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Abstract 

Heart valves are functionally complex, making surgical repair difficult. Simulation-based surgical 

planning could facilitate repair, but current finite element (FE) studies are prohibitively slow for rapid, 

clinically-oriented simulations. Mass-spring (M-S) models are fast but can be inaccurate. We quantify 

speed and accuracy differences between an anisotropic, nonlinear M-S and an efficient FE membrane 

model for simulating both biaxial and pressure loading of aortic valve (AV) leaflets. The FE model incurs 

approximately ten times the computational cost of the M-S model. For simulated biaxial loading, mean 

error in normal strains is <1% for both FE and M-S models for equibiaxial loading but increases for non-

equibiaxial states for the M-S model (7%). The M-S model was less able to simulate shear behavior, with 

mean strain error of approximately 80%. For pressurized AV leaflets, the M-S model predicts similar 

leaflet dimensions to the FE model (within 2.6%), and the coaptation zone is similar between models. The 

M-S model simulates in-plane behavior of AV leaflets considerably faster than the FE model and with 

only minor differences in the deformed mesh. While the M-S model does not allow explicit control of 

shear response, shear does not strongly influence shape of the simulated AV under pressure. 

 

Keywords: finite element model, aortic valve, membrane, surgical planning 
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Introduction 

Heart valves are thin, membrane-like structures that control the direction of blood flow 

through the heart. Valve dysfunction can lead to heart failure and death, and surgery is the 

primary treatment option. Surgical repair of heart valves is difficult due to their intricate 

structure and complex properties; biomechanical studies have shown that leaflets of heart valves 

exhibit an anisotropic, nonlinear stress-strain relationship and large deformations under 

physiological loads 
3, 19, 23, 29

. Furthermore, repairs are normally performed during open heart 

surgery when the heart is emptied of blood and the valves are motionless, making it difficult for 

the surgeon to know how a given surgical modification will translate into valve function after the 

heart has been closed and blood flow restored. A surgical simulator based on patient-specific 

medical images has been proposed as a way to improve surgical outcomes 
16

. Under the proposed 

scheme, pre-operative images are acquired, and a computational mesh of the malfunctioning 

valve is generated. The surgeon explores potential repair strategies on the computer model of the 

open valve then uses simulation to predict the closed state of the valve. For this surgical planning 

environment to be of practical use to a surgeon, simulations must be fast - no more than a few 

minutes per valve closing cycle – so that multiple surgical repair strategies could be simulated in 

succession, with feedback from one simulated repair guiding the subsequent simulated repair in 

an iterative process.  

 

Published computational models of heart valves use the finite element (FE) method to study 

normal, pathological and prosthetic valves and to evaluate innovative devices or methods for 

surgical repair 
7, 14, 18-21, 26, 27, 34, 36

. The FE method can provide accurate approximation to the 

behavior of continua. However, FE simulations of heart valves are typically slow due to large 
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deformations, complex constitutive laws, and numerical stiffness of the system equations. While 

most heart valve FE studies do not report simulation times, a recent FE model of the mitral valve 

developed for surgical planning reports simulating one closing cycle in 81 hours, and simulation 

time drops to 7.5 hours using a high performance computing cluster with 32 parallel CPU’s 
35

. 

Speed limitations have precluded use of computational models for patient-specific surgical 

planning and for real-time surgical simulation of heart valves.  

Mass-spring (M-S) models have been used to simulate deformable surfaces 
5, 8, 32

, and they 

can typically be computed at rates much faster than continuum methods due to their 

computational simplicity. M-S models can be applied to either structured or unstructured meshes, 

although only unstructured meshes will be considered here due to their predominance in 

automatic mesh generation methods. M-S models are fundamentally discrete, and they can be a 

poor approximation to the underlying continuum 
13

. This is especially true of unstructured 

meshes. Van Gelder has proposed a simple method for choosing spring stiffness to minimize 

inhomogeneities in deformation due to the mesh 
32

. Other groups have proposed optimization 

methods for tuning individual spring stiffness throughout a given mesh to approximate specific 

behavior of the overall surface 
2, 9, 22

. These methods, however, involve considerable 

precomputation, which can be problematic for a surgical planning system where the mesh is 

modified prior to each simulation. In their simplest form, M-S models define an elastic force 

between two vertices that varies with edge length. However, variants have been proposed to 

simulate various material properties. For example, Bourguignon et al proposed a M-S method for 

handling anisotropy by restricting all internal forces to axes aligned with local principal material 

axes instead of mesh edges 
4
. Delingette presented a method for simulating isotropic hyperelastic 
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membranes using a new type of spring, which is based on finite strain mechanics and allows a 

formal connection between FE and M-S methods 
8
.  

