mitral valve is the most complex of the four heart valves and is the one most often associated with 
disease [21]. It consists of two leaflets that open and close as the heart beats to ensure one-way flow of 
blood into the left ventricle. The leaflets are restrained by fibrous chords during closure. See Figure 1. 
Mitral regurgitation (MR) occurs when the valve fails to close adequately during ventricular contraction 
and blood leaks backward through the incompetent valve. It can be caused by ischemic heart disease, 
dilated cardiomyopathy, rheumatic valve disease, or infection [5]. MR can lead to heart failure if left 
untreated, and the only effective treatment is surgery. The two primary surgical treatment options are 
repair of the native mitral valve tissue and replacement with a prosthetic valve. Repair has been shown to 
result in better function and long-term survival than replacement [9,15,20], so surgical repair of the mitral 
valve is preferable to valve replacement for the majority of patients who require treatment for MR [7]. 
However, replacement is often performed instead of repair due the technical difficulty of valve repair 
[18].

Figure 1 Cross section of the left heart with mitral valve shown in the closed position. Mitral valve 
structures are identified by arrows. 

Valve repair typically requires use of cardiopulmonary bypass, a procedure which involves arresting the 
heart and emptying it of blood. The surgeon must try to imagine how the valve leaflets, and/or the chords 
that tether them, must be modified to make the valve close effectively after the heart is refilled with blood 
and pumping has been restored. Practice and experience are crucial for the development of the skills 
necessary to reliably repair mitral valves. Studies show that experienced surgeons at large clinical centers 
have a much better record of successful repairs, and valve replacement is often chosen instead of repair at 
low volume centers [8]. 

Surgical simulation has the potential to enable less experienced surgeons to effectively repair valves. This 
would allow many patients to undergo valve repair who would otherwise have undergone valve 
replacement. We propose that computer simulations of mitral valve closure can be used to help the 
surgeon plan effective repair strategies on a patient-specific basis. Under the proposed scheme, the 
geometry of a particular patient’s valve would be extracted from medical images acquired prior to the 
date of surgery. The surgeon could then modify a computer model of that valve to reflect a particular 
surgical repair strategy and would use computer simulation to predict the closed state of the valve, 
indicating the effectiveness of that particular repair strategy. In this way, many potential repair strategies 
could be simulated and compared prior to the actual surgery, informing the surgeon to help choose the 
best strategy for a particular patient.  

Leaflets 

Chords 

Papillary muscles 
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An important component of the proposed surgical simulation system is the computational model of the 
mitral valve. The proposed surgical simulation environment places two important requirements on the 
computational model. First, valve anatomy must be modeled in sufficient detailed to allow predictive 
modeling on a patient-specific basis. Second, the model must be able to compute the closed state 
relatively quickly. A surgeon may want to simulate ten or more surgical strategies for a given patient, so 
the time to simulate one valve closure must be on the order of minutes.  

Several groups have developed finite element models of the mitral valve to study its function [6,11,23]. 
While these studies modeled important aspects of the complex behavior of the valve, their methods are 
not well-suited for the surgical simulation environment.  They were based on averaged valve data, rather 
than subject-specific images, assuming symmetry of the leaflets through their midline and neglecting the 
branching structure of the chords. Another finite element study modeled the valve structures 
asymmetrically and obtained boundary conditions dynamically using implanted sonomicrometry crystals 
in an animal model [12]. Unfortunately their sonomicrometry method cannot be used clinically. All of 
these finite element models have execution times that are too slow for this surgical planning application.  

In developing the computational model, several assumptions were made. First we assumed that a static 
loading state of peak systolic pressure was sufficient to assess valve competency in the model. A 
justification of this assumption is that the technique used at the end of surgery to test the repaired valve is 
to load the valve by injecting saline under static pressure [5]. This assumption allows us to ignore the 
complex interaction between blood flow and the valve structures during ventricular filling and ejection.  

