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g Abstract

We describe a modeling methodology intended as a preliminary step in the identification of appro-

priate constitutive frameworks for the time-dependent response of biological tissues. The modeling

approach comprises a customizable rheological network of viscous and elastic elements governed

by user-defined 1D constitutive relationships. The model parameters are identified by iterative

nonlinear optimization, minimizing the error between experimental and model-predicted struc-

tural (load-displacement) tissue response under a specific mode of deformation. We demonstrate

the use of this methodology by determining the minimal rheological arrangement, constitutive

relationships, and model parameters for the structural response of various soft tissues, including

ex-vivo perfused porcine liver in indentation, ex-vivo porcine brain cortical tissue in indentation,

and ex-vivo human cervical tissue in unconfined compression. Our results indicate that the identi-

fied rheological configurations provide good agreement with experimental data, including multiple

constant strain-rate load/unload tests and stress-relaxation tests. Our experience suggests that

the described modeling framework is an efficient tool for exploring a wide array of constitutive

relationships and rheological arrangements, which can subsequently serve as a basis for 3D consti-

tutive model development and finite-element implementations. The proposed approach can also be

employed as a self-contained tool to obtain simplified 1D phenomenological models of the structural

response of biological tissue to single-axis manipulations for applications in haptic technologies.
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gI. INTRODUCTION

Accurate characterization of the mechanical behavior of biological soft tissues is a necessary

step for advancing many medical technologies including surgical simulation, image-guided

procedures, robot-assisted surgery, and diagnostic procedures. The complex structure and

nonlinear elastic and dissipative behavior of tissues make modeling their mechanical response

challenging. Soft biological tissues display properties similar to those of synthetic polymers

since their structural components comprise several natural macromolecules, including pro-

tein fibers such as collagen and elastin. At high and moderate strain rates, soft tissues

display limited volumetric compliance, as they are highly hydrated, and can often undergo

large strains before failure1,2. Furthermore, they exhibit stresses that vary nonlinearly with

finite strains, have loading rate and time dependencies, are anisotropic, and are sensitive

to the conditions (e.g. temperature and hydration) under which they are tested3. Since

medical manipulations typically involve large deformations with complex geometries and

boundary conditions, realistic modeling of soft tissues requires characterization of the large

strain response of the tissues often across a range of time scales.

Researchers have modeled soft tissues using an array of simple4–6 as well as complex con-

stitutive models that include nonlinear elastic, viscous, and porous elements7–21. Viscoelastic

material characterization can be best accomplished by varying loading histories over differ-

ent modes of deformation since volume changes (bulk) and shape changes (shear) relate to

different mechanisms of deformation3. Common modes of deformation used on soft tissues in-

clude: uniaxial compression/extension17,22–25, shear26,27, indentation6,8,10,12,14–16, torsion5,28,

grasping9, and aspiration29. To characterize the time-dependent large strain response of soft

tissues a few types of loading histories are most commonly used: creep response to a constant

step load14, stress relaxation under a constant step displacement9,15,19,25, and constant strain

rate ramp loading and unloading cycles9,15,16,25. Though not applicable to large deforma-

tions, the dynamic stress response to sinusoidally oscillating small strains is also commonly

measured to provide insight into the balance between energy storage and dissipation in the

material1–3,6,15. Each of these tests captures different aspects of the viscoelastic behavior

of the material at different time scales and thus more than one is necessary for complete

material characterization.

The utility of a model lies in its ability to accurately and efficiently predict the desired

3



¹����������	���
�������	���������������	����	�����������
������
���������
���������
��������������������������
�������������
��������������������������������������¹��������������	��������������		���������� ���!����"#������$�#%���&'�%�##�("#�

g

gmechanical responses of the material. Three-dimensional constitutive models of soft biolog-

ical tissues are required to reflect both the complexity of the time dependent response, and

the dependence of the response on the mode of deformation. The process of formulating a

predictive 3D model can be both time-consuming and challenging, as the path to success is

not well defined and often an iterative approach of “trial and error” is utilized. Typically,

the material model parameters are estimated by fitting the experimental response through

finite-element implementation of the full constitutive formulation and iteratively solving the

inverse problem. Given an experimental tissue response for an imposed mode of deforma-

tion under a selected loading history, determining which nonlinear time-dependent model

is appropriate for the specific application and tissue type is a challenging task. Further-

more, the new applications of biomechanical models, especially in image-guided procedures,

require characterization of a wide array of tissues with distinct mechanical response char-

acteristics. Following the “trial and error” procedure before ascertaining that the assumed

form of the model is able to reproduce the main features of the observed tissue behavior

can be unnecessarily time intensive and inefficient. Indeed even for the simplest of case

of nonlinear material response, i.e, isotropic, incompressible nonlinear elastic response, the

problem of determining appropriate material parameters becomes ill-conditioned if the se-

lected constitutive relationships are not properly matched to the complexities of the available

experimental data30. Constitutive laws with an excessive numbers of constitutive parame-

ters yield multiple optimal sets of properties when fitted to under-constraining experimental

data, while laws with an insufficient number of parameters may not allow enough flexibility

to accommodate more complex material responses31. Here we propose a modeling strategy

where the task of selecting an appropriate three-dimensional time-dependent constitutive

law is broken down into two stages. In the first stage, which is detailed in this paper,

