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Abstract In unstructured environments, grasping systems should cope with a wide
range of object and environment variations, across size, shape and pose, friction
and mass, visual occlusions and shadows, robot control inaccuracy, and many other
factors. This paper proposes a framework for analyzing the sources of variations
in grasping tasks as a way to understand grasping system performance. The con-
comitant design approach starts with a collection of basis grasps, each a specific
arrangement of the fingers on a specific object. Next, we use motion sequences,
sensing, and passive mechanics to make these grasps robust to variations in objects,
sensing, and control. We then analyze each grasp’s robustness to local variation to
determine the basin of attraction, the range of variation it can tolerate while still
achieving a good grasp. Finally, we treat this basin of attraction as a variation bud-
get that can be distributed across subsystems to inform system tradeoffs between
object variation, perception errors, and robot inaccuracies. The principle advantage
is that within the context of specific grasps, the effects of local variations can be
understood and quantified, and therefore compared across disparate approaches.

1 Grasping Systems & Variation

Creating versatile grasping capabilities is a longstanding challenge in robotics. Al-
though robots grasp effectively in structured factories, they need to be more versatile
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to handle objects in unstructured environments where many factors affect grasp suc-
cess, including a wide range of object shapes and sizes, incomplete and frequently
inaccurate perception, uncertainties in surface friction and mass, and robot position-
ing errors. The high-dimensionality of the problem makes it difficult to understand
the capabilities and limitations of grasping systems. Analytical methods (such as
grasp simulation and manipulability analysis) are limited because real environments
contain too many objects described by too many parameters for tractable evaluation.
Standardized object sets enable experimental comparison of the performance of dif-
ferent systems, but it is not straightforward to extrapolate from such experiments to
predict performance on novel objects. Thus there is a lack of effective system-level
metrics, and this poses a major barrier to progress because understanding the capa-
bilities and limitations of grasping systems is essential for comparing the benefits of
different approaches, and for evaluating design tradeoffs within and between robot
subsystems. As a result, robotics researchers must currently direct their efforts based
on intuitive analysis of prior results.

The goal of this paper is to develop a framework for understanding grasping sys-
tem performance and for designing capable systems. In the first half of this paper,
we cast the grasping problem as overcoming variation and project it onto a tradi-
tional robot subsystem decomposition. This forces explicit examination of which
sources of variation matter, and provides a way to understand the tradeoffs between
alternate ways to address the variation, which is particularly useful to compare the
performance of disparate systems.

In the second half of this paper, we use this approach to build a methodology
for designing grasping capabilities. First, we start with a basis grasp: a specific fin-
ger configuration on a specific object. Second, we design a combination of motion
sequences, sensing, and passive mechanics to make grasp acquisition robust to vari-
ations in object shape and pose, perception, and robot control. Third, we analyze
the basis grasp’s robustness to local variation to determine the basin of attraction,
the range of variation it can tolerate while still achieving a good grasp. Finally, we
treat this basin of attraction as a variation budget that can be distributed across sub-
systems to inform system tradeoffs between perception errors, robot inaccuracies,
and object variation. To extend system capabilities to a greater range of objects and
variations, additional basis grasps can be added. The principle advantage of this ap-
proach is that within such a specific context, the effects of local variations can be
understood, as well as quantified and therefore compared across disparate systems.

2 Posing the Grasping Problem as Overcoming Variation

The ultimate goal is to build grasping systems that work everywhere, on everything.
The challenge is overcoming variation, which comes from a wide range of sources,
including object diversity in shape, friction, mass, and pose; perceptual variability
due to limited camera resolution, segmentation errors, and occlusion; robot arm and
finger positioning errors; noise and sensitivity limits in force sensors; and many
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Fig. 1 A typical system breakdown for a grasping robot. The task interface is used to direct the
robot’s general capabilities to a specific task, setting the required parameters. The perception &
modeling system takes raw sensor data from the real world and uses it to synthesize an internal
model. The planning & reasoning system uses this model to map the task parameters to the se-
quence of commands executed by the low-level control, and (if necessary) change the plan based
on new feedback from the perception/modeling system.

others. In this section, we present an overview of how the subsystems of a robot
grasping system work together to deal with variability. This provides a consistent
way to understand the relative advantages of different approaches and to understand
the tradeoffs within subsystems, enabling incremental progress in the development
of grasping systems.