For fast simulation of heart valve closure for use in patient-specific surgical planning, the 

decision of whether to use M-S or continuum-based methods for modeling the valve leaflets 

hinges on the relative accuracy and computational cost of these methods. In this study, we assess 

this trade-off between speed and accuracy. We present a M-S model that approximates the 

anisotropic, nonlinear in-plane behavior of aortic valve leaflet tissue on unstructured triangular 

meshes, and compare the accuracy and computational cost of M-S and FE models. Both models 

are implemented in the same programming environment so that they can be run on the same 

input meshes and using the same solvers, allowing us to directly compare computational speed 

and accuracy. To assess accuracy of the models, we first compared stress-strain curves of 

simulated square patches of membrane under biaxial loading to stress-strain curves calculated 

directly from the constitutive law. We then simulate pressure loading of aortic valve leaflets at 

end-diastole - both a single leaflet of an aortic valve and a full valve consisting of three leaflets - 

and we compare critical dimensions of the deformed meshes produced by both the M-S and FE 

methods. Simulations of biaxial loading illustrate the aspects of material behavior that the M-S 

model can and cannot accurately capture, while pressure loading simulations help assess model 

behavior as it is relevant for heart valves. 

 

Methods 

Continuum model for aortic valve leaflet tissue. 

To simulate the in-plane response, the following Fung-type constitutive law was used to 

approximate the leaflet response 
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where S is the second Piola-Kirchhoff stress tensor, E is the Green strain tensor, i and j are 

indices representing the two principal directions, and W is strain energy density. We assume an 

exponential form for W after Fung 
11
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where c is a constant and Q represents the following combination of components of the Green 

strain tensor: 
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The values A are constants, and these along with c are determined with a Levenberg-Marquardt 

nonlinear curve fitting algorithm
28

 carried out in the coordinate system aligned with the principal 

axes using data from previously published biaxial experiments on normal aortic valve leaflet 

tissue
29

.  

 

Computational models of anisotropic membrane 

Mesh Generation. For simulations of biaxial loading, a square patch 15 mm on a side was 

meshed into a given number of triangles by randomly scattering points within the square then 

repeatedly connecting the points using Delaunay triangulation and adjusting the positions of all 

points interior to the boundaries by treating all triangle edges as springs with equal spring 

constant and resting length and solving for the global equilibrium position of the interior points. 

This process of triangulating and adjusting the nodes typically converged after 8-10 iterations to 

a set of nearly equilateral triangles. In order to characterize the variability in simulation results 

due to mesh discretization, biaxial test simulations were performed on a set of 10 meshes with 
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similar number of triangles (229 +/- 1) and similar mean triangle quality (0.95). We assess 

triangle quality as          
    

    
   , where a is the area of the triangle and si are the 

lengths of its three sides
10

. This index equals 1.0 for an equilateral triangle, and q = 0.6 is 

generally considered as a threshold below which numerical approximation and/or stability may 

suffer, although in practice this threshold is highly problem-dependent. 

 

For simulations of aortic valves, a single leaflet was represented as a semicircle with 

diameter of 20 mm fixed along its semi-circumference to the inside wall of a cylinder with 

circumference of 60 mm. Again, a set of 10 semicircular meshes with similar number of triangles 

(221+/- 2) and similar mesh quality (0.95) was generated and used for simulations of a pressure 

loaded leaflet. A complete aortic valve model was produced by combining three identical 

semicircular leaflets arranged circumferentially around the inside wall of the cylinder (Fig. 1). 

Mesh generation used the same method as for the square patch. 

 

Equations of Motion. Response of the patch to both biaxial and pressure loading was 

simulated by computing the net force on all mesh nodes due to internal forces (i.e., deformation) 

then equating these forces with damping forces, inertial forces, and externally applied loads and 

solving the resulting system of ordinary differential equations to update nodal positions. The 

finite element model and mass-spring models compared in this study differ only in how they 

compute the internal forces. The following sections describe the M-S and FE methods for 

computing these internal forces. 
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Internal Forces for Mass-Spring Model. We model an unstructured triangular mesh as a M-

