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Abstract

There are two major structural paradigms in robotics: soft machines, which are conformable,
durable, and safe for human interaction; and traditional rigid robots, which are fast, precise,
and capable of applying high forces. Here, we bridge the paradigms by enabling soft machines
to behave like traditional rigid robots on command. To do so, we exploit laminar jamming, a
structural phenomenon in which a laminate of compliant strips becomes strongly coupled through
friction when a pressure gradient is applied, causing dramatic changes in mechanical properties. We
develop rigorous analytical and finite element models of laminar jamming, and we experimentally
characterize jamming structures to show that the models are highly accurate. We then integrate
jamming structures into soft machines to enable them to selectively exhibit the stiffness, damping,
and kinematics of traditional rigid robots. The models allow jamming structures to be rapidly
designed to meet arbitrary performance specifications, and the physical demonstrations illustrate
how to construct systems that can behave like either soft machines or traditional rigid robots at
will, such as continuum manipulators that can have joints appear and disappear. Our study aims
to foster a new generation of mechanically versatile machines and structures that cannot simply
be classified as “soft” or “rigid.”

S
oft machines and traditional rigid robots
have distinct forms and functions. Soft ma-

chines (e.g., elastomeric bending actuators[1, 2]
and dielectric elastomer grippers[3, 4]) are made
of compliant materials and bend or twist contin-
uously along their length. Their actuation mech-
anism is typically distributed throughout their
volume. Traditional rigid robots (e.g., robotic
arms and humanoids) are made of stiff materials

and bend or translate discretely at joints. Their
actuation mechanism is usually confined to these
joints. The structure of soft machines allows
them to conform to complex shapes[5, 6], with-
stand crushing loads[7], dampen impacts, and in-
teract safely with the body[8, 9]. In contrast, the
structure of traditional rigid robots enables them
to perform tasks quickly, precisely, and with high
resolution, as well as resist deformation, apply
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high forces, and oscillate with minimal decay.
To make more versatile robots, researchers

have aimed to enable soft machines to selec-
tively behave like traditional rigid robots. In
particular, soft machines have been constructed
with materials and structures that can ex-
hibit tunable stiffness and damping in order
to attain the mechanical properties of tradi-
tional robots. These components include low-
melting-point materials[10, 11], shape-memory
materials[12, 13], magnetorheological fluids[14],
and granular structures[15, 9]. Nevertheless,
most of these technologies cannot achieve a
wide range of stiffness and damping values per
unit weight, have low resolution of stiffness and
damping values, transition between these val-
ues slowly, and/or have poor resistance to bend-
ing moments[9, 16]. Furthermore, none of these
technologies have yet enabled continuously de-
forming soft machines to selectively exhibit the
discrete, jointed kinematics of traditional robots.

The laminar jamming (a.k.a.,“layer jam-
ming”) phenomenon is a promising alternative
to these technologies (Figure 1A-B). Laminar
jamming structures are lightweight and can be
rapidly actuated; moreover, they can achieve
excellent range and resolution of stiffness and
damping values with high resistance to bending
moments. A laminar jamming structure consists
of a laminate of flexible strips or sheets. In its
default state, the laminate is highly compliant.
However, when a pressure gradient is applied (in
this study, by enclosing the laminate in an air-
tight envelope and applying a vacuum to the
envelope), increased frictional interactions dra-
matically augment the bending stiffness of the
structure; in addition, at high loads, the struc-
ture dissipates energy. Researchers have applied
laminar jamming to haptics[17, 18, 19], medical
devices[20, 21], and soft actuators[22, 23]. Nev-

ertheless, these studies have not yet provided
analytical or computational models for laminar
jamming beyond an initial deformation phase,
making design of practical jamming structures
an arduous process. Furthermore, they have not
yet explored how laminar jamming can be used
to transform bending kinematics.

In this paper, we model laminar jamming in
detail and demonstrate how the technology can
bridge the gap between soft machines and tra-
ditional rigid robots. Specifically, we develop an
analytical model that mathematically captures
how two-layer jamming structures behave over
all major phases of deformation. We then de-
velop finite element models that extend these
predictions to many-layer jamming structures,
as well as describe how their stiffness and damp-
ing depend on critical design inputs (e.g., the
vacuum pressure). These models are validated
through rigorous experimental characterization.
Together, the analytical and finite element mod-
els present researchers with the first means to
rapidly and accurately design jamming struc-
tures to meet arbitrary design requirements.