2.1 System Breakdown

As a foundation for analysis, it is helpful to break out the typical subsystems of a
robotic grasping system as described in Fig. 1. This, of course, shows only the major
interactions (real systems have more complex information flow), roughly following
the classical ”sense - think - act” structure.

The Task Interface presents the robot’s general capabilities to a user so they can
engage it to perform a specific task. This can be very simple – how to move indi-
vidual robot joints – or more complicated – what objects are perceived by the robot,
how to grasp them, etc. Robots do not need to autonomously compensate for all
sources of variation to be useful, but the more they can overcome automatically, the
simpler the task interface is and the better they can function outside static environ-
ments.

The Perception System gathers and interprets data from the messy real world to
create an internal model of the object to be grasped and the surrounding environ-
ment. This can both remove variation by creating an accurate internal model, and
introduce variation through perceptual inaccuracies. The more detailed the model,
however, the more difficult or time-consuming it is to create: a simple 2D view of
the facing side of an object is easier to obtain than a precise 3D geometric model
that includes the object’s far side.

The Planning-Reasoning System plans low-level actions such as where to place
fingers on an object to overcome variation in shape or pose, and how to sequence
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corrective actions. It bases these plans on the model created by the perception sys-
tem, information from the task interface, and any a priori knowledge.

The Low-Level Control system is the interface to interactions with the external
world, such as arm and hand hardware and closed-loop controllers for joints, and
passive or compliant mechanisms that automatically adapt to limited ranges of exter-
nal variations. Choosing the appropriate basis for this control has a large impact on
the level of variation tolerated from the rest of the system – stiff position-controlled
actuators exert large forces in response to positioning errors from the perception sys-
tem, whereas force-control loops may require more nuanced reasoning about how
to use environmental affordances to maintain stability.

2.2 Robot Grasping Results Viewed in Terms of Variation

Using this framework, prior research in grasping, albeit on diverse and seemingly
unrelated topics, can all be seen as working towards coping with variation.

Traditional industrial applications of robots use careful structuring of the envi-
ronment and heavy, stiff robots to eliminate variation in the object and in robot mo-
tion. This severe restriction on object and environment variation allows industrial
application to use simple perception, planning, and control systems. Any variation
from one object to another, such as switching the production line to a new prod-
uct, must be addressed through the task interface. Typically, this requires a highly-
trained technician to use low-level programing or a teach pendant to reconfigure the
system for each new object.

Simulation-based planners such as GraspIt [22] and OpenRave [5] compensate
for variations in object geometry and pose by finding the right locations to place
fingers to achieve a good grasp. Many different hand poses are sampled, and their
quality is evaluated using grasp metrics such as as epsilon quality [10] and reachabil-
ity. These planning systems place a large burden on the perception system because
they require a precise, complete model of the object geometry, so, for example, the
perception system must fill in raw sensor data by fitting object models from a priori
object libraries to clusters of points. Most simulation-based planning approaches do
not compensate for variations due to inaccuracies in the perception or robot control
systems, though recent work by Weitz et al. [29] incorporates this into the grasp
quality metric.

Grasp site strategies compensate for variations in object pose and geometry by
searching for consistent grasp sites on varied objects. This simplifies the perception
system because it removes the need for detailed or a priori object models. Instead,
this approach attempts to find acceptable grasp sites directly in raw perception data.
Saxena et al. search for grasp sites directly in 2D image data [27]. By manually la-
beling the grasp points for a parallel gripper on a set of objects in simulation, they
create visual classifiers for grasp sites by simulating scenes under a wide range of
poses and lighting conditions. These classifiers perform well on novel objects out-
side of simulation. Working with laser range data, Klingbeil et al. use a template to
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search for regions that match the shape of a parallel-jaw gripper [17]. Herzog et al.
present a more generalized approach in a similar vein [12] based on a general grasp
site template searched across orientations. This allows the re-use of more compli-
cated grasps from human demonstrations, and results are presented using both a
parallel-jaw gripper and a Barrett Hand in two different preshapes. The existing lit-
erature does not show how much variation is tolerated in the identified grasp sites,
but the overall performance of such systems is strong.

