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Abstract: While polymeric fabrication processes, including recent advances in additive 

manufacturing, have revolutionized manufacturing, little work has been done on effective 

sensing elements compatible with and embedded within polymeric structures. In this paper, 

we describe the development and evaluation of two important sensing modalities for 

embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint 

angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing 

via embedded silicon strain gages with similar performance characteristics as an equally 

sized metal element based sensor. 

Keywords: sensors; embedded; polymer; robotic; shape deposition manufacturing;  

rapid prototyping 

 

1. Introduction 

In order to become commercially viable, the majority of robotic and mechatronic systems must 

eventually become compatible with inexpensive, mass-manufacturing processes. In addition to 

challenges associated with fabricating structures with intrinsic sensors, a number of properties of 
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polymers, such as multi-axial compliance, thermal insulation, and viscoelasticity/creep, make developing 

useful compatible transducers challenging. However, aspects such as the kinematic configuration of 

the structure as well as the state of the loading condition must frequently be sensed, even in the 

presence of those challenging material properties, in order to allow for the desired performance of  

the robotic or mechatronic system. In this paper, we explore two types of polymeric transducer 

configurations designed to give satisfactory performance in spite of these properties: a multi-axis 

flexural joint sensor for compliant structures, and a three-axis load sensor designed to be miniaturizable 

and incorporated into the structure of small polymeric devices such as surgical instruments. 

Fabrication processes such as multi-material molding and insert molding allow for some expansion 

of the types of systems that can be easily fabricated with modern processes, but have not yet  

produced fully-integrated sensorized commercial systems with intrinsic transducers. On the scale of 

small-batch fabrication of research hardware, a popular polymer-based processes is Shape Deposition 

Manufacturing (SDM) [1,2], which can allow for the fabrication of compliant mechanisms that  

are very difficult to fabricate with traditional techniques. Complex mechanisms with embedded 

components can be created as a single part, eliminating the need for fasteners, and reducing the likelihood 

of damage to fragile components by encasing them within the part structure. To this point, however, 

SDM structures have been almost purely passive or open-loop mechanisms, devoid of sensing and 

feedback control [2–5]. 

In order to expand the utility of polymeric robotics, sensors must be developed that both integrate 

with and exploit the characteristics of plastics and rubbers [6–9]. Integrating these sensors with the 

robot structure promises to greatly reduce fabrication costs and complexity, and to increase the 

robustness of the resulting robotic systems—a crucial feature for commercially-viable systems. In 

addition to durability and ease of manufacture, polymeric transducers are desirable for MRI-compatibility, 

and a number of sensor designs have been explored for this application [9–11]. Additionally, 

considerable progress has been made towards creating soft sensors that stretch like their biological 

counterparts [12,13].  

In this paper, we describe the development and evaluation of two types of sensors that can be 

utilized to give good sensing performance despite challenging aspects of polymer material properties. 

The first of these is an infrared phototransistor-based sensor that provides three axes of deflection 

sensing for compliant flexure joints. Flexures are a frequently-used and simple way of achieving 

polymeric joints, but are inherently more complex than simple rotational joints and require special 

sensing to estimate their multi-degree-of-freedom (DOF) state. The second transducer presented is a 

three-axis stain-gage force sensor. Force sensing is a useful and often necessary capability for a 

number of applications in which contact with external object must be controlled. However, traditional 

designs, while accurate and repeatable, are expensive, heavy, and fragile. By embedding strain gages 

into the structure of the mechanism, we create lightweight, durable, and inexpensive force transducers 

that are simple to fabricate. 

2. Phototransistor Flexure Sensing 

Flexures are a simple way to add articulation to polymeric mechanisms. They are low-cost, easy to 

fabricate, frictionless (but not zero stiffness), and robust—even to off-axis loads. Furthermore, they are 
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an easy way to incorporate compliance, and a single flexure can allow deflection around multiple axes, 

which provides advantages for grasping [3], proprioception, and to detect contact with the environment 

by the deflection of the joint [14]. Examples of flexure-based joints in robotic systems include the 

Sprawl series of legged robots [2], the SDM Hand [3], the UB Hand [15], and Compliant Framed 

Modular Robots [16], among others. 

However, while flexures pose many advantages over traditional revolute joints, they are not 

compatible with standard approaches to measuring joint position, such as potentiometers or encoders. 