We then demonstrate the capabilities of lami-
nar jamming structures by integrating them into
real-world pneumatic and cable-driven soft ma-
chines. In the process, we achieve two novel
functions that illustrate how these machines can
reversibly emulate traditional rigid robots: 1)
shape-locking, in which a compliant system can
selectively manifest a stiff version of a desired
shape and preserve it, even after powering off the
actuators, and 2) variable kinematics, in which
a compliant system can transition between con-
tinuous bending and discrete, jointed bending on
command. The variable kinematics function is
then used to build a two-fingered grasper that
can perform pinch grasps on small objects, as
well as wrap grasps on objects of eight times the
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Figure 1: Fundamental behavior of laminar jamming structures. A) Schematic of a jamming structure.
B) When vacuum is off, the layers bend independently, and the structure has low bending stiffness. When
vacuum is on, the layers bend as a cohesive unit, and the structure has high bending stiffness. C) However,
when vacuum is on, the layers are cohesive only until a critical force. For higher forces, longitudinal shear
stress is large enough to cause the layers to slip at certain points along their interfaces. D) Summary of
mechanical behavior. When vacuum is off, the structure has low bending stiffness, which is proportional to
the slope of the curves. When vacuum is on, the structure has three deformation regimes. In pre-slip, the
bending stiffness is maximal and constant. After the first critical load, the structure enters the transition
regime, in which the layers begin to slip. The bending stiffness decreases. After the second critical load, the
structure enters full-slip, in which the layers have slipped at all possible points along their interfaces. The
bending stiffness is minimal and constant. When slip occurs, energy is dissipated to friction between the
layers, and the structure behaves plastically.
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diameter. These demonstrations prove the fea-
sibility of using laminar jamming to build me-
chanically versatile machines and structures that
exhibit both soft and traditional behavior.

Results

Analytical Modeling

As described earlier, when a vacuum is applied
to a laminar jamming structure, the bending
stiffness increases dramatically. Previous stud-
ies have shown that the stiffness increases by a
factor of n2, where n is the number of layers
in the structure; however, the vacuumed jam-
ming structure sustains this increased stiffness
only for small loads, beyond which the stiffness
declines[17, 20].

In our investigation, physical reasoning sug-
gested that this behavior reflected three phases
of deformation in a vacuumed jamming structure
(Figure 1C-D): 1) In pre-slip, the layers are cohe-
sive, and the stiffness of the structure is a factor
of n2 greater than the stiffness without vacuum.
No energy is dissipated, and the damping (i.e.,
dissipated energy per unit deflection) is zero. As
the structure is loaded, the longitudinal shear
stress along the interfaces between layers begins
to rise. 2) In the transition regime, the longitudi-
nal shear stress along certain regions of the inter-
faces equals the maximum possible shear stress,
which is determined by the coefficient of friction
and the pressure gradient. Layers begin to slip
along those regions, and the stiffness of the struc-
ture decreases. Energy is dissipated to friction,
and the damping increases. 3) In full-slip, all
layers have slipped along the full length of their
interfaces. The stiffness of the structure is min-
imal, and the damping is maximal.

To mathematically capture this behavior, we

derived an analytical model that rigorously de-
scribed the deformation and mechanical proper-
ties of jamming structures during these phases.
Our model was based on Euler-Bernoulli beam
theory; however, we extended the theory to de-
scribe how mechanical behavior was affected by
vacuum pressure, friction at the interfaces be-
tween layers, and slip along the interfaces. Gov-
erning equations were derived using equilibrium
and moment-stress relations, and general bound-
ary conditions were formulated (SI: Analyt-
ical Modeling: Governing Equations and
Boundary Conditions). The boundary-value
problem was then solved for a two-layer can-
tilevered jamming structure under a uniform dis-
tributed load (SI: Analytical Modeling: Ex-
plicit Solution); this case was chosen to illus-
trate slip propagation (i.e., growth of the regions
along which layers slip), which is exhibited by
most jamming structures.