Heuristic grasp planners use empirical rules to determine where to place a hand
to compensate for varied geometry and pose. For example, Hsiao et al. create a set of
candidate grasps around stereotyped poses and score them based on factors such as
the quality of perception data at the grasp site, their likelihood to cause the object to
be knocked over, and their proximity to the current position of the gripper [13]. This
approach also reduces demands on the perception system, as detailed object models
are not required. Understanding the capabilities and limitations of these systems is
challenging because it is difficult to connect the collection of heuristics to the range
of variation in object shape and pose where they are successful; most papers only
characterize system performance against ad hoc collections of objects.

Anthropomorphic hands are perhaps the most complex examples of the low-level
control system in Fig. 1. These hands attempt to mimic human functionality with
three to five highly-dexterous fingers that can exert contact forces in any direc-
tion [23, 4, 20]. In principle, the many degrees of freedom in these hands can be
used to cope with a wide range of object variation. Unfortunately, understanding
how to use this complexity in unstructured grasping has proved elusive. A num-
ber of factors contribute to the challenges. The needed interactions with planning
and perception systems have not been successfully defined or implemented. There
is a considerable body of theoretical work that seeks to compensate for variations
in object geometry and task constraints by controlling contact forces; a good re-
view is presented by Shimoga [28]. However, although this provides an elegant way
to understand the role of geometric variation, low-level control of these complex
machines has been limited by factors such as friction, tendon dynamics, and poor
contact sensing. Anthropomorphic hands have rarely been used outside of controlled
research settings.

Underactuated hands compensate for variations in object pose, object geometry,
perception errors, and arm positioning errors by mechanical design [18, 8, 1, 2].
Compliance in the fingers allows them to passively adapt to the details of the object
geometry, and thereby reduces the load on both the perception and planning sys-
tems. [7]. Recent work such as the coin-flip primitive presented by Odhner et al.
in [19] has extended this approach beyond grasping into manipulation.

The final examples examined here come from three teams in the DARPA Au-
tonomous Robot Manipulation competition that developed systems to perform a set
of pre-specified tasks with a known set of objects and tools [11]. These are among
the best-integrated and autonomous grasping systems presented to date, so their ap-
proach to dealing with variability is of particular interest.

The system created by Hudson et al. [14] primarily used the perception system
to overcoming variations in robot arm positioning and camera registration. They
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modeled the difference between the arm’s actual pose and expected pose using
an unscented Kalman filter, and made extensive use of a priori object models to
compensate for occluded camera views. This effectively compensated for variations
from both the low-level control system (which introduced positioning errors up to
several cm) and from the perception system, and the team achieved top scores in
the competition. It provided only a limited solution to object variation; the grasp
planner used a full 3D model of each object to create a library of grasp candidates
by simulating which hand placements maximize contact surface, and the resulting
grasp candidates were manually pruned for each object.

The system created by Schaal et al. [26] primarily used the low-level control sys-
tem to overcome variation in the arm positioning and object geometry and pose. In
their approach, grasping is reformulated from the position domain to the force do-
main using “Dynamic Motion Primitives” (DMPs). Because the DMP only requires
a few parameters, this formulation also enables the effective use of machine learn-
ing to optimize the grasping plans. The plans themselves are created from demon-
stration. Because force-domain execution requires less information about the object
than position-domain execution, this approach is more readily adapted to unknown
objects. Although a priori object models are used in [26] in a manner similar to Hud-
son et al.’s approach (using iterative-closest-point matching to align model and sen-
sor data), the team was subsequently able to extend it to a model-free approach [12].
An extensive calibration routine is required to compensate for variations in the re-
sponse of the strain gauges used to measure force.

Bagnell et al. [3] overcame variation by detecting errors and sequencing correc-
tions using behavior trees implemented in a framework called the “Behavior Archi-
tecture for Robotic Tasks” (BART). This approach relied on creating a good task
interface to sequence and combine primitives in the planning-reasoning system.

Thus these three teams focused on different subsystems in their solutions, with
the first focusing on the perception system, the second on the low-level control sub-
system, and the third on the task interface and planning-reasoning subsystems. By
considering the mechanisms for coping with variability, we can understand why
these teams achieved roughly comparable performance despite the use of radically
different approaches.