The second assumption concerns the role of tissue deformation in determining the shape of the closed 
valve. The valve leaflets undergo both conformational changes and deformation (tissue strain) in going 
from the open to the closed, loaded state. While the constitutive properties of valve leaflets and chords are 
known to be complex and to play a role in maintaining relatively low and uniform stress concentrations 
across the valve leaflets, we hypothesize that the conformational changes largely dictate whether the 
valve closes completely and that modeling the conformational changes along with a simple model of 
tissue properties will enable us to accurately predict the closed state given a particular valve geometry.  

To meet these requirements, we have developed a computational model based on a mass-spring system, a 
method used in computer graphics to simulate the dynamics of fabric [16]. Mitral valve geometry is read 
directly from computed tomography (CT) data. This data is used to generate a triangular mesh. The mesh 
is treated as a system of masses connected by springs, and dynamics equations are used to evolve the 
closed state of the valve. The closed state predicted by the model is compared directly with images of the 
actual valve taken in the closed state.  

2 Methods 

2.1 Imaging 

The mitral valves of two explanted porcine hearts were statically loaded with air via tubing inserted 
through the aorta, past the aortic valve, and into the left ventricle. The aorta was then cinched tightly 
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around the tubing. To prevent air leakage through the coronary arteries, they were sutured closed. In order 
to supply air at low pressure with high accuracy, a circuit consisting of low-pressure regulators and 
electronic pressure sensors was constructed. The hearts were imaged in two different states using a micro-
CT system (microCAT, Siemens, Munich, Germany): (1) with the mitral valve in the open position (no 
applied pressure), and (2) with the mitral valve in the closed position under typical porcine peak systolic 
pressure of 100 mmHg. Images were acquired at 100 μm isotropic voxel size. The volumetric CT image 
of the hearts were cropped to include only the mitral valve leaflets and chords. The resulting image of the 
valve was segmented, and an isosurface was fit to the data in Matlab (Mathworks, Natick, MA). The 
surface consists of an unstructured triangular mesh of points covering all surfaces of the leaflets and 
chords. The set of triangles comprising the atrial surface of the leaflets was isolated, and all chords that 
attach to either the free edge or the belly of the leaflets were approximated with line segments. 

2.2 Mass-spring Model 

Model Structure 

The dataset consisting of the triangulated mesh of the open valve leaflets along with the line segments 
representing the chords was used as the basis for a mass-spring model. All edges of triangles were treated 
as translational springs supporting only tension, and the mass of each triangular element (assuming finite 
thickness and known mass density) is treated as being lumped at the nodes. An example of a simple mass-
spring mesh is shown in Figure 2. Spring constants for the springs comprising the valve leaflets were 
chosen using the following equation for approximating elastic membrane behavior with spring meshes 
[22]: 

(1)

where kc is the spring constant for a given triangle side, E2 is the two-dimensional Young’s modulus for 
the leaflet tissue, the summation term represents the area of all triangles sharing side c, and the 
denominator is the squared length of side c. The two-dimensional Young’s modulus is the product of 
Young’s modulus and leaflet thickness. We assume uniform leaflet thickness of 1mm.  

Figure 2 Example of a simple mass-spring mesh. All triangle sides are treated as translational springs, 
and mass is lumped at the nodes. 

The stress-strain relationship for mitral valve leaflet tissue in known to be nonlinear, with a highly 
extensible pre-transitional region followed by a linear post-transitional region of much higher stiffness. 
See Figure 3. We approximated this relationship using a bilinear fit, with pre- and post-transitional 
stiffness of 100 and 6000 kPa and transition point of 25% strain [14]. Chord segments were also treated as 
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springs supporting only tension, and spring constants were computed as 1-d Young’s moduli based on 
chord length, cross-sectional area and Young’s modulus for the chords [11]. Nodal mass was computed as 
the product of the nodal area (one third of the sum of the areas of triangles sharing that node), leaflet 
thickness and mass density.  