The model predicted the elastica (i.e., the
shape), stiffness, dissipated energy, and damp-
ing of the jamming structure. The model also
predicted the transition loads (i.e., the loads
at which the jamming structure shifts from
one deformation phase to the next), as well as
the length of the region along which the lay-
ers slipped. Furthermore, it provided the func-
tional dependence of all the preceding quantities
on dimensions, material properties, the vacuum
pressure, and the applied load (SI: Analytical
Modeling: Summary of Formulae). For ex-
ample, the model showed that the full-slip damp-
ing force was given succinctly by µPbh, where
µ is the coefficient of friction, P is the vacuum
pressure, b is the width of a layer, and h is the
height. Dimensionless forms of the equations in
the model were derived as well (SI: Analyti-
cal Modeling: Dimensionless Forms). The
model was evaluated for an example structure
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Figure 2: Analytical model of two-layer jamming structures. A) Schematic of example jamming structure.
B) Elastica of jamming structure for increasing loads. The slipped region is highlighted at each load;
because shear stress decreases along the x-direction, the slipped region initiates at the clamped end and
grows toward the free end. Two-layer finite element models corroborated that slip occurred in analytically-
predicted regions. C) Bending stiffness is proportional to the slope of the load-versus-deflection curve; as
expected, the stiffness transitions from a minimal to a maximal value. Damping is proportional to the slope
of the dissipated-energy-versus-deflection curve; damping transitions from zero to a maximal value. Finite
element models closely corroborated analytically-predicted stiffness and damping values. (SI: Analytical
Modeling: Case Study)
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(Figure 2), and the results were corroborated
by two-layer finite element models (SI: Finite
Element Modeling: Two-Layer Jamming
Structures).

Finite Element Modeling and Experi-
mental Characterization

Although the analytical model rigorously pre-
dicted the mechanical behavior of two-layer jam-
ming structures, designers may desire to build
real-world jamming structures with additional
layers to further adjust their properties. Our
analytical model can be directly extended to de-
scribe many-layer jamming structures (SI: An-
alytical Modeling: Extending the Model).
However, the process is algebraically taxing, and
numerical methods may be preferred.

To predict the mechanical behavior of many-
layer jamming structures, we conducted finite
element simulations. The jamming structures
were modeled as 2D plane-strain structures with
dimensions, material properties, boundary con-
ditions, and loads equal to those of real-world
jamming structures used later in experimen-
tal validation (SI: Finite Element Model-
ing: Stiffness and Damping of Many-Layer
Jamming Structures). Furthermore, simulta-
neous frictional contact was allowed to occur at
all interfaces, and large-deformation analysis was
enabled. No fitting parameters were used.

The results of the finite element simulations
were used to quantify how critical design inputs
affected major performance metrics of many-
layer jamming structures. Specifically, the num-
ber of layers, vacuum pressure, and coefficient of
friction of the layers were varied, and the stiffness
and damping values of the jamming structures
during pre-slip and full-slip were extracted. The
polynomial relationship between each input and

output was determined, and the resulting scaling
relations were tabulated (SI: Finite Element
Modeling: Functional Dependencies). For
example, full-slip damping was found to scale lin-
early with number of layers, vacuum pressure,
and coefficient of friction.

To evaluate the accuracy of the finite element
models, experimental characterization of many-
layer jamming structures was conducted. Jam-
ming structures were fabricated according to a
multi-step process (SI: Experimental Char-
acterization: Fabrication Process), and the
repeatability of the structures was assessed (SI:
Experimental Characterization: Repeata-
bility Analysis). The jamming structures were
highly repeatable from loading cycle to loading
cycle and sample to sample. The many-layer
jamming structures were then tested in three-
point bending for various numbers of layers and
vacuum pressures (SI: Experimental Char-
acterization: Stiffness and Damping Char-
acterization Process). Transverse force and
maximum deflection was recorded, and finite el-
ement predictions were compared to experimen-
tal data (Figure 3). The finite element models
predicted experimental results with exceptional
accuracy.