3 Basis Grasps and Variation Budgets

We can also apply the framework prospectively to design and analyze new robot
grasping capabilities, again defining grasping capability in terms of the ability to
successfully execute a grasp across variation (in object geometry, perceptual noise,
etc.). Under this definition, the key challenge to creating broader functionality is to
understand what variation matters for achieving a successful grasp, and to design
systems that compensate for it. To do so, we invert the usual order: rather than start-
ing with an object and determining how to grasp it, we start with a basis grasp, a
specific finger configuration, and determine the range of object variation where it
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Fig. 2 The i-HY hand.

will work. Second, we enlist the entire robot (perception, planning, low-level con-
trol systems) to make this grasp tolerate local variation and still achieve a success-
ful grasp. Third, we analyze the bounds of this variation to determine the basin of
attraction around the template configuration. This is both a measure of grasping
capability, and a metric for where the grasp can be successfully applied. To extend
the range of object variation that can be grasped, we can create a collection of basis
grasps with different basins of attraction.

The principle advantage is that variation is easier to understand when examined
locally as deviation from a basis grasp. This means it is faster to establish which
sources of variation are dominant in determining a grasp’s success. It is also easier
to see how to cope with variations using a robot’s full capabilities, and it is more
tractable to establish bounds for the system’s ability to grasp related objects. In the
following section, several examples are presented to illustrate the framework.

3.1 Overhead Three-fingertip Grasp

In the first example, we study the i-HY hand [25] (Fig. 2) in an overhead finger-
tip grasp on a box-shaped object sitting on a table (Fig. 3). This hand has three
compliant, underactuated fingers, each controlled by a separate actuator, along with
a fourth actuator that controls the orientation of the two fingers. Tactile sensors are
located on the fingers, and the proximal joints are equipped with magnetic encoders;
the deflection of the distal joints can be determined from the excursion of the ten-
don measured at the proximal joints and at the spools on the actuators. In this basis
grasp, the fingers are placed on antipodal surfaces of the object.

Determining the object variation range. Now, we analyze the dominant types of
variation that limit successful grasps. The point of this analysis is not to demon-
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Fig. 3 An example basis grasp: the overhead fingertip grasp on a rectangular prism (a) side view
(b) overhead view.
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Fig. 4 (a) The important part of an object’s geometry is the place where fingers contact the object.
This can be used to parameterize variations due to (b) object pose and robot registration and (c)
object geometry and imperfect visual segmentation.

strate a method that overcomes any arbitrary source of variation, but to show how
such analysis can be used to easily understand the capabilities and limits of a given
grasping system. In this grasp (as in many), the dominant factor is object geometry
and object pose. The basis grasp is defined with the fingers well-aligned with the
hand (Fig. 4a), but if the object pose is rotated due to inaccuracies in the perception
or control systems, finger contact locations will be displaced and rotated (Fig. 4b).
Simple analysis of finger motions and surface normals can then reveal the range of
pose variation where this grasp will succeed.

Similarly, if the object shape is not a rectilinear box, the grasp may still succeed.
The key observation is that the only part of the object geometry that affects grasping
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Fig. 5 Sensing, control, and targeted mechanical design can be used expand the basin of attraction.
For the surface grasp, (a) a guarded move against the supporting surface is used to compensate for
variation in the contact surface height, and (b) contact-relative motion around the object surface is
used to compensate for variation in the contact surface extent.

is the contact surface patches where the fingers make contact (Fig. 4c). Thus when
the grasp is used as the reference frame (rather than the object, as in traditional grasp
analysis), all geometric variations from object, robot control, and sensing can be
condensed into one quantity: the local variation in the surface patches where fingers
contact the object. Once again, analysis of finger motions and surface normals will
specify the range of shape variation (and combination of shape and pose variation)
where this basis grasp will succeed.

Extending the grasp variation range. To make this grasp more robust to local
variation, we then enlist the other subsystems of the robot, particularly the low-level
control system. One variation that is important to take into account is vertical posi-
tion of the object, due to errors in the perception system, mis-calibration of the robot
arm with respect to the vision system, robot control errors, etc. We can compensate
for vertical variation by referencing the finger pose to the table supporting the ob-
ject (Fig. 5). This is done by with a guarded move from above (i.e. approach-until-
contact), using tactile sensors in the finger tips to determine when contact occurs.
This eliminates the need for precise estimation of the height of the object from the
perception system. We also slide the fingers along the table surface as they close
– this approach uses the compliance of the fingers to compensate for any minor
variation in vertical position that might allow thinner objects to slip underneath the
fingertips as they close.