S system by treating each triangle edge as a spring (Fig. 2A). The mass of each triangular 

element, computed as the product of its area, thickness and density, is distributed equally among 

its three vertices. The force in each triangle edge (spring) is computed as the product of the 

magnitude of the deflection of the spring from its resting length, the spring constant, and the unit 

vector describing the present direction of the edge. We wish to choose spring constants to 

approximate the nonlinear anisotropic in-plane behavior described by Eqns. (1-3). Since our goal 

is simulating heart valves under uniform pressure loading, we make the simplifying assumption 

that the two stress-strain curves corresponding to equibiaxial loading (one curve for the fiber 

direction and one for the cross-fiber direction) sufficiently describe the in-plane response. We 

approximate each of these curves with a piecewise linear fit consisting of a segment of slope m1 

passing through the origin and a second segment of slope m2 intersecting the first segment at 

some critical value of Green strain, which we express as stretch ratio * (Fig. 2B). For a given 

spring at angle  with respect to the material fiber direction, in-plane behavior at some 

intermediate angle between the fiber and cross-fiber directions is computed by assuming that 

these piecewise fits vary smoothly with direction . Specifically, slope m1 for example, varies 

with  according to           
          

        , where m1f is the initial slope in the 

fiber direction and m1c is the initial slope in the cross-fiber direction. The other parameters, m2 

and *, vary similarly and can be computed for every spring in the mesh based on the angle  in 

the undeformed state of the mesh.  
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To compute the spring constant for a given spring, we use an equation proposed by van 

Gelder for calculating spring constants throughout an unstructured triangular mesh in order to 

produce uniform membrane behavior 
32

 

   
            

    
     (4) 

where kc is the spring constant for edge c of a given triangle, E is Young’s modulus for the 

leaflet tissue, h is leaflet thickness which is assumed uniform and equal to 0.5 mm, the 

summation term represents the area of all triangles sharing edge c, and the denominator is the 

squared length of edge c. In place of Young’s modulus, E, we use the slope m1 or m2, depending 

on whether the present deformation of the spring corresponds to a value of stretch less than or 

greater than *. 

 

Two spring constants for each spring, one for small and one for large displacements, are pre-

computed at the start of a simulation as is the stretch ratio, 
*
 , at which each spring undergoes 

its change in stiffness. During the simulation, the force in a given spring is computed as 

                  (6) 

for springs with stretch magnitude less than 
*
 and as 

          
           

           (7) 

for springs with stretch magnitude greater than *
 . In these equations, k1 and k2 are spring 

constants for the low and high stiffness regimes of the spring, respectively, l is the present length 

of the spring, l0 is the rest length of the spring and n is the unit vector describing the present 

direction of the spring. The force in the spring is then applied to the two nodes bounding it, and 

the net internal force on each node in the mesh is computed by summing the contributions of all 

springs sharing a given node. 
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Internal Forces for Finite Element Model. In order to evaluate the computational cost of a 

finite element model of an anisotropic membrane as well as to have a reference to which to 

compare accuracy of the M-S model simulations, a FE model formulated for large deformations 

and unstructured triangular meshes was implemented. We use a model presented by Taylor et al. 

that was derived directly from membrane assumptions rather than by simplifying shell theory 
30

. 

This results in a conceptually and computationally straightforward formulation. The basic 

equations are reproduced here, but the reader is referred to the cited source for a more thorough 

presentation.  

 

The Green strain tensor for a given triangular element in the mesh can be computed as 

                (16) 

where I is the 2 x 2 identity matrix and C is the right Cauchy-Green deformation tensor, 

computed as C=G
T
gG. Here, G and g are J

-1
 and j

-1
, respectively, where J and j are the Jacobian 

matrices mapping the position of a point in global coordinates to the parametric representation 

adopted within a triangle, referred to the initial and current reference frame, respectively.  

Specifically,  

   
                        

                        
     (17) 

where Δx
21

 is the vector from vertex 1 to vertex 2 of the triangle in its present (deformed) 

configuration, and, similarly,  Δx
31

 is the vector from vertex 1 to vertex 3. Matrix G is given by 

   

 

      

       
 
     

          

 
      

    

      (18) 
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where ΔX
21

 is the vector from vertex 1 to vertex 2 of the triangle in its original (undeformed) 

configuration, and, similarly, ΔX
31

 is the vector from vertex 1 to vertex 3.  Vector V3 is defined 

as the cross product of  ΔX
21

 and ΔX
31

.  