The pose of single-DOF flexure joints has been measured with piezoresistive bend sensors [15],  

hall-effect sensors [17], and optoelectronic sensors [18], the latter of which we utilize in this paper,  

but for a multi-DOF sensor. The only literature on measuring the pose of multi-DOF flexure joints 

(beyond our preliminary design presented in [19]) utilizes strain gauges distributed along the length of 

a long flexure joint [16] and achieves fairly good performance, albeit with significant mechanical and 

computational complexity to do so. It is therefore desirable to develop methods to measure the 

configuration of multi-DOF flexure joints with simpler methods and without needing to instrument the 

flexure itself. 

2.1. Design 

The sensor consists of a single infrared LED (VLMD3100-GS08, Vishay Semiconductor, Malvern, 

PA, USA) shining on to two pairs of phototransistors (four total—OP501DA, Optek Technology, 

Carrollton, TX, USA), as shown in Figure 1. The two phototransistors in each pair are mounted at 

different angles, so that as the finger bends, the LED moves from shining directly on one towards 

shining directly on the other. As the finger twists, the LED moves from one pair to the other, generating 

approximately 1 V response from each phototransistor (configured as a photodarlington) over a 220-ohm 

pull-up resistor To calibrate the design, a first-order polynomial approximation is used to map sensor 

readings to Euler-angle representation of orientation:  

 

  

  

  

   

         

         

         

 

 
 
 
 
 
 
  
  

  

   
 
 
 
 

 

To fabricate the sensor, a wiring harness is created with the phototransistors and LED. This is  

laid into the plastic finger which is printed by a fused-deposition manufacturing process (3D printer). 

After a cavity for the sensor is printed, the printer is paused and the harness is laid inside as shown in  

Figure 1. Printing then resumes, and as plastic is extruded over the sensor it fixes it in place. This 

process both provides a cavity to align the sensor, and removes the need for later assembly. The finger 

design includes cavities for flexure joints (16 mm × 6 mm × 17 mm) and finger pads, which are then 

filled with two-part urethane rubber (PMC 780, Smooth-On Inc., Easton, PA, USA—Shore-A 

durometer 80). The walls of the cavities are then peeled off, leaving the flexure joint as shown  

in Figure 1. 
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Figure 1. Joint-angle sensor design. An infrared LED shines across the joint onto two angled 

pairs of phototransistors (left). An embedded fused-deposition manufacturing method is used 

to integrate sensing into the finger design (right): (a) print is paused; (b) wired sensor is 

inserted into cavity designed to hold it; (c) whole assembly is printed over. 

 

2.2. Methods and Results 

To test the response of the finger, the orientation of the distal link is measured with an 

electromagnetic tracker (TrakSTAR, Ascension Technologies, Shelburne, VT, USA) at 50 Hz; 

voltages are measured at 10 bit resolution with an Arduino Micro (Arduino, Ivrea, Italy) at 50 Hz, and 

interpolated in MatLab. The finger is loaded from the tip using a string (simulating fingertip contact), 

and the results are plotted in Figure 2. The respective performance of the sensor for each degree of 

freedom is shown in Table 1. Note that the varying stiffness of the joint in different degrees of freedom 

results in differing magnitudes of deflection. 

Figure 2. Sensor response: (left) experimental setup and (right) sensed angles across joint 
vs. actual angles measured with electromagnetic tracker. 

  

Table 1. Joint sensor performance. 

Angle Range Max Error RMS Error 

θx [−4, 61] 5.2° 1.7° 

θy [−11, 15] 5.0° 1.3° 

θz [−2, 10] 2.0° 0.60° 
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2.3. Discussion 

The results show that the design is capable of measuring the deflection of multi-DOF flexure joints, 

and demonstrate a new method to integrate sensors into polymeric devices. While the errors are higher 

than seen in typical rotational encoders, there is no other published work measuring 3-DoF flexure 

deformations to the authors knowledge, and compliant fingers that adapt to the shape of object require 

less precise information regarding finger placement than do stiff pin-jointed fingers. 

The primary source of error comes from the simple calibration between sensor values and flexure 

deformation (note that only first-order calibration terms are used to avoid overfitting). The flexure is 

able to deflect in all six degrees of freedom (translation and rotation), but only rotations are measured 

(the most significant deflection modes—flexion about x, y, and z in Figure 2). However, the flexure is 

significantly stiffer in translational degrees of freedom due to the joint and finger geometry (the flexure 

and distal link are roughly ten times longer than the flexure thickness) so these other modes play a less 

significant role in finger behavior.  