We can extend the basis grasp’s tolerance to variation in the width of the object
(i.e. the contact surface patches) by again using a guarded move. After the fingers
contact the table surface, the hand is lifted incrementally while maintaining finger-
tip contact. When the tactile sensors in the distal link signal contact with the side
of the object, the controller can shift from closing the fingers to increasing grasp
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Fig. 6 The basin of attraction for the overhead fingertip grasp when the object is centered in the
grasp.

force. Alternatively (or in addition), the joint position signals can indicate that the
fingertips have stopped closing. Note that these strategies for dealing with variation
in both vertical height and width are based in strategic use of low-level control –
neither guarded moves or compliant contact require detailed information from the
world model created by the perception system.

Having defined the basis grasp in terms of finger configuration as well as low-
level control behavior, we can establish quantitative bounds on how much variation
can be tolerated for each important parameter of variation. The fingers must contact
the object as they close, which means the object width must fit inside the fingers in
order for the acquisition strategy to succeed (Fig. 6-left), and the object must ex-
tend laterally past the two adjacent fingers (Fig. 6-right). This forms a performance
bound on how much variation in object size the grasp can tolerate, as shown in the
shaded region in Fig. 6. Similar analysis can be applied to variation in object ori-
entation, friction, mass, etc. – where selection of factors to include is a function of
the dominant balance in a given grasp. We propose the term basin of attraction to
describe the range of variation the grasp tolerates.

A simple experiment was performed to illustrate this approach, as shown in
Fig. 7. A small object (an allen key set, approximately 25 x 25 x 75 mm) was placed
on a table and the hand executed the overhead fingertip basis grasp. This process
was repeated as the hand was shifted in each direction. Fig. 7-left shows the results
for shifting in the width direction, and Fig. 7-right shows the results for shifting
laterally. In each plot, the height of the red line above the displacement axis indi-
cates the region of grasp success, which closely corresponds to the simple analysis
predicting grasp success.
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Fig. 7 Experimental validation of the basin of attraction closely matches predicted results. A small
object (allen key set) was grasped under a variety of positioning offsets to determine the bounds
on the basin of attraction.
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Fig. 8 The basin of attraction serves as a variation budget that can be spent on different subsystems.
Here uncertainties due to perception and robot control are represented as the red regions that shrink
the shaded region that is available to deal with object variations.

Variation budgets. Now that the limits to variation have been determined, this
basin of attraction can be treated as a variation budget that can be allocated to
the diverse sources of variation for a particular application (Fig.8). For example,
the uncertainties due to limitations in the visual perception and robot control sub-
systems can be determined, and subtracted from the total basin of attraction. The
remaining region then defines the range of object variation that the system will be
able to deal with effectively - i.e., the overall system’s variation performance. This
approach makes it possible to evaluate quantitative tradeoffs between different sub-
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Fig. 9 Building a collection of basis grasps. (a) The Overhead Three-fingertip Grasp does not
cover sufficient object variation to grasp narrow objects. (c) A robot’s skills can be augmented by
adding additional basis grasps, such as the two-fingered pinch. (b) The central panel shows the
basin of attraction (circles) for each of the two grasps; the region of intersection includes objects
that can be successfully grasped with either basis grasp.

systems and determine, for example, the impact of low-precision arm control or
high-resolution RGB-D imaging on the range of objects that can be grasped. It can
also be used to compare different grasping strategies and grasping systems.

3.2 Other Basis Grasps

A single basis grasp spans only a limited (but defined) range of objects; a collection
of them can be used to provide wider capabilities. For example, the Overhead Three-
fingertip Grasp cannot grasp objects smaller than the spacing between the adjacent
fingers (Fig. 9a). However, another primitive can be constructed based around the
pinch configuration, with the two fingers rotated so that they meet in the center (the
thumb is not used), as shown in Fig 9c. This extends the hands capability for grasp-
ing small objects. The same approaches can be used to generate tolerance of local
variation (guarded moves, compliance), but note that there is a different dominant
balance for which variation is important for this grasp. Two opposing fingers are
less able to resist moments caused by offset center of mass, so the object’s mass and
alignment with the center of mass matter more than with the three-fingered grasp.

4 Discussion

The goal of this paper is to present a way to reason about dominant effects in the
messy problem of robot grasping. Despite a significant effort to find a unified theo-
retical framework for grasping, none has achieved widespread success. This is per-
haps not surprising given the complexity of the physical phenomena involved in
robotic grasping – it involves incomplete perceptual data, complex interaction me-
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chanics (varied surface friction, compliance, closed-loop kinematic chains), varied
boundary conditions (clutter, affordances), and an arbitrary range of object geome-
tries. The key to creating effective functionality in the near term is understanding
where the problem can be condensed, and how to quantify the condensed function-
ality.