Figure 3 Example of typical stress-strain curve observed in mitral valve leaflets. Young’s modulus of the 
pre-transitional region, Epre, is the slope of the stress-strain curve at low strains, and Young’s modulus of 
the post-transitional region, Epost, is the slope at high strains. The transition point is denoted as ε*.

Model Dynamics 

The dynamics of the mass-spring system can be expressed in state-space form as: 

(2)

where x and v are vectors of nodal positions and velocities, respectively, M-1 is the inverse mass matrix (a 
diagonal matrix with the reciprocal of nodal mass on the main diagonal), and f is the vector of net nodal 
force due to springs and external forces. Implicit numerical integration is used because it allows larger 
integration step sizes and correspondingly faster simulations [1]. In order to use implicit integration, we 
discretized (2) using a second-order backward-difference formula as: 

(3)

where h is the integration time step. The net nodal force at step n+1 depends on the nodal positions at step 
n+1 making the set of equations nonlinear. It can be linearized by replacing f at step n+1 with a first-
order Taylor series approximation: 

(4)

Following a method used in a study simulating the behavior of cloth [3], (3) and (4) can be combined and 
expressed as the linear system: 
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(5)

The Jacobian matrix expressing the partial derivative of the net force vector with respect to velocity is an 
N x N block matrix where N is the number of nodes in the system, and each block is 3 x 3, representing 
the three spatial coordinates. The forces due to springs as well as those due to applied pressure do not 
depend explicitly on nodal velocity, so their contributions are zero. Only the viscous damping term 
depends on nodal velocity, and its partial derivative yields –bI where b is the damping coefficient and I is 
the 3N x 3N identity matrix.  

The Jacobian matrix expressing the partial derivative of the net force vector with respect to position is the 
same size as the Jacobian described above. In this case, the forces due to viscous damping and those due 
to applied pressure do not depend explicitly on position, so their contributions are zero. The forces due to 
the translational springs depend directly on nodal position, and their contribution to the Jacobian was 
evaluated analytically. For the translational spring between nodes i and j, elements of the Jacobian are 
computed as: 

(6)

and

(7)

where  

(8)

In this equation, l is the undeformed length of the spring between nodes i and j, {sx sy sz}T is the vector 
from node i to node j, and r = {sx sy sz}*{sx sy sz}T.

Solution Method 

Equation (5) is a linear system where the first term on the left side is a sparse 3N x 3N matrix and the 
second term is a 3N x 1 vector of unknowns. All of the terms on the right side are 3N x 1 vectors which 
are known. It can be solved by inverting the sparse matrix. We used an iterative technique based on the 
method of conjugate gradients [2]. 

Points lying on the annulus as well as the locations where chords attach to the heart wall are treated as 
fixed (zero-displacement). However, both of these sets of points move considerably as the valve closes – 
both during physiological valve closure and during the passive loading that we use to image the closed 
valve. The closed shape of the valve leaflets is strongly dependent upon the locations of the annulus and 
chord attachment points, so it is important that we use their positions in the closed state for our 
simulations. To do so, we took a CT scan of the valve in the closed, loaded state then generated a mesh 
and identified the annulus and chord attachment points on the mesh. The annulus points were registered to 
those from the mesh of the open valve using the iterative closest point algorithm [24]. Points lying on the 
annulus of the open mesh were then linearly warped onto the annulus from the closed image, and the 
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points of attachments of the chords were moved directly to their positions measured in the image of the 
closed valve. All of the nodes in the mesh will be disturbed by the jump in positions of the annulus and 
chord attachments. To calculate their equilibrium state, the spring network was solved using a quasistatic 
approach. This was done by assembling the global stiffness matrix and solving it subject to zero-
displacement boundary conditions on the free edge of the leaflet and prescribed-displacement boundary 
conditions on the annulus and chord attachment points [13]. Then, during dynamic simulations, the 
constraint on the free edge of the leaflet is relaxed while annulus and chord attachment points are 
constrained to remain fixed. 