Useful Functions

Shape-Locking

Two real-world capabilities of laminar jamming
structures were demonstrated by integrating
them into soft machines. First, the shape-
locking function was demonstrated. A pneu-
matically powered soft bending actuator was
fabricated (SI: Functions and Applications:
Shape-Locking), and a twenty-layer jamming
structure was adhered to the ventral surface (i.e.,
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Figure 3: Finite element predictions and experimental validation for many-layer jamming structures. Jam-
ming structures were loaded in three-point bending. Each experimental curve in fact consists of a mean
curve and shaded error bar that spans ±1 standard deviation; the maximum deviation on any curve is
0.24N , indicating high repeatability. The minimum coefficient of determination (R2) between finite element
and experimental data is 0.9879, demonstrating exceptional predictive accuracy. (No experimental data
is shown for coefficient of friction, as friction could not be precisely adjusted.) Hysteresis and damping
predictions were experimentally evaluated as well (Figure S6).
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the longitudinal surface closer to the center of
curvature when the actuator was inflated). The
actuator was then pressurized. When the ac-
tuator was depressurized, the system naturally
returned to its undeformed configuration; how-
ever, when a vacuum was applied to the jamming
structure before the actuator was depressurized,
the system preserved its shape with high fidelity
(Figure 4).

Variable Kinematics

Next, the variable kinematics function was
demonstrated. A robotic system was designed
that consisted of three major parts: a silicone
rubber substrate, a three-part jamming struc-
ture (i.e., three stacks of material, separated by
narrow gaps), and a cable routed through the
substrate to actuate bending (Figure 5A). Note
that when the rubber substrate and the vacu-
umed state of the jamming structure are con-
sidered separately, their bending kinematics are
entirely distinct. The substrate bends contin-
uously along its length, whereas the vacuumed
jamming structure bends discretely at its nar-
row gaps, which act as joints. When the sub-
strate and the jamming structure are adhered,
the bending kinematics of the system may vary
between these two extremes.

To enable the system to transition between
continuous and discrete kinematics, the bend-
ing stiffnesses of the substrate and jamming
structure were judiciously selected. The thick-
ness of the substrate was chosen so that ksub =
(knvjam ∗ kvjam)

1
2 , where ksub is the bending stiff-

ness of the substrate, knvjam is the stiffness of the
jamming structure without vacuum, and kvjam
is the pre-slip stiffness of the jamming struc-
ture with vacuum. (In equivalent terms, ksub
was the geometric mean of the unjammed and

jammed stiffnesses.) In addition, the number of
layers in the jamming structure was chosen so
that kvjam >> knvjam. Thus, when no vacuum was
applied and the cable was pulled, the stiffness of
the system would be dominated by ksub, and the
system would bend continuously. When vacuum
was applied, the stiffness would be dominated by
kvjam, and the system would bend discretely.

To evaluate this concept prior to prototyp-
ing, finite element simulations of the system
were conducted (SI: Finite Element Model-
ing: Variable Kinematics). The system was
modeled as a multi-part 2D plain-strain struc-
ture fixed at one end, and to approximate cable
loading, a pure moment load was applied at the
free end. The shape of the system was visual-
ized, and the ratio of maximum to mean curva-
ture ( κmax

κmean
) was computed along the ventral arc

as a measure of discreteness. When no vacuum
was applied, the system deformed continuously,
and κmax

κmean
remained low. When vacuum was ap-

plied, the system deformed discretely, and κmax
κmean

increased by a factor of 6.65 at high loads (Fig-
ure 5B-C).

Finally, a prototype of the system was fab-
ricated (SI: Functions and Applications:
Variable Kinematics). The prototype de-
formed according to finite element predictions,
and application of vacuum allowed it to select be-
tween continuous and discrete kinematics (Fig-
ure 5D).

Application

Two-Fingered Grasper

In robotic hands, compliant fingers that bend
continuously can facilitate wrap grasps around
large objects[24], whereas rigid fingers that bend
discretely at joints can facilitate pinch grasps
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Figure 4: Demonstration of shape-locking function. A-D) A jamming structure consisting of twenty layers
of copy paper was deformed into various shapes; vacuum was then applied, and the shape was preserved in
all cases. E) A twenty-layer jamming structure was then adhered to a pneumatic soft actuator. The actuator
was initially pressurized to 16kPa to achieve a desired bending angle. F1) In a first test, no vacuum was
applied to the jamming structure, and the actuator was depressurized. The composite structure immediately
returned to its undeformed state. F2) In a second test, a vacuum pressure of 85kPa was first applied to the
jamming structure, and the actuator was then depressurized. Quantity R2 between the arc of the ventral
surface in E and the same arc in F2 was 0.9835. Thus, the system preserved its shape with high fidelity.

Initial Submission to