an appropriate minimal rheological configuration necessary to capture the features of the

measured time-displacement-load “structural” response is identified. The availability of a

convenient simplified 1D tool to identify appropriate forms of the constitutive relationship

with an appropriate minimal set of parameters to ensure uniqueness of the fit is a valuable

tool to guide further 3D model development. In the second stage, this preliminary one di-

mensional rheological framework is generalized to its analogous 3D large strain kinematics

formulation to yield a constitutive law for the tissue response, and the experimental mea-

surements are matched to model predictions with appropriate consideration of the specific
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gmode of deformation and imposed boundary conditions. This proposed strategy has been

successfully implemented in recent work to develop a viscoelastic, viscoplastic constitutive

law for cortical bone valid at low and high strain rates (see Johnson et al. 32 , where the

procedure to generalize the 1D response to a 3D framework is detailed in Appendix A),

and to obtain a nonlinear viscoelastic constitutive law for the dynamic response of porcine

brain tissue33. We note that the 3D formulation in Prevost et al. 33 was derived from the

1D network configuration identified below in the Results section.

We introduce the use of a one-dimensional computational testbed for the determination

of the simplest and most appropriate rheological configuration, which efficiently captures

the relevant features of the measured structural response (e.g. nonlinear force-displacement,

hysteresis with full recovery, non-exponential stress relaxation) with the fewest model pa-

rameters. We have developed an analytical tool that allows users to explore the form and

the response of common viscoelastic rheological configurations and allows for any linear or

nonlinear constitutive relations to govern the response of the individual elastic and dissi-

pative elements. The tool also incorporates a nonlinear optimization scheme that identifies

model parameter values by minimizing the error between experimental data and predicted

model response. Using this initial modeling paradigm illustrated in Figure 1, the proposed

tool facilitates the fitting of a wide array of 1D constitutive laws for the elastic and viscous

elements of the network, and aids in the determination of the simplest and most appropriate

configuration before proceeding with full three-dimensional modeling. By starting the model

parameter search with different sets of seeds (starting values) for the model parameters, and

verifying convergence of the optimization scheme to a single set of parameters, the user can

rapidly verify if the selected network configuration yields a well-posed inverse problem with

a unique solution.

It is important to note that the proposed method can also be employed as a self-contained

tool to generate simplified 1D phenomenological models of the structural response of biolog-

ical tissue to single-axis manipulations for applications in haptic technologies. In surgical

simulations, image-guided procedures, and robot-assisted surgery, the tissue response to a

given mode of deformation needs to be efficiently computed in real time, and the simplified

1D proposed approach can be a powerful tool when used in this context.

To demonstrate the efficiency of the tool, we subjected perfused porcine liver to complete

viscoelastic testing in indentation and determined the form of the minimal rheological model

5
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FIG. 1: A schematic view of the constitutive model selection process, comprising an “inner loop”

for material parameter fitting and an “outer loop” for constitutive law adjustments.

necessary to reproduce the observed behavior. The same approach was then followed to

determine forms of the model that could reproduce the characteristic responses of ex-vivo

porcine brain (cortical) tissue in indentation and ex-vivo human cervical tissue in unconfined

compression.

II. METHODOLOGY

A. Effective Stress-Strain Response

A number of material testing configurations provide single input-output time dependent

responses. Examples include indentation (indenter force-depth of indentation) , uniaxial

compression or tension (axial force-axial displacement), confined compression (axial force-

axial displacement), torsion (torque-angle of twists), or surface aspiration (suction load-

center/max surface displacement)18,34. In order to unify the terminology, each of these

work-conjugate input-output pairs can be referred to as generalized forces and generalized

displacements, so that for each testing configuration we can refer to the generalized structural

time-displacement-load (TDL) response of tissue samples or whole organs subjected to that

specific mode of deformation. It can then be argued that the salient features relating to the

time-dependence of the material response can be inferred from the recorded TDL history,
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gregardless of the specific geometry and boundary conditions under which the tests were

conducted. Within a first order of approximation, therefore, the characteristic features of

the tissue behavior may be initially investigated and described through a simplified one-

dimensional model for the recorded TDL response.

Although the 1D modeling approach could be implemented in terms of loads and dis-

placements, we prefer to introduce normalizations for these quantities to reduce them to

units of stresses and strains. Thus forces are divided by characteristic experimental areas

(e.g., nominal specimen cross sectional area for uniaxial compression data, maximum area

of the indenter for indentation tests, etc) and displacements are divided by characteristic

experimental length (height of the specimen in uniaxial compression, radius of the indenter

or sample thickness in indentation, etc). This steps allows us to refer to the input-output

experimental pairs as effective stresses and effective strains. The advantage of this normaliza-

tion is twofold: (1) it allows the formulation of constitutive relationship for the 1D elements

of the modeling network in familiar forms for material models; and (2) the optimization

scheme yields model parameters with units consistent with the corresponding parameters of

a 3D constitutive model for the tissue response, providing a starting point for further 3D

model development.