Zero-displacement boundary conditions are implemented during simulations through use of the inverse-
mass matrix appearing in (5). A particle i acted upon by springs but not subject to any displacement 
constraints will contribute the 3 x 3 diagonal matrix given by (1/mi)I to the main diagonal of the 3N x 3N
inverse-mass matrix. However, we could prevent the velocity of the particle from changing by making the 
inverse-mass equal to zero, i.e., giving it an infinite mass. An infinite mass cannot be accelerated, so it 
effectively ignores all forces exerted on it. The zero displacement boundary conditions at the mitral valve 
annulus and at nodes where chords terminate in the heart wall are handled this way. Self-collisions of the 
leaflet were identified using a simple method based on proximity of vertices. Detected collisions were 
handled by inserting forces to render the collisions inelastic. 

Model Parameters and Implementation 

Some of the model parameters, such as constitutive properties of the tissues and applied transleaflet 
pressure, affect the closed shape of the valve at equilibrium. These parameters are assigned physically 
realistic values and are listed in Table 1. The remaining model parameters affect model dynamics and/or 
stability but not the closed shape of the valve, and those are assigned in order to minimize execution time 
and instability. The model was implemented in the Matlab programming language. 

Table 1. Model parameters.  

3 Results 

Images from several stages of the simulation process for two different data sets are shown in Figure 4. 
The left pair of panels shows CT images of the mitral valve (oblique view from the top) in the opened 
position. The next pair of panels shows the initial states of the mass-spring model of the valve from the 
same view. The chords are depicted by line segments. The next pair shows the meshes in the initial state 

Parameter Value 

Epre, leaflets 100 kPa

Epost, leaflets 6,000 kPa

E, chords 40,000 kPa 

ε* 25% 

transleaflet pressure 13 kPa (100 mmHg) 
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but after the annulus and chord attachments have been moved to their positions for the closed state. The 
right pair of panels shows the meshes in the final closed and loaded state. The model shown in the top 
row contains 381 nodes, 631 triangles, and 1013 translational springs. The model shown in the bottom 
row contains 276 nodes, 419 triangles, and 700 springs. The valve model closed completely in 
approximately 5 minutes on a computer with 2.33 GHz dual core CPU.  

Figure 4 Four stages of the modeling and simulation process are shown above for two different datasets 
(top and bottom rows). Panels, from left to right, show (1) CT scan of open mitral valve, (2) mesh of open 
valve, (3) mesh of open valve with annulus and chord attachment points moved to their positions from 
image of closed valve, and (4) mesh following simulation of valve closure.  

To quantitatively compare the closed state predicted by the model to the closed state generated from the 
image of the closed valve, the two surfaces were co-registered, again using the iterative closest point 
method based on vertices lying on the valve annuli. The error in the closed state predicted by the model is 
estimated by computing the magnitude of the distance between points on the closed image and their 
nearest points on the closed model. This distance is mapped to color and is plotted in Figure 5, with the 
error map on the left and right corresponding to the data sets in the top and bottom rows of Figure 4. The 
mean error across the surface was 1.7 mm for the error map on the left and 1.1 mm for the error map on 
the right. Maximum error was about 4 mm for both error maps. 

Figure 5 Error between the closed state of the valve simulated by the model and the mesh produced 
directly from the image of closed valve. Image on the left/right corresponds to the valve shown in 
top/bottom row of Figure 4. Error, in millimeters, is mapped to color.  

4 mm 

0
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The sensitivity of model results to changes in several important model parameters was evaluated. We 
define sensitivity, S, as: 

(9)

where Y is the measure of model accuracy, X is a parameter being tested, and X0 is the value of that 
parameter used for our simulations and listed in Table 1. For Y, we use the mean error across the model 
surface. We approximate (9) as ΔY/ ΔX by increasing parameter X by 10%, repeating a simulation, and 
computing the resulting change in Y. Sensitivity to the constitutive properties of the leaflets is shown in 
Table 2.  

Table 2. Sensitivity to parameters. 