 

The Green strain tensor computed using Eq. (16) describes strain relative to the local 

(triangle) coordinate system which, because of the unstructured nature of the triangle mesh, is 

arbitrarily oriented with respect to the global coordinate system. This tensor must be rotated to 

the principal axes of the tissue in order to apply the constitutive law in Eqns. (1-3) using 

     
   
   
   

       (19) 

where Eij is the i,j
th

 component of the Green strain tensor and R is the strain transformation 

matrix given by 

   
                    
                   

                            

    (20) 

where θ is the angle between side ΔX
21

 of the triangle and the local fiber direction of the material 

measured in the original configuration of the mesh. Now the 2
nd

 Piola-Kirchhoff stress tensor 

with respect to the principal axes of the tissue, S’, is computed using the constitutive law given in 

Eqns. (1-3), and is then rotated back to the local reference frame using the inverse of 

transformation matrix R. Components of the local stress tensor, S, are then used to compute the 

forces on the nodes of the triangle due to internal forces as 

        
   
   
   

        (22) 

where A and H are the area and thickness of the triangle in its original configuration, and B is 

defined by  
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B=Qb      (23) 

where Q is the stress transformation matrix, expressed in terms of the elements of G in Eq. (18) 

as 

   

   
   

   
    

       
              

     (24) 

and b is the 3x9 strain displacement matrix given as 

   

                    

                    

                           
    (25) 

Thus, the nine elements of f from Eq. (22) are the three components of the force on vertex 1, 

followed by those on vertices 2 and 3. The nodal force contributions from all triangles in the 

mesh are summed to get the net internal forces on nodes throughout the mesh. 

 

External Forces for Biaxial Loading. Biaxial loading was simulated by applying external 

forces consisting of in-plane tensile loads distributed along edges of the square patch and aligned 

perpendicular to the edge upon which they act with respect to the initial state of the mesh. Five 

states of biaxial stress were simulated corresponding to ratios of peak Lagrangian stress in one 

test axis to that in the other (perpendicular) axis of 20:60, 30:60, 60:60, 60:30, and 60:20 kPa 

(Fig. 3). A biaxial loading protocol was simulated by applying forces to the edges of the patch to 

maintain a constant ratio of Lagrangian stress between the two test axes. Simulations were 

performed for fiber direction both coincident with one of the test axes and at 45
o
 to it.  

 

Since the system is dynamic, simulating a given loading curve involves running a dynamic 

simulation at a series of incremental steps in applied stress and waiting until a steady-state is 
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reached at each step. For all simulated loading curves, we used increments of 0.025, 0.050, 0.1, 

0.2, 0.4, 0.7, and 1.0 times the peak stress for that loading condition. Damping forces sufficient 

to critically damp all nodes in the mesh were added to each node in order to produce fast, stable 

simulations.  

 

To determine the strain undergone by the deformed mesh, four virtual markers in the shape of 

a square, 1.5 mm on a side, were located in the center of the patch. Sides of the square were 

aligned with the fiber direction. For the undeformed state of the mesh, the location of each 

marker was computed in barycentric coordinates relative to the three vertices of the triangle 

containing it. During deformation, the positions of the markers were used to compute the 

components of Green strain. A given loading increment is determined to have converged when 

changes in both normal strains of the marker array become small (less than 2% of cumulative 

strain for that loading increment). The value of Lagrangian stress for that loading increment was 

converted to 2
nd

 Piola-Kirchhoff stress, which, along with the value of Green strain from the 

marker array, was used to describe the constitutive behavior of the mesh as it is deformed. 

 

External Forces for Pressure Loading. Pressure loading of the aortic valve mesh was 

simulated by applying a constant surface-normal pressure of 80 mmHg to all mesh triangles in 

the direction corresponding to radially inward (toward the axis of the cylinder) in the 

undeformed state of the mesh. All three semicircular leaflets are constrained by fixing all mesh 

vertices that lie on the semi-circumferences. Simulations are terminated when the incremental 

displacement of the middle of a leaflet free edge becomes small (below 10
-5

 mm). 
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Solution Method. The method used for discretizing and solving the system of equations is not 

critical to the aim of this study. We chose to discretize the equations using a second-order 

backward difference method 
5
 and solved using semi-implicit numerical integration with 

adaptive time-stepping 
1
. A conjugate gradient method was used to solve the sparse linear 

system. Computation was implemented in the Matlab programming language (Mathworks, 

Natick, MA). 

 

 

Results 

A set of seven parameters describing the in-plane response of aortic valve leaflet tissue was 

generated by curve fits to the experimental data (Table 1). Deformation of a square patch using 

the FE model was simulated for five states of biaxial stress corresponding to ratios of Lagrangian 

stress in the x- to y-directions of 20:60, 30:60, 60:60, 60:30 and 60:20 kPa (Fig. 3). The final 

deformed states of the mesh are shown for the case where the material fiber direction coincides 

with the x-direction (Fig. 3, middle row) and where the material fiber direction is oriented at 45
o
 

to the x-direction in the undeformed configuration (Fig. 3, bottom row).  