We note that the normalization choice is arbitrary and subjective (e.g, the indentation

depth can be normalized by radius of the indenter or sample thickness), and the effective

stresses and strains cannot account for the effects of complex boundary conditions (e.g,

transverse constraints in confined compression) or inhomogeneities of the strain field in the

material (as in indentation or aspiration tests). Except for the simplest modes of deformation

(e.g, uniaxial tension and compression) they can at most provide, with a judicious choice

of the normalization scheme, an approximate estimate for average stress and strain levels

in the material. This experimental one-dimensional effective time-dependent stress-strain

response serves as a basis for the proposed modeling approach, in which we aim to identify

the necessary viscous and elastic components and their rheological arrangement to provide

a model stress-strain response that is consistent with the observed trends.
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ε(t), σ(t)

FIG. 2: General rheological arrangement comprising three parallel networks of increasing complex-

ity.

B. System Equations and Solution Approach

In Figure 2 we propose a general rheological arrangement, which, within the scope of the

current investigation, we identified as an upper bound for the network complexity necessary

to capture the response of most soft tissues45. It comprises three branches of increasing

complexity with individual constitutive elements (springs and viscous dashpots), which may

be defined (and deactivated) in a modular way to accommodate for a large number of

rheological configurations. The first branch comprises only an elastic element (1A). The

second branch is in the configuration of the standard linear solid (SLS) element with an

instantaneous response through the elastic element (2A) and viscous dissipative response

(2C) with a corresponding back stress provided by an elastic element (2B). The third network

increases the complexity of the second network by introducing a time-dependent back stress

to capture the response of dissipative mechanisms with distinctly different relaxation times.

The time-dependent back stress is incorporated through an SLS arrangement comprising

the two elastic elements (3B and 3D) and a viscous element (3E).

45 Note that the specific arrangement of viscoelastic elements in Figure 2, while logical, is somewhat arbitrary,

and similar results may be achieved with other arrangements.
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g Out of this complex rheological arrangement, it is possible to construct simpler models by

deactivating individual elements. To “eliminate” the contributions of an elastic element, the

element can be defined as either completely rigid or infinitely compliant, depending on its

serial or parallel arrangement with the neighboring elements. Analogously, viscous elements

are deactivated by specifying their viscous flow resistance to zero. For example, isolated

Network 3 may be reduced to Network 2 by deactivating the elastic element 3D (making

it fully rigid) and viscous element 3E. Similarly, we can deactivate Networks 2 and/or 3

by making elements 2A and 3A infinitely compliant. We may also construct a rheological

arrangement for viscoelastic fluid by deactivating 3D, 2B, and 1A.

To compute the response of a given rheological arrangement, we use standard numerical

techniques for solving systems of ordinary differential equations35. The model is given ini-

tial conditions (typically zero strains and zero stresses in each component) and a prescribed

macroscopic strain history (ǫ (t)), while the macroscopic stress (σ (t)) and the stresses, accu-

mulated strain histories and state variables in each component of the network are computed

by integration of the system of differential equations constructed from the constitutive re-

lationships of each component. The system of equations that describes the response of the

whole system consists of the constitutive equations of each element and the compatibility

equations and equilibrium equations for the system.

The compatibility equations for the proposed general system may be written as

ǫ = ǫA
1 = ǫA

2 + ǫB
2 = ǫA

3 + ǫB
3 + ǫD

3 (1)

ǫB
2 = ǫC

2 (2)

ǫD
3 = ǫE

3 (3)

ǫC
3 = ǫB

3 + ǫD
3 , (4)

where the subscript denotes the network and the superscript denotes the element within the

network (i.e. ǫA
3 is the strain in element 3A). The equilibrium equations for the proposed

system are

9
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σ = σA
1 + σA

2 + σA
3 (5)

σA
2 = σB

2 + σC
2 (6)

σA
3 = σB

3 + σC
3 (7)

σB
3 = σD

3 + σE
3 (8)

The constitutive relationships describe the characteristic response of individual elements.

The elastic elements are described in terms of a constitutive relationship between the elastic

strain (ǫe) in the element and the corresponding stress (σe):

σe = f (ǫe) . (9)

The response of viscous elements may be explicitly prescribed through a constitutive rela-

tionship determining the viscous strain rate (ǫ̇v) in terms of the driving stress (σv):

ǫ̇v = f (σv, χ) . (10)

For certain constitutive formulations the rate of viscous deformation may also depend on a

set of state variables (χ = {ǫv, ǫ̇v, ...}) for the viscous element. In the current implementation,

we considered one representative relationship in this class, with a single state variable, in the

reptation-limited power law viscous element, where the rate of viscous deformation depends

on the accumulated viscous flow in the element.

C. Elastic Constitutive Elements

To illustrate the flexibility of the proposed approach, we considered three constitutive formu-

lations for the elastic elements modeling linear, exponential, and limited extensibility (freely

jointed chain) responses. These classes of constitutive relationships were selected because

full three-dimensional embodiments of these formulations have been proposed for biological

tissues in the literature (see e.g. Gasser et al. 36 and Bischoff et al. 37 ). While both the

exponential law and the freely jointed chain (FJC) model are capable of capturing highly

nonlinear stress-strain relationships, their features are significantly different as the FJC

model provides a formulation for materials with limited extensibility as further described

10
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gin the following sections. The implemented elastic constitutive elements are summarized

in Table I, including their constitutive equations, material parameters, and characteristic

stress-strain response curves.