Embedding the sensors during the printing process provides a number of advantages. The printed 

device itself serves as an alignment jig, enabling faster assembly and tighter tolerances. The printed 

material also provides protection for fragile wires (and, for some sensor types, the sensors themselves). 

3. Strain-Based Force Sensing 

Multi-axis force sensing provides essential information about the interaction between the robot and 

the environment. Strain gages are often used in high quality force transducers due to their high 

sensitivity. However, the process of bonding strain gages to the transducer substrate is complicated and 

time-consuming, and often fails if any of the steps are not performed exactly to specification. Prior 

work by the authors has found that embedded strain gages can bond well to the structural material 

without the need for adhesives and give accurate measures of the structural strain in the part [6]. 

Integrating strain gages into polymeric structures via molding therefore may allow devices to be 

created with the sensitivity of strain gauges combined with the high durability and ease of construction 

of polymeric molding. In the following sections we present the design and evaluation of a miniature 

three-axis force transducer created using the SDM process, consisting of multi-stage molding steps. 

3.1. Miniature Three-Axis Force Sensor 

We integrated six strain gages to create a miniature three-axis force sensor (5 mm × 6.5 mm × 14.5 mm). 

Our primary motivation for targeting a design of this size was to meet the stringent design requirements 

of a force-sensing grasper jaw for use with minimally invasive surgical instruments [20,21], and as 

such, must fit through a small port (5 mm to 12 mm in diameter). 

In the following section, we describe the design, construction, and evaluation of our current 

prototype, designed to form a pair of force-sensing gripper jaws that fit through a 12 mm port. The 

same technology can be readily applied to generate 5–10 mm pairs of sensors. This prototype is meant 

as an evaluation platform for an embedded strain-gage based force transducer on a small size scale, 

and does not incorporate the ideal jaw geometry for surgical grasping tasks. 
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3.1.1. Sensor Design and Construction 

The force sensor is a dual-serial-beam configuration. One strain gage is located on each of the four 

sides of the proximal bending beam, sensing two bending moments (corresponding to X and Z forces 

in Figure 3). Two strain gages are located in the distal bending beam to sense the final axis (Y) of  

force (Figure 3). The sensor is integrated with an aluminum base allowing simple attachment to 

manipulators. Because of the SDM process, wires to the individual gages are integrated into the sensor 

core, removing the need for strain relief. A further advantage is that all wires leave the sensor at the 

same point providing straightforward and robust wire management. 

Figure 3. Photograph and cross-sectional diagram of three-axis force sensor. Note copper 

heat shield.  

  

Silicon strain gages (1 mm × 0.25 mm, SS-037-022-500P, Micron Instruments, Simi Valley, CA, 

USA) were used to achieve high sensitivity in a small package. Individual strain gage resistances  

were sensed through a Wheatstone bridge, followed by an instrumentation amplifier circuit with a  

gain of 100. 

The sensor construction is carried out in a two-pour casting process, each with a separate mold 

cavity. The first pour of liquid polymer embeds the strain gages and wires in an epoxy core 

(approximately half of the size of the final sensor) and attaches the core to the aluminum base. During 

this first stage, the gages are suspended in the mold via their lead wires, and positioned by hand to be 

close to their desired position and orientation. The second pour into a mold of the shape of the final 

sensor part embeds a copper braid (Ungar-Wick #4, Ungar Products, Apex, North Carolina, CA, USA) 

heat shield around the core. The epoxy used (Resin 105 Fast Cure, West System, Bay City, MI, USA) 

was chosen for its stiffness and low creep properties, low mixing viscosity (to fill all parts of the 

mold), and low curing temperature (to cure inside a wax mold). 

A key component of our sensor design is the heat shield to equalize temperature variation between 

gages. Epoxy is an insulator, which negates the standard temperature differential rejection scheme of 

examining the difference in strains on opposite sides of a thermally-conducting bending beam. With 

the heat shield in place, the temperature differences are small and resistance differences between the 

two gages depends principally on strain.  

3.1.2. Sensor Evaluation 

To calibrate the SDM sensor, known loads were applied along each coordinate axis. The calibration 

matrix was found using a linear least squares method on the gage voltages and known loads. 

  

Y    
X    

Z    

Epoxy    
Gage wires   

Z axis gages   

Copper heat shield   

Y axis gages   
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Temperature effects were minimized by allowing the temperature of the sensor to vary during 

calibration. Estimated forces versus known forces are shown in Figure 4 to demonstrate the calibration 

as well as the linearity (average R2 of 0.998). The force sensor has a range greater than 2 N with an 

RMS error in calibration of 0.15 N. This range is 40% of the desired full range for a wide range of 

surgical applications [22], but is appropriate for many tasks. 