 

Plots of stress vs. strain were generated for the FE simulations (Fig. 4). For equibiaxial 

loading and normal strains (Fig. 4, middle row, columns 1 and 2), the mean error magnitude in 

strain for the FE simulations with respect to the actual constitutive law for the final loading 

increment is 0.004%. For non-equibiaxial loading states and normal strains (Fig. 4, rows 1, 2, 4 

and 5, columns 1 and 2), the mean error magnitude in strain is 0.9%. For shear strains (Fig. 4, 

column 3), the mean error magnitude in strain is 3.1%. Note that for all of the stress vs. strain 
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plots for the FE simulations (Fig. 4), the standard deviations are so small that the gray region is 

very narrow and appears as a single curve.  

 

Plots of stress vs. strain were generated for the M-S simulations (Fig. 5). For equibiaxial 

loading and normal strains (Fig. 5, middle row, columns 1 and 2), the mean error magnitude in 

strain for the M-S simulations with respect to the actual constitutive law for the final loading 

increment is 1.7%. For non-equibiaxial loading states and normal strains (Fig. 4, rows 1, 2, 4 and 

5, columns 1 and 2), the mean error magnitude in strain is 7%. For shear strains (Fig. 4, column 

3), the mean error magnitude in strain is 81%. 

 

Pressure loading of a single aortic valve leaflet was simulated using the FE and M-S models 

and the final deformed state of the mesh was plotted for each (Fig. 6A and 6B). Two important 

metrics of leaflet deformation, free edge length and radial midline length, were computed for the 

deformed meshes and compared (Table 2). Differences in absolute position of the nodes of the 

two meshes were computed and mapped onto the nodes of the original (flattened) leaflet (Fig. 

6C). Mean and maximum magnitudes of the difference in nodal position were 0.4 and 0.9 mm, 

respectively. 

 

Pressure loading of a three leaflet aortic valve was simulated using the FE and M-S models, 

and the final deformed state of the mesh was plotted for each (Fig. 7A-D). A clinically important 

feature of the loaded valve is the extent of coaptation (i.e., overlap) between adjacent leaflets. 

We determine this for the two models shown by computing the distance between each mesh node 

and the nearest point on the surface of adjacent leaflets.  Because repulsive contact forces are 
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used to handle self-collisions of leaflets, a gap of up to 1.5 mm can exist between leaflets that are 

in contact. The shape of the coaptation (contact) zone is estimated as the region enclosed by the 

contour line corresponding to an inter-leaflet distance of 1.5 mm (Fig. 7E). Maximum principal 

stress along with shear strain was plotted for the FE simulations of the full valve (Fig 8). 

 

The computational cost of the two methods for computing internal forces was assessed in two 

ways. The first method involved counting the number of operations required to compute internal 

forces on the nodes of one triangle during one time step of the model. (Computation of all other 

components of the simulation was the same for the M-S and FE methods.) Operations were 

classified as multiplications (including divisions), additions (including subtractions), 

assignments, or other (e.g., square roots, inequalities, decisions, transcendental functions). The 

total number of floating point operations (FLOPs) was calculated by counting all operations as 

one FLOP except for square roots and transcendental functions, which were counted as 10 

FLOPs each (Table 3). The second method involves measuring the actual time spent executing 

the portion of the program that performed these computations of internal forces. Execution time 

was then normalized by dividing by the execution time for the FE model (Table 3).  

 

Discussion 

The goal of this study was to develop an efficient M-S model that could simulate highly 

anisotropic membranes – about five times more distensible in one principal direction than in the 

other   on unstructured triangle meshes. Central to the development of this model was 

quantification of model speed and accuracy in order to assess its suitability for simulating heart 

valves as part of a surgical planning system. The M-S method examined here is faster but less 
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accurate than the simple FE model with which we compared it. However, the M-S model does 

reasonably well at approximating the deformation of a pressurized aortic valve with complex 

biomechanical properties, with simulated positions of leaflet nodes lying within 0.9 mm of nodal 

positions predicted by FE. Results of simulated biaxial loading illustrate the aspects of material 

behavior that the M-S model can and cannot accurately capture, while pressure loading 

simulations help assess model behavior as it is relevant for simulating a heart valve. 