In a simple linear elastic element, the stress is directly proportional to the applied strain

(σe = Eǫe) through the stiffness modulus E. In our implementation of the elastic exponential

element, the nonlinearity of the stress-strain response is controlled through an initial slope

parameter A and an exponential parameter b:

σe =
A

b

(

eb|ǫe| − 1
)

. (11)

In the FJC model, we introduce a one-dimensional equivalent of the full three-dimensional

formulation20,38. In the one-dimensional form, the stress-strain relationship may be ex-

pressed as

σe = µ0λL





β
(

λ
λL

)

λ
− β0



 , (12)

where

β

(

λ

λL

)

= L−1

(

λ

λL

)

(13)

is the inverse of the Langevin function

L (β) = coth(β) −
1

β
. (14)

In this formulation, λ is the material stretch (λ = 1+ǫ) and β0 is the initial inverse Langevin

factor defined through Eq. 13 with λ = 1. The material parameters µ0 and λL determine

the initial slope and the asymptotic stretch limit, respectively.

D. Viscous Constitutive Elements

We implemented two types of viscous constitutive elements, which are summarized in Table

II. The first is a (Newtonian) linear viscous element with a single viscosity parameter η. In

most biological materials, however, processes with a range of energy barriers accommodate

the viscous flow. Consequently, increasing levels of stress enable additional mechanisms

11
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TABLE I: Elastic constitutive elements, including their constitutive equations, associated param-

eters, and their characteristic response.

Elastic Element Constitutive Equation Parameters Response

Linear σe = Eǫe E

E

ε

σ

Exponential σe = A
b

(

eb|ǫe| − 1
)

A, b
ε

σ

A

b

Freely Jointed Chain (FJC) σe = µ0λL

(

β
“

λ

λL

”

λ
− β0

)

µ0, λL

ε

σ

μ

λL

to become active and motivate the need for viscous constitutive relationships in which the

viscous strain rate ǫ̇v increases nonlinearly with the driving stress, σv. These effects can be

phenomenologically captured by a nonlinear viscous power law defined as

ǫ̇v = ǫ̇v
0

(

σv

S0

)n

, (15)

where ǫ̇v
0 = 1 s−1 is a constant introduced for dimensional consistency, while S0 and n are

model parameters. A physical interpretation of the constitutive parameters, [S0, n], can be

obtained by considering the dependence of viscous strain rate on the driving (viscous) stress.

The viscous strength, S0, represents the viscous stress necessary to drive viscous strain at

a rate of 100% per second (ǫ̇0). The stress exponent, n, represents the stress sensitivity

of the viscous mechanisms. For n = 1 the model behaves as a linear Newtonian material

(with viscosity S0/ǫ̇v
0). For larger values of n, the model captures the effects of superposing

stress-activated mechanisms on viscous flow, and the viscous rate dramatically increases for

stresses exceeding S0.

In our experience, a viscous constitutive relationship defined by the nonlinear power

12
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TABLE II: Viscous constitutive elements, including their constitutive equations, associated param-

eters, and their characteristic response.

Elastic Element Constitutive Equation Parameters Response

Linear σv = ηǫ̇ ǫ̇ = σv

η
η

ε

σ

η

Power law
ǫ̇v = ǫ̇v

0
α

|ǫv|+α

(

σv

S0

)n

S0, n, α

ε

σS

1

n

ε

α

v

|ε | + α

α

1v

law may not be sufficient for some biological materials. For example, as viscous strain in

soft tissues accumulates and the macromolecular network exhausts most easily accessible

configurations to accommodate the imposed deformation, the viscous strain rate (under

constant driving stress) tends to decrease. This is a well-known effect in macromolecular

solids39, where this effect is ascribed to the physics of reptation of elastically inactive macro-

molecules. Following Bergstrom and Boyce (2001)39, we express the dependence of strain

rate on accumulated viscous deformation through a single additional model parameter, α:

ǫ̇v = ǫ̇v
0

α

|ǫv| + α

(

σv

S0

)n

. (16)

Note that for ǫv = 0 the form (Eq. 15) of the constitutive relationship is recovered, and, at

constant driving stress, the viscous strain rate diminishes with increasing levels of accumu-

lated viscous strains. Typical values of the parameter α are in the range [0.0001 to 0.01],

where larger values of α provide the ability to accommodate larger levels of viscous strain.

Note that for very large values of α the simple power law form (15) can be recovered, and

the viscous strain rate is not dependent on the level of accumulated viscous strain.

13
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g E. Data Fitting and Nonlinear Parameter Optimization

The goal of any modeling methodology is to identify a model configuration and associated

model parameters that minimize the difference between the model and the experimental

response. We address the choice of the objective function Φ, which quantifies the model-

experiment agreement, and the method for identification of the models material parameters.

In this paper we follow the intuitive formulation of the objective function in terms of the

mean squared error (MSE) between the experimental and modeled stress history defined in

discrete-time as

Φ (pn) =
1

N

N
∑

i=1

(σexp[i] − σmodel[i])
2 , (17)

where σexp is the experimental stress history, σmodel is the modeled response, N is the number

of time increments, and pn is the vector of n material parameters. Under this definition of the

objective function, we use the bounded downhill simplex method40 to iteratively identify the

material parameters that minimize Φ(pn). The termination criterion is specified in terms of

minimum diameter of the simplex structure (dmin = 1×10−4). The user must be aware that

while the downhill simplex method is generally robust, it does not guarantee convergence

to global minima for nonconvex objective functions. Repeatable convergence of multiple

minimizations initiated from varying initial locations in the parameter space is suggested to

evaluate the global convergence for the given objective function.