The success of a number of specific grasp primitives in the literature reflects
this observation. Although they do not lay out the implications for overall system
design, they have achieved some of the most consistent functionality to date. The
widespread use of guarded moves can be seen as an example of using local con-
text to narrow the scope of variation so it can be effectively overcome, including
work with parallel-jaw grippers [13], compliant hands [24, 21], and more traditional
rigid hands [9]. The overhead pinch grasp used by Jain and Kemp [15] is another
example, where the stereotyped action provides the ability to use ”low-dimensional
task-relevant features” for control. Another example is the push-grasp primitive pre-
sented by Dogar and Srinvasa [6]. In this case, sliding frictional contact is used to
align a tall object in a power grasp. In this case, the specific context of the grasp
primitive makes it possible to analyze the impact of friction on the motion of the
object to calculate the translational displacement necessary to align the object in the
hand. Kazemi et al. present a force-compliant grasping skill designed to lift small
objects from flat supporting surfaces into a power grasp [16] – the context of the
surface makes it easy to understand where to use compliance to correct interac-
tion forces, and the basic idea was used by most teams in the DARPA Autonomous
Robotic Manipulation Challenge [26, 14].

In all these cases, what is missing has been a good way to compare these differ-
ent primitives, and a framework to understand how to create more comprehensive
capabilities. It is important to note that in many cases, establishing an inner bound
for variation tolerance may be sufficient–such an approximation may underestimate
system performance, but will not lead to failed grasps.

In conclusion, we present a framework that uses variation as a lens to understand
generality in robot grasping. First, we demonstrate that system’s ability to overcome
variation provides a way to compare and evaluate the capabilities of different grasp-
ing systems and apply it to a collection of leading examples. Second, we present
a methodology for designing grasping systems based on the observation that it is
easier to design around local variation than to create effective parameterizations
of global variation. Analyzing variation around specific grasp configurations pro-
vides a local context that makes it tractable to create a set of basis grasps that span
a quantifiable range of object variation. This is an important step to move from ad
hoc approaches towards more rigorous system design and analysis.

Acknowledgements This work was supported by the National Science Foundation under Award
No. IIS-0905180, and by the Defense Advanced Research Project Agency under contract number
W91CRB-10-C-0141



14 Leif P. Jentoft, Qian Wan, and Robert D. Howe

References

1. Robotiq adaptive gripper 3-finger model. http://robotiq.com/media/Robotiq-3-Finger-
Adaptive-Robot-Gripper-Specifications.pdf (2013). Accessed: 2014-05-14

2. Aukes, D., Kim, S., Garcia, P., Edsinger, A., Cutkosky, M.: Selectively compliant underactu-
ated hand for mobile manipulation. In: Robotics and Automation (ICRA), 2012 IEEE Inter-
national Conference on, pp. 2824–2829 (2012). DOI 10.1109/ICRA.2012.6224738

3. Bagnell, J., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., Klingensmith,
M., Libby, J., Liu, T.Y., Pollard, N., Pivtoraiko, M., Valois, J.S., Zhu, R.: An inte-
grated system for autonomous robotics manipulation. In: Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on, pp. 2955–2962 (2012). DOI
10.1109/IROS.2012.6385888

4. Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: Dlr-hand ii: Next generation of a dex-
trous robot hand. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE Inter-
national Conference on, vol. 1, pp. 109–114. IEEE (2001)

5. Diankov, R., Kuffner, J.: Openrave: A planning architecture for autonomous robotics. Robotics
Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34 p. 79 (2008)

6. Dogar, M., Srinivasa, S.: Push-grasping with dexterous hands: Mechanics and a method. In:
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp.
2123–2130 (2010). DOI 10.1109/IROS.2010.5652970

7. Dollar, A.M., Howe, R.D.: A robust compliant grasper via shape deposition manufacturing.
IEEE/ASME Transactions on Mechatronics 11(2), 154–161 (2006)

8. Dollar, A.M., Howe, R.D.: The highly adaptive sdm hand: Design and performance evaluation.
The International Journal of Robotics Research 29(5), 585–597 (2010)