 

For the parameters listed in Table 1, the direct plots of the constitutive law for loading in the 

fiber direction (Fig. 4, left column, solid black circles) show that the stress-strain curves for the 

fiber direction move to the right as the applied stress increases in the fiber direction and 

decreases in the cross-fiber direction. The FE model incorporates the constitutive law directly 

and thus captures this behavior accurately (Fig. 4, left column, gray regions). Interestingly, 

dependence of the stress-strain curves on the overall state of stress is observed in the M-S model 

(Fig. 5, left column, gray regions), although curves are not as close to the actual constitutive 

equation as they are for the FE model, and variation due to the particular mesh discretization is 

greater. This dependence on the overall state of stress is probably due to the fact that the 

behavior in the two principal directions is entangled in the edge spring model as a result of the 

nearly continuous distribution of orientations of springs; forces in most of the edge springs have 

components in both principal directions. Plots of the constitutive law also show that the 

relationship between normal stress and strain is almost independent of shear strain (Fig. 4, 

middle column, solid black circles), as evidenced by the fact that all of the curves in the column 

are similar, despite a large positive shear strain in the top panel and large negative shear strain in 
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the bottom panel. This follows from the constitutive law parameters A5 and A6 being very close 

to zero.  

 

The M-S model does a poor job of approximating shear stress (Fig. 5, third column). This is 

not surprising because our simple M-S model includes no shear springs and thus does not allow 

direct control of shear behavior. However, the state of loading of an actual heart valve leaflet 

under pressure load approximates equiaxial stress in regions away from constraints.  This can be 

seen in the plot of leaflet shear strain produced by FE simulation (Fig. 8B), where the majority of 

the leaflet mesh exhibits shear strain of less than 0.1 (shear angle of approximately 6
o
), with the 

maximum value of 0.27 (shear angle of approximately 15
o
) occurring near the points of 

attachment of the leaflet free edge to the cylinder (aorta) wall. 

 

Results of simulated pressure loading of the single leaflet model show that the overall shape 

of the deformed M-S mesh is very similar to that of the deformed FE mesh (Fig. 6, A and B). 

The most salient difference is the greater in-plane shear deformation in the M-S mesh near the 

constrained termini of the free edge (Fig. 6B). A consequence of this local region of exaggerated 

in-plane shear deformation is that the leaflet free edge is in a slightly lower position than in the 

FE mesh (Fig. 6A). This lower free edge combined with a slight bulging of the M-S mesh in the 

region just below the free edge results in the maximum discrepancy in nodal position of almost 1 

mm (Fig. 6C). The computed length of the free edge of the deformed mesh is almost identical in 

the FE and M-S models, while the length of the radial midline is underestimated in the M-S 

model with respect to the FE model (Table 2). This reflects slightly decreased distension in the 
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M-S model in the cross-fiber direction and is also seen in the biaxial loading results (Fig. 5, right 

column, middle panel).  

 

The FE simulations of the full aortic valve under pressure exhibit similar leaflet shape, and 

similar leaflet stress pattern and magnitude, to published studies 
6, 14, 15

. M-S model simulations 

show very similar closed valve shape to the FE models. Again leaflet surfaces are somewhat 

smoother in the FE than the M-S model, and in-plane shear deformation appears to be larger in 

the M-S model near the points where the free edges are constrained (Fig. 7, panels A-D). The 

coaptation region is similar for the M-S and FE models, although its lower boundary is slightly 

“noisier” for the M-S model. The region predicted by the M-S model is somewhat narrow and is 

probably a manifestation of the position of the free edge due to the overestimation of in-plane 

shear. 

 

Based both on counts of floating point operations and on compute times, the M-S model is 

about ten times faster than the FE model, a figure which agrees with published observations 

regarding speed comparison between M-S and FE methods
17, 32

. Our method of counting 

operations is approximate and neglects important computing details. For example, the number of 

clock cycles to compute a floating point addition is not typically the same as for division, and the 

cost of “other” (e.g., trigonometric) functions can vary with implementation. However, the 

relative proportion of the different categories of operations is similar between methods, so this 

relatively simple comparison should be valid. Likewise, the values for compute time depend on 

software and hardware factors, but a bias favoring one method is not apparent. It is important to 

note that the speed advantage to the M-S model is based only on the steps to compute nodal 
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forces due to deformation. If implicit methods are used to solve the equations of motion, 

Jacobian matrices must be computed for estimating future values of the nodal forces. The 

simplicity of the spring model formulations makes the computation of the Jacobians considerably 

simpler too, and it is likely that this would lead to further speed advantages for the M-S method. 

In fact, for the semi-implicit integration methods used for this study, the M-S model was 

typically 20 to 30 times faster than the FE model. However, we were unable to express the 

computational difference as a straightforward FLOP comparison due to the nature of the iterative 

conjugate gradient solution method and to the different time step histories produced by the M-S 

and FE simulation. 

 

It is difficult to determine a maximum value of acceptable error for simulations in the context 

of a surgical planning system for heart valves. Valve repair surgery is not currently based on a 

quantitative approach that relates intraoperative valve dimensions to quantitative outcome 

measures of repair success. Errors due to the M-S modeling method of less than 1 mm seem 

small compared to overall valve dimensions, and are also a fraction of the coaptation height 

(overlap) characterizing normal valve closure. Still, many factors independent of the modeling 

method introduce uncertainty into patient-specific models, including mesh geometry and 

properties of the valve tissue (e.g., material fiber direction and constitutive behavior, both of 

which exhibit significant spatial variability within a given valve as well as between individuals). 