Alternative definitions of the objective function are an important consideration during

the modeling process. For example, it may be beneficial to define Φ(pn) as the mean absolute

error (MAE) in some situations, to minimize the unwanted contributions from outliers and

noise in the experimental data. The formulation of Φ(pn) can also be modified to increase

the significance of certain features of the model response, by introducing a time-dependent

weighting factor. Such modifications of the objective function affect the optimization process

and the resulting material parameters. Experimenting with the objective function also

allows rheological modeling scenarios in which one can explore the models ability to capture

specific features of the time-dependent response (by increasing its weighting coefficients),

while observing the penalty of reduced fit to other features of the response.
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gIII. RESULTS

A. Application to Liver Undergoing Large Strain Indentation

Using the proposed methodology, we demonstrate the modeling process and incrementally

identify the simplest rheological configuration that captures the salient features of the time-

dependent nonlinear response of an intact perfused ex vivo porcine liver undergoing large

strain indentation. Whole porcine livers were freshly harvested and tested under near phys-

iologic conditions (perfusate temperature 33 ◦C, venous pressure 8 mmHg, arterial pressure

95 mmHg). The experimental no-slip boundary conditions include a flat plate beneath the

liver with a 12 mm diameter flat cylindrical indenter on the top surface. The loading history

of the indenter consists of a multiple load/unload ramps up to 40% effective strain (where

effective strain is defined as the depth of indentation divided by the original thickness of

the liver at the indentation site) at rates from 1.8 to 360 %/s and a step response to 30%

effective strain (500 %/s ramp rate, with indentation depth held constant for 1200 seconds).

The details regarding the experimental procedure and specimen variability may be found in

Kerdok 15 .

For this proof of concept, from the experimental data presented in Jordan 41 , we selected

the set corresponding to liver 1. The characteristic features of the liver tissue response to

indentation (see Figure 3) include a prominent nonlinear elastic component, significant strain

rate dependence, and long-scale relaxation with a time constant on the order of 10 s. The

effective strain was computed as the ratio of the indenter displacement (dmax = 11.0 mm)

and the local thickness of the organ (h = 31.3 mm). The effective stress was calculated

by dividing the indenter reaction force (Fmax = 6.1 N) by the cross-sectional area of the

cylindrical indenter tip (A = 1.131 × 10−4 m2). In this work we limit our focus on the

characteristic features in the effective time-dependent response and incrementally construct

the required rheological configuration.

By examining the liver response, both in cyclic loading and in stress relaxation shown in

Figure 3, we can observe that the tissue exhibits viscoelastic and rate-dependent behavior

and also note the tissue’s tendency to relax to nonzero equilibrium stiffness. Considering

this requirement of nonzero equilibrium back stress, we begin the model identification with

a standard linear solid arrangement. This is the default arrangement of Network 2. Using

15
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k

FIG. 3: Indentation response of perfused porcine liver in indentation. A continuous segment of

cyclic load/unload ramps at four different rates is shown at the top. The corresponding stress-

strain response is shown in the middle with individual displacement ramps distinguished by color.

The stress relaxation response is shown at the bottom. All data was collected at the same location

on the same liver specimen, allowing 30 minutes of recovery between the the cyclic tests and the

stress relaxation.
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gthe bounded downhill simplex method to minimize the objective function Φ(pn) (Eq. 17),

defined as

Φ (pn) = ΦLU (pn) + ΦSR (pn) , (18)

where ΦLU (pn) evaluates the model fit to the cyclic load-unload block and ΦSR (pn) quantifies

the model fit to the stress relaxation response. From the best model fit (shown in Figure

4) we can clearly appreciate the limitations of the standard linear solid model and conclude

that a suitable rheological model must include a nonlinear elastic component to account

for the highly nonlinear instantaneous response commonly observed in collagenous tissues

(see Table III for optimized material parameters and objective function values). Here we

note that the non-linearity of the measured effective stress response is arguably due to a

combination of intrinsic material nonlinearities, and boundary conditions effects related to

the complex deformation field associated with indentation tests. Even linear elastic materials

will exhibit a non-linear effective stress response at large indentation depths. The simplified

1D modeling framework relying on the effective stress-strain measures cannot differentiate

between these two contributions.

In the subsequent modeling iteration, we introduce an exponential elastic element in

the 2A position with the intent to capture the instantaneous response of the tissue, while

maintaining a linear viscous element in 2C and a linear elastic element in the 2B position to

account for the long-time relaxation back stress. Such enhancement of the constitutive model

increases the total parameter count to four, but the fitting results demonstrate significant

improvement in the experimental agreement (see Figure 5). However, the model does not

fully capture the stress relaxation of the material and underestimates the resistance to

deformation at the lower displacement rates (slower hysteresis loops).