9. Felip, J., Morales, A.: Robust sensor-based grasp primitive for a three-finger robot hand. In: In-
telligent Robots and Systems (IROS), 2009 IEEE/RSJ International Conference on, pp. 1811–
1816. IEEE (2009)

10. Ferrari, C., Canny, J.: Planning optimal grasps. In: Robotics and Automation, 1992. Proceed-
ings., 1992 IEEE International Conference on, pp. 2290–2295. IEEE (1992)

11. Hackett, D., Pippine, J., Watson, A., Sullivan, C., Pratt, G.: Foreword to the special issue on
autonomous grasping and manipulation. Autonomous Robots 36(1-2), 5–9 (2014)

12. Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., Schaal, S.: Learning
of grasp selection based on shape-templates. Autonomous Robots 36(1-2), 51–65 (2014)

13. Hsiao, K., Chitta, S., Ciocarlie, M., Jones, E.: Contact-reactive grasping of objects with partial
shape information. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pp. 1228–1235 (2010). DOI 10.1109/IROS.2010.5649494

14. Hudson, N., Ma, J., Hebert, P., Jain, A., Bajracharya, M., Allen, T., Sharan, R., Horowitz,
M., Kuo, C., Howard, T., et al.: Model-based autonomous system for performing dexterous,
human-level manipulation tasks. Autonomous Robots 36(1-2), 31–49 (2014)

15. Jain, A., Kemp, C.C.: El-e: an assistive mobile manipulator that autonomously fetches objects
from flat surfaces. Autonomous Robots 28(1), 45–64 (2010)

16. Kazemi, M., sebastien Valois, J., Bagnell, J.A., Pollard, N.: Robust object grasping using force
compliant motion primitives. In: In Robotics: Science and Systems (2012)

17. Klingbeil, E., Rao, D., Carpenter, B., Ganapathi, V., Ng, A., Khatib, O.: Grasping with appli-
cation to an autonomous checkout robot. In: Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pp. 2837–2844 (2011). DOI 10.1109/ICRA.2011.5980287

18. Laliberte, T., Birglen, L., Gosselin, C.: Underactuation in robotic grasping hands. Machine
Intelligence & Robotic Control 4(3), 1–11 (2002)

19. Ma, R.R., Odhner, L.U., Dollar, A.M.: Dexterous manipulation with underactuated fingers:
Flip-and-pinch task. In: Robotics and Automation (ICRA), 2012 IEEE International Confer-
ence on, pp. 3551–3552. IEEE (2012)



How to Think about Grasping Systems - Basis Grasps and Variation Budgets 15

20. Mahmoud, R., Ueno, A., Tatsumi, S.: An assistive tele-operated anthropomorphic robot hand:
Osaka city university hand ii. In: Human-Robot Interaction (HRI), 2011 6th ACM/IEEE In-
ternational Conference on, pp. 85–92 (2011)

21. Maldonado, A., Klank, U., Beetz, M.: Robotic grasping of unmodeled objects using time-of-
flight range data and finger torque information. In: Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pp. 2586–2591. IEEE (2010)

22. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. Robotics & Au-
tomation Magazine, IEEE 11(4), 110–122 (2004)

23. Mouri, T., Kawasaki, H., Yoshikawa, K., Takai, J., Ito, S.: Anthropomorphic robot hand: Gifu
hand iii. In: Proc. Int. Conf. ICCAS, pp. 1288–1293 (2002)

24. Natale, L., Torres-Jara, E.: A sensitive approach to grasping. In: Proceedings of the sixth
international workshop on epigenetic robotics, pp. 87–94. Citeseer (2006)

25. Odhner, L., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout,
R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. The
International Journal of Robotics Research 33(5), 736–752 (2014)

26. Righetti, L., Kalakrishnan, M., Pastor, P., Binney, J., Kelly, J., Voorhies, R.C., Sukhatme, G.S.,
Schaal, S.: An autonomous manipulation system based on force control and optimization.
Autonomous Robots 36(1-2), 11–30 (2014)

27. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. The
International Journal of Robotics Research 27(2), 157–173 (2008)

28. Shimoga, K.B.: Robot grasp synthesis algorithms: A survey. The International Journal of
Robotics Research 15(3), 230–266 (1996)

29. Weisz, J., Allen, P.: Pose error robust grasping from contact wrench space metrics. In: Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pp. 557–562 (2012). DOI
10.1109/ICRA.2012.6224697