Any computational system used for surgical planning would have to undergo thorough validation 

to ensure accurate predictive value prior to clinical use.  
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While the constitutive law and valve geometry that were used in this study were for the aortic 

valve, the anisotropic M-S model could be used to simulate the other cardiac valves as well. In a 

previous study, we applied an isotropic version of M-S model to image-based meshes of the 

mitral valve
16

. While simulation results were validated against images of the closed valves, the 

fidelity of the M-S model with respect to in-plane shear was not assessed. The mitral valve, as 

well as the tricuspid, has many fibrous tethers (chordae tendineae) that attach to the leaflets. If 

chordae are modeled as linear segments attaching to the leaflets at single mesh nodes, high 

concentrated loads and significant local shear strain can result. In recent mitral valve modeling 

efforts, we have modeled chordae by distributing their leaflet insertion over several adjacent 

nodes rather than at a single node. In fact, this mimics the flaring of the actual chordae as they 

merge with the leaflets.  

 

The M-S and FE models compared here are membrane formulations and, as such, provide no 

resistance to bending loads. However, this study is concerned with predicting the configuration 

of the closed valve at peak load when the leaflets are operating in the regime where in-plane 

stresses are relatively large - at least an order of magnitude greater than bending stresses 
24, 33

. 

Another limitation concerns the use of bilinear models to approximate the constitutive law. 

These are valid only for the range of stresses used to compute parameters of the bilinear fit. For 

example, the exponential constitutive law presented here would predict continuing increases in 

membrane stiffness as stress increases above 50 kPa, but the bilinear functions maintain constant 

stiffness at these higher stresses. However, the constitutive law itself is not necessarily valid 

above that stress level, as it was produced by fits to experimental data over a similar range of 

stresses as used here. Another important limitation of the M-S model is the absence of control of 
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resistance to shear deformation. However, due to the way that heart valves are loaded and 

constrained, response to shear only appears to be important in limited regions close to point-

constraints. Thus it is possible to avoid the computational burden of modeling shear behavior 

explicitly without paying a high price in terms of accuracy. In cases where the M-S model is 

used to predict deformation of valves following surgical modification, consequences of 

neglecting shear behavior could become more serious for cases where the repair results in valve 

anatomy or shear properties that differ significantly from that of a normal valve. Furthermore, we 

use a simplified, symmetrical model of the aortic valve, and model improvements accounting for 

asymmetries and complex aortic root behavior could change the pattern and /or magnitude of 

leaflet shear strain. 

 

The anisotropic, nonlinear M-S model described here has been shown to simulate aortic 

valve leaflets under pressure load at considerable speed-ups with respect to an efficient FE 

membrane model and with only minor difference in the deformed state of the mesh. This 

difference in simulation time could enable a practical surgical planning system using present 

computing power. M-S systems lend themselves to being solved on parallel architectures 

because of the local nature of the forces between nodes 
13

, and several groups have developed 

methods for solving M-S systems on graphics processing units 
12, 25, 31

. The computational 

advantages of M-S models combined with the speed-up of parallel computing may enable real-

time surgical simulation of anisotropic heart valves in the near future. 
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Table 1.  Parameters of aortic valve leaflet constitutive law computed by fitting 

data from biaxial testing experiments. 
 

Parameter Value 

c 9.7 Pa 

A1 49.558 

A2 5.2871 

A3 -3.124 

A4 16.031 

A5 -0.004 

A6 -0.02 
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Table 2.  Comparison of dimensions of the deformed valve leaflet meshes predicted 

by the finite element (FE) and mass-spring (M-S) methods. 

 

 Free edge length (mm) 

mean ± SD 

Radial midline length (mm) 

mean ± SD 

Undeformed Mesh  20.0 10.0 

Mass-Spring  26.3 ± 0.2 15.2 ± 0.3 

Finite Element  26.2 ± 0.02 15.6 ± 0.04 
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Table 3.  Comparison of the computational cost of the finite element (FE) and 

mass-spring (M-S) models for computing internal forces. Operation counts and 

computation time are given per element per one time step of the dynamic 

simulation. 