To further improve the model fit, we extend the viscous element 2C to a nonlinear power

law formulation, to capture the nonlinear relationship between the driving stress and the

viscous strain rate. In our experience, the power law relationship tends to overestimate the

viscous deformation at high stresses. To take into account the limiting effect of the accu-

mulated total viscous flow, we use a formulation that accommodates the limiting behavior

with the reptation factor39. The configuration consisting of the SLS with exponential elastic

element and reptation-limited nonlinear viscosity has a total of 6 parameters and offers a

good fit to the experimental data (see Figure 6). Considering the good agreement with the

17
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gexperimental data, this form of the constitutive material law may be considered an appro-

priate configuration in many applications. It optimizes the tradeoff between the number of

material parameters and the goodness of fit to experimental data.

If some features of the model response are critical, such as the steady state in slow

hysteresis loops necessary for surgical simulation, we may proceed to further increase the

complexity of the rheological configuration. To capture the intermediate time scale as well as

the long time scale relaxation response demonstrated in the data, we extend the configuration

of Network 2 with a time-dependent back stress in the form of another SLS configuration.

This significantly more complex arrangement is the default configuration of Network 3 and

allows for incorporation of the long-time relaxation response through an additional time

constant. The improvement comes at a cost of two additional parameters, however, and

needs to be weighted in terms of its cost-benefit ratio. As we aim to improve the model

agreement with the experimental response from slow load/unload cycles, we expand the

form of the objective function in a way that increases the significance of these features

in the total objective score. We introduce an objective function with a time-dependent

weighting coefficient vector w[i] defined as

Φ∗ (pn) = Φ∗
LU (pn) + ΦSR (pn) (19)

Φ∗
LU (pn) =

1

N

N
∑

i=1

w[i] (σexp[i] − σmodel[i])
2 (20)

where w[i] = 2.0 for all i which include the 0.2 mm/s and 2.0 mm/s load-unload cycles and

w[i] = 1.0 for all other indexes (20 mm/s and 40 mm/s load/unload cycles). We may see

in Figure 7 (middle) that the stricter enforcement of the model at slower load-unload cycles

and the inclusion of the additional relaxation mechanism improves the model-experiment fit

and the steady state in hysteresis loops at the slower rates. The material parameters of the

discussed constitutive models and the associated objective function values are summarized

in Table III.
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FIG. 4: Configuration 1 (3 material parameters): linear elastic element in 2A, linear back stress

elastic element (2B), and a linear dashpot (2C). Material parameters are listed in Table III.
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FIG. 5: Configuration 2 (4 material parameters): exponential elastic element in 2A, linear back

stress elastic element (2B), and a linear dashpot (2C). Material parameters are listed in Table III.
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FIG. 6: Configuration 3 (6 material parameters): exponential elastic element in 2A, linear back

stress elastic element (2B), nonlinear viscous power law dashpot with reptation-limited flow (2C).

Material parameters are listed in Table III.
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FIG. 7: Configuration 4 (8 material parameters): exponential elastic element in 3A, nonlinear

viscous power law dashpot with reptation-limited flow (3C), and time-dependent back stress in

SLS arrangement (3B,3D,3E). Material parameters are listed in Table III.
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TABLE III: Material parameters and the associated objective function for perfused porcine liver.

(∗ denotes the alternative form of Φ defined in Equation 19)

Configuration Element A Element B Element C Element D Element E Φ

1 (Network 2) E = 91.9kPa E = 13.7kPa η = 91.4kPa.s - - 75.45

2 (Network 2)
A = 21.17kPa

E = 14.1kPa η = 150.7kPa.s
- -

29.49
b = 6.85

3 (Network 2)

A = 14.81kPa S0 = 53.16kPa

b = 8.23 E = 3.46kPa n = 2.7 - - 22.82

α = 0.45

4 (Network 3)

A = 21.12kPa S0 = 12.9kPa

b = 8.0 E = 24.81kPa n = 1.44 E = 3.72kPa η = 3, 505kPa.s 27.98∗

α = 0.0072

B. Applications to Other Tissues

The proposed modeling paradigm may be easily extended to other materials and tissues.

In this section we demonstrate that the same rheological configuration developed in the

previous section may be successfully applied to model the response of ex-vivo porcine brain

tissue tested in indentation using a round hemispherical indenter. For this application, the

load displacement data is normalized by defining the effective stress as the indenter force

divided by the square of the indenter radius, and the effective strain as the indentation

depth divided by the indenter radius. More information on experimental methods and

results can be found in Balakrishnan 42 . Upon examination of the brain tissue response, we

may notice that it exhibits nonlinearity, rate-dependence, and long-term relaxation similar

to the porcine liver discussed in previous sections. By fitting the 8 parameter formulation

of Network 3 developed for the liver, we obtain an excellent model-experiment fit, as shown

in Figure 8. The associated material parameters are listed in Table IV. We note that in

the 3D constitutive model proposed in Prevost et al. 33 the shear response of the tissue is

obtained through a direct 3D generalization of this rheological framework, and a non-linear

bulk response is introduced to account for the measured transverse stretch response.
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TABLE IV: Model fits to brain tissue and cervical tissue in compression: material parameters and

the associated objective function values.