Figure 4. Sensor response to loads showing linearity. 

 

To characterize noise and resolution, the unloaded sensors were placed in an enclosed container and 

allowed to thermally equilibrate. Data was then taken for 20 s. Because the major component of noise 

is at high frequencies, resolution is coupled with sampling frequency. At 1,000 Hz sampling, the RMS 

noise was approximately 0.1 N. 

To examine the benefit of the copper braid heat shield, a sensor was fabricated without the inclusion 

of a heat shield. After calibration, sensors were allowed to thermally equilibrate in open air. With the 

non-heat shielded sensor, we measured a drift of 1.2 N over 5 min. The sensor with the heat shield 

drifts only 0.15 N in 5 min, almost an order of magnitude improvement. 

A metal-based force-sensing jaw of the same size scale, using an aluminum element, was also 

fabricated and is reported in [21]. The resulting average RMS error in calibration was 0.07 N and 

average R2 was 0.930. Accordingly, the SDM sensor described above has approximately twice the 

calibration error as the more traditional, metal-based design. However, the ease of fabrication and 

acceptable performance of the molded sensor make it more appealing for many applications, 

particularly those requiring ―disposable‖ hardware.  

3.2. Discussion 

Due to thermally-insulating and viscoelastic properties of most polymers, force transducers 

constructed with polymeric support structures will likely never perform as well as metal-based sensors. 

The benefits of the SDM approach, however, are many. The force sensitivity of strain gages is retained 

without the complex bonding process normally associated with strain gages. The sensor is robust due 

to its monolithic construction. The force ranges can be easily adjusted by depth of gage placement 

within the element. Wire management is straightforward, with all wires exiting the sensor at the same 

point, and intrinsic strain relief is provided by the epoxy. Finally, a construction process in which a 

single pour would encapsulate the strain gages and the heat shield could lead to a straightforward mass 

production scheme. In mass production the sensors could be low cost and potentially disposable, thus 

removing the issue of repeated sterilization for surgery applications. 
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An advantage of traditional metal-based sensors not reflected in the above SDM design is that they 

are relatively moment insensitive due to moment rejecting flexure design (binocular-shaped cutouts) 

where applied forces cause the flexure to translate instead of bending [23]. An SDM based sensor 

could take advantage of this design principle as well, at the cost of a more intricate mold design. 

The viscoelasticity of polymeric structures typically causes undesirable creep effects, which would 

cause a slowly changing force signal under a constant load. We specifically chose a low-creep epoxy 

to minimize these effects, but we would expect to observe some creep for loads of long duration 

(hundreds of seconds). Further work will include investigation of other polymers and inclusion of other 

materials within the polymer to reduce creep, as well as targeting specific applications that are 

insensitive to creep, such as short time-duration load sensing. 

4. Conclusions/Outlook 

The design approaches and fabrication techniques presented here demonstrate that sophisticated 

sensors can be readily incorporated into polymeric structures. A central advantage is that the 

fabrication process can enable the creation of highly effective sensors by embedding inexpensive, 

prepackaged transducers to create specialized sensing structures. These sensors are part of the robot 

structure and are created using the same tools and forming techniques as the mechanical structure, 

requiring minimal additional effort. This also permits optimization of the overall mechanical properties 

of the system as well as facilitates cable routing. In the joint-angle sensor presented above, 

phototransistors and LEDs are molded into a finger during a fused-deposition manufacturing printing 

operation. This approach is readily extensible to other sensors such as hall-effect sensors and allows 

easy alignment of the sensors to the device. 

In the multi-axis force sensor presented above, the strain gauge wiring is molded within the sensor 

element, providing strain relief and enhanced robustness. This approach can be applied to the entire 

robot, with all cabling for sensors and actuators molded into the robot structure. While SDM-like 

processes were used to fabricate the prototypes presented in this paper, a number of established 

industrial manufacturing processes exist that can enable similar functionality. Multi-shot injection 

molding is used to create parts such as tool handles with integrated soft grips and parts with integral  

o-rings and gaskets. Overmolding and insert molding allow for the embedding of prefabricated 

components and are used to encase electronic components within polymer housings. These processes 

and others might be used directly or slightly modified in order to mass-produce inexpensive commercial 

polymeric robotic and mechatronic devices incorporating the sensor designs presented here. 
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