 

Method x,÷ +,- Assign Other FLOPs Time re: FEM (%) 

FEM 187 148 114 3 479 (100) 

M-S 13 15 9 1 51 10 
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Figure 1.  A single aortic valve leaflet is represented by a semicircle and a complete aortic valve 

as 3 semicircles arranged in a row (top sketch) then wrapped into a cylinder (bottom sketch) 

whose circumference is exactly three semicircle diameters. Each semicircular leaflet is 

constrained along its semicircumference by virtue of its attachment to the aortic root. This 

boundary is shown in red in both views. The top edge of each leaflet, whose length is equal to 

the semicircle diameter in the initial, unstressed state of the leaflet, is not attached to the aorta 

and is referred to as the leaflet free edge. This free edge length and the length of the leaflet 

midline are defined in the top sketch and are used to describe the degree of deformation of the 

leaflets. We assumed an unstressed leaflet diameter of 20 mm. 

 

 

Figure 2.  (A) Unstructured triangular meshes are treated as mass-spring systems by lumping the 

triangle mass at its vertices and treating all triangle edges as springs. (B) Spring constants are 

computed based on leaflet stiffness, which is approximated by a bilinear relationship with 

parameters determined by best fit to the phenomenological constitutive law. 

 

 

Figure 3.  Simulated deformation of a square patch of membrane under biaxial load. (A) 

Undeformed mesh showing directions of applied stresses, (B) Deformed mesh under the 5 states 

of biaxial stress (Px:Py) = 20:60, 30:60, 60:60, 60:30, 60:20 kPa, where the material fiber 

direction coincides with the x-axis, (C) Deformed mesh under the same 5 states of stress but with 

the material fiber direction in the undeformed state oriented at 45
o
 to the x-axis. All deformed 

meshes in this figure were produced using FE simulations. 
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Figure 4.  Stress-strain curves for FE model. Second Piola-Kirchhoff stress in the fiber direction 

(S11) and cross-fiber direction (S22) is plotted as a function of Green strain for five biaxial 

loading curves. Loading states, determined by the ratio of peak Lagrangian stress in the x-

direction to that in the y-direction, are, from top to bottom, 20:60, 30:60, 60:60, 60:30, and 60:20 

kPa. The left column of plots shows normal stress vs. strain for the case where fiber direction 

coincides with the x-axis. The middle and right columns of plots show normal stress vs. strain 

and shear stress vs. strain for the case where the fiber direction is at 45
o
 to the x-axis. The solid 

black circles represent the stress-stretch relationship calculated directly from the 7-parameter 

constitutive law. The gray curves represent the relationship computed from simulations and 

demarcate the mean strain ± one standard deviation at each of the stress increments across the 10 

test meshes. 

 

Figure 5.  Stress-strain curves for the mass-spring (M-S) model. Second Piola-Kirchhoff stress 

in the fiber direction (S11) and cross-fiber direction (S22) is plotted as a function of Green strain 

for five biaxial loading curves. Loading states, determined by the ratio of peak Lagrangian stress 

in the x-direction to that in the y-direction, are, from top to bottom, 20:60, 30:60, 60:60, 60:30, 

and 60:20 kPa. The left column of plots shows normal stress vs. strain for the case where the 

fiber direction coincides with the x-axis. The middle and right columns show normal stress vs. 

strain and shear stress vs. strain for the case where the fiber direction is at 45
o
 to the x-axis. The 

black solid circles represent the stress-strain relationship calculated directly from the 7-parameter 

constitutive law. The gray curves represent the relationship computed from simulations and 

demarcate the mean strain ± one standard deviation at each of the stress increments across the 10 

test meshes. 
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Figure 6.  The final deformed states of a simulated aortic valve leaflet subject to a static pressure 

load of 80 mmHg. The semicircular mesh is constrained along its semi-circumference. Images, 

from left to right, show the deformed leaflet simulated with the FE model, the deformed mesh 

simulated with the M-S model, and the discrepancy between the two deformed meshes expressed 

as the magnitude of the distance between corresponding nodes on the models and mapped onto 

the undeformed mesh. 

 

Figure 7.  The final deformed state of a simulated aortic valve (3 leaflets) subject to a static 

pressure load of 80 mmHg. Top oblique and bottom oblique views of the final deformed state of 

the mesh produced by the FE model are shown in panels A and B, respectively. The same views 

are shown for the M-S model in panels C and D. Panel E shows the coaptation region computed 

from the closed valve meshes for both models. The coaptation region is the portion of the 

semicircle bounded by the free edge on top and the irregular curve on the bottom. 

 

Figure 8.  (A) Maximum principal stress (kPa) in one leaflet of the pressure-loaded valve 

deformed by the FE model. (B) Magnitude of shear strain (Green strain) throughout the mesh of 

the pressure-loaded leaflet deformed using the FE model. 