Tissue Element A Element B Element C Element D Element E Φ

A = 514.53Pa S0 = 29.56kPa

Cervix b = 31.47 E = 6.08kPa n = 1.35 - - 0.0242

α = 0.00033

A = 196.80Pa S0 = 74.76kPa

Brain b = 9.84 E = 5.55kPa n = 2.01 E = 1.91kPa η = 322.91kPa.s 0.0121

α = 0.00029

Similarly, we extend the modeling methodology to an additional tissue type. We show

that the uniaxial response of ex-vivo human cervical tissue in unconfined compression may

be modeled within the proposed framework. In this case, however, the generalized time

response only consists of experimental measurement of the stress relaxation and load/unload

cycles at a single strain rate. More information on experimental methods and results can

be found in Myers et al. 43 . For this application, a representative set of load-displacement

data is normalized by defining the effective stress as the nominal (engineering) stress, and

the effective strain as the nominal (engineering) strain. Because no load/unload cycles at

additional strain rates are available, a simplified rheological configuration comprising the

Network 2 configuration with reptation-limited power law viscous element, is sufficient for

capturing the characteristic response and offers an excellent model-experiment agreement

(see Figure 9). The associated material parameters are listed in Table IV.

IV. DISCUSSION AND CONCLUSIONS

The goal of this paper was to develop a rheological modeling framework for rapid prototyping

of viscoelastic network configurations, which simultaneously maximizes the agreement with

observed experimental response and minimizes the number of required model parameters.

By describing the measured history of load-displacement response in a given testing

configuration in terms of an effective stress-strain response, this approach allows investigators
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FIG. 8: Brain tissue in ex-vivo, uniaxial compression (8 material parameters): exponential elastic

element in 3A, nonlinear viscous power law dashpot with reptation-limited flow (3C), and time-

dependent back stress in SLS arrangement (3B, 3D, 3E). Material parameters listed in Table IV.
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FIG. 9: Cervical tissue in uniaxial compression (6 material parameters): exponential elastic element

in 2A, linear back stress elastic element (2B), nonlinear viscous power law dashpot with reptation-

limited flow (2C). Material parameters are listed in Table IV.
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gto first address the time-dependent features of the response, neglecting the effects of complex

boundary conditions, and select an appropriate rheological framework. The user can easily

evaluate the cost/benefit ratio of introducing additional modeling elements, increasing the

number of required parameters, and conveniently verify if the corresponding optimal-fit set

of parameters is unique by starting the optimization algorithm with different seed values.

The advantage of this approach lies in the ease of implementation of the 1D constitutive

laws during the prototyping period and the speed of execution. Based on our experience

during the development of the 8-parameter model for the response of liver in indentation,

typical ODE solutions of stress-strain history containing 12 consecutive liver indentations

generally require less than 1 second of computational time on a standard personal computer.

Consequently, model parameters may be obtained within minutes when quickly converging

optimization methods, such as the Nelder-Mead downhill simplex method40, are used. While

the Nelder-Mead method offered good global convergence (assessed by seeding the algorithm

from multiple seed points) in our experiments, the modeling tool also offers optimization

algorithms (simulated annealing, differential evolution) with more robust global convergence

properties.

In this study we also demonstrated the effect of objective function choice on the final

model fit. By increasing the relative weight of the model response history containing spe-

cific features of interest, we demonstrated that the objective function formulation may be

used to finely adjust the desirable/important features of the model-experiment fit. Such

experimentation and fine adjustment of the objective function definition is made feasible

by the computational efficiency of the one-dimensional numerical simulation and further

illustrates the utility of this approach in the early stages of identification of an appropriate

modeling framework for time-dependent tissue response.

This ease of implementation and computational efficiency comes at an important cost.

The model parameters identified by the rheological model are not true material parame-

ters, as material and geometrical factors are combined in the effective stress-strain response

and are therefore indistinguishable. This is particularly true for testing configurations with

highly inhomogeneous deformation fields, such as indentation. When generalizing the 1D

rheological modeling framework to a 3D large strain kinematics constitutive modeling frame-

work, the modeler needs to make a number of critical decisions, foremost among which is the

partitioning of the resistance to deformation between shear and bulk contributions. In many
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gcommonly employed approaches in tissue constitutive modeling, time dependence is treated

through a viscoelastic formulation and ascribed to the deviatoric (shear) tissue response.

Under these conditions the 1D rheological model identified by the proposed preliminary

modeling step can be easily recast in terms of the tissue response to isochoric deformation

as further detailed in Johnson et al. 32 and Prevost et al. 33 .

Finally, the proposed rheological modeling tool represents an effective technique for hap-

tics applications, where reproducing the structural response of the tissue to a given mode of

deformation is the primary objective, and computational efficiency is of utmost importance.

A MATLAB (Mathworks Inc., Natick, MA, USA) implementation of the tool is made

freely available on the authors website44 and is easily extensible with user-defined constitu-

tive elements.

V. ACKNOWLEDGEMENTS

The funding for this project was provided by the National Institutes of Health (NIH R01

HL073647-01), US Army (DAMD 17-01-1-0677), US Army Research Office through the MIT

Institute for Soldier Nanotechnologies (DAAD-19-02-D0002), the Joint Improvised Explosive

Devices Defeat Organization (W911NF-07-1-0035), and the Harvard-MIT Division of Health

Sciences and Technology. We would like to thank Dr. Kristin Myers for providing the cervical

compression data and Dr. Asha Balakrishnan for the brain indentation data.

1 J. Ferry, Viscoelastic Properties of Polymers (John Wiley & Sons, Inc., 1970).

2 Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New

York, 1993), 2nd ed.