4 Discussion 

The goal of this study was to develop a simplified model of mitral valve mechanics specifically for use in 
surgical planning. There are three main requirements for the model. First, the model must represent the 
geometry of the valve structures in sufficient detail to allow patient-specific simulation. Second, the 
model must be able to simulate valve closure quickly and robustly. The third requirement concerns 
accuracy. Each of these requirements will be discussed below. 

To produce models capable of conveying patient-specific anatomical detail, we produced dense meshes 
directly from images. Our imaging method provided high resolution and contrast and enabled us to 
acquire images under carefully controlled loading conditions. Micro-CT scans cannot be used to acquire 
images in the clinical setting because of the small bore diameter, and a patient’s heart cannot be statically 
loaded for imaging. However, flat-panel volume CT can be used to image a human heart in vivo with 
similar resolution to our data [10]. Cardiac gating allows images to be captured at any point in the cardiac 
cycle, obviating the need for static loading.  

Our mitral valve models were able to simulate one closing cycle in approximately 5 minutes, and 
significant speed gains can likely be made by implementing some of the bottleneck sections of the 
program in the C programming language. Further gains could be made by taking advantage of multiple 
CPU’s or by using the GPU [19]. Simulations proved to be very robust. They were stable for all meshes 
that were tested, and stability was not affected by the quality of triangles in the mesh.  

Parameter Sensitivity 

Epre -0.00349 mm/kPa 

Epost 2.13 x 10-7 mm/kPa 

ε* -0.0221 mm/% 
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In choosing mass-spring modeling over finite element approaches, we have deliberately traded off some 
accuracy in the interest of speed and robustness. Finite element methods are based on continuum 
mechanics and can rigorously handle the anisotropy and nonlinearity that are known to characterize valve 
biomechanics [17]. Furthermore, they provide detailed analysis of stresses throughout the structures under 
load. However, our accuracy goals are more modest. At present, the surgeon hopes simply to create a 
mitral valve repair geometry that closes completely at peak load; our model is presented as a tool that 
could better inform surgeons as they try to understand the relationship between the geometry of the 
opened valve and its closed state. Analysis of stress concentrations throughout the leaflets is beyond the 
capability of the type of model presented here.  

The model is able to predict many features of the closed state accurately and estimates the actual position 
of the closed leaflets with mean errors of 1.7 mm or less. By quantifying and plotting the error in the 
closed state predicted by the model, we can clearly see in which regions the model succeeds or fails to 
capture the actual behavior. For both mitral valves that we modeled, the maximum error of approximately 
4 mm occurred in the middle of the leaflets. Two factors probably contribute to this error. First, by 
representing the mitral valve leaflets as isotropic, we neglect it strong orthotropic behavior, which is 
likely to play a role in determining leaflet shape. Second, for chords that attach to the free edge of a 
leaflet, we attach them at a single point on the edge, while, in reality, the chord inserts into the leaflet over 
a long overlapping region and imparts high stiffness to that leaflet in the direction of the chord. 

The limited sensitivity analysis that we performed demonstrates that the accuracy of the model in 
predicting the closed state of the leaflets is not highly sensitive to the choice of leaflet properties. For 
example, a 1 kPa increase in the pre-transitional Young’s modulus for the leaflets results in a decrease in 
model error of less than 1/100th of a millimeter. It is desirable for our model to be relatively insensitive to 
leaflet properties because it indicates that we could have used any physiological values for leaflet 
properties (which are known to exhibit a large variance [14]) without significantly affecting our results. 

It is important to note that closure of the valve leaflets is not the only metric of valve function, and hence 
quality of potential repair. One might also consider stress levels in the leaflets, a metric important for 
long-term durability of the valve. However, accurate simulation of the closed state is a good first-order 
criterion for valve function.  

5 Conclusions 

Our method of simulating closure of the mitral valve meets the requirements of surgical planning for 
valve repair. Simulations are fast and robust, and patient-specific models can be derived directly from 
images. Results are in reasonable agreement with images of the loaded valve. The relationship among the 
full set of model parameters need to be better understood, and the effect of changing the mesh density on 
speed and accuracy needs further investigation. 
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