3 I. M. Ward, Mechanical Properties of Solid Polymers (John Wiley & Sons, Inc., 1983).

4 E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. O’Brien, IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control 43, 191 (1996).

5 D. Kalanovic, M. P. Ottensmeyer, J. Gross, G. Buess, and S. L. Dawson, MMVR (2003).

6 M. P. Ottensmeyer, Stud Health Technol Inform 85, 328 (2002).

7 J. E. Bischoff, E. M. Arruda, and K. Grosh, J Biomech 33, 645 (2000).

28



¹����������	���
�������	���������������	����	�����������
������
���������
���������
��������������������������
�������������
��������������������������������������¹��������������	��������������		���������� ���!����"#������$�#%���&'�%�##�("#�

g

g
8 I. Brouwer, J. Ustin, L. Bentley, A. Sherman, N. Dhruv, and F. Tendick, Stud Health Technol

Inform 81, 69 (2001).

9 J. D. Brown, J. Rosen, Y. S. Kim, L. Chang, M. N. Sinanan, and B. Hannaford, Stud Health

Technol Inform 94, 26 (2003).

10 F. J. Carter, T. G. Frank, P. J. Davies, D. McLean, and A. Cuschieri, Med Image Anal 5, 231

(2001).

11 P. Davies, IMA Journal of Applied Mathematics 67, 41 (2002).

12 P. Jordan, S. Socrate, T. Zickler, and R. Howe, Journal of the Mechanical Behavior of Biomedical

Materials 2, 192 (2008).

13 M. Kauer, V. Vuskovic, J. Dual, G. Szekely, and M. Bajka, Med Image Anal 6, 275 (2002).

14 A. E. Kerdok, M. P. Ottensmeyer, and R. D. Howe, Journal of Biomechanics 39, 2221 (2006).

15 A. E. Kerdok, Ph.D. thesis, Harvard University (2006).

16 J. Kim, B. Tay, N. Stylopoulos, D. Rattner, and M. Srinivasan, in Medical Image Computing

and Computer Assisted Intervention (2003).

17 K. Miller, J Biomech 33, 367 (2000).

18 A. Nava, E. Mazza, M. Furrer, P. Villiger, and W. H. Reinhart, Med Image Anal 12, 203 (2008).

19 M. Rubin and S. Bodner, International Journal of Solids and Structures 39, 5081 (2002).

20 S. Socrate and M. C. Boyce, in Proceedings of 2001 Bioengineering Conference (ASME, 2001),

vol. 50, pp. 597–598.

21 J.-K. Suh and R. L. Spilker, Journal of Biomechanical Engineering 116, 1 (1994).

22 S. Febvay, S. Socrate, and M. House, in ASME International Mechanical Engineering Congress

and Exposition (IMECE) (Washington, DC, 2003).

23 T. Hu and J. P. Desai, in International Symposium on Medical Simulation (Cambridge, MA,

2004), p. 294.

24 K. Miller, Journal of Biomechanics 34, 651 (2001).

25 K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, Acta Biomater 4, 104 (2008).

26 S. Dokos, I. J. LeGrice, B. H. Smaill, J. Kar, and A. A. Young, J Biomech Eng 122, 471 (2000).

27 Z. Liu and L. E. Bilston, Biorheology 39, 735 (2002).

28 D. Valtorta and E. Mazza, Med Image Anal 9, 481 (2005).

29 A. Nava, E. Mazza, F. Kleinermann, N. J. Avis, J. McClure, and M. Bajka, Technol Health

Care 12, 269 (2004).

29



¹����������	���
�������	���������������	����	�����������
������
���������
���������
��������������������������
�������������
��������������������������������������¹��������������	��������������		���������� ���!����"#������$�#%���&'�%�##�("#�

g

g
30 J. C. Criscione, Journal of Elasticity 70, 129 (2003).

31 R. W. Ogden, G. Saccomandi, and I. Sgura, Computational Mechanics 34, 484 (2004).

32 T. Johnson, S. Socrate, and M. Boyce, Acta Biomaterialia 6, 4073 (2010).

33 T. P. Prevost, A. Balakrishnan, S. Suresh, and S. Socrate, Acta Biomaterialia 7, 83 (2011).

34 E. Mazza, A. Nava, D. Hahnloser, W. Jochum, and M. Bajka, Med Image Anal 11, 663 (2007).

35 L. F. Shampine, Numerical Solution of Ordinary Differential Equations (Chapman & Hall, New

York, 1994).

36 T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, J R Soc Interface 3, 15 (2006).

37 J. E. Bischoff, E. M. Arruda, and K. Grosh, Biomech Model Mechanobiol 3, 56 (2004).

38 E. M. Arruda and M. C. Boyce, J Mech and Phys of Solids 41, 389 (1993).

39 J. S. Bergstrom and M. C. Boyce, Mechanics of Materials 33, 523 (2001).

40 J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, SIAM Journal of Optimization 9,

112 (1998).

41 P. Jordan, Ph.D. thesis, Harvard University (2008).

42 A. Balakrishnan, Ph.D. thesis, Massachusetts Institute of Technology (2007).

43 K. M. Myers, S. Socrate, A. Paskaleva, and M. House, J Biomech Eng 132, 021003 (2010).

44 URL http://people.seas.harvard.edu/~pjordan/TissueModelingTool.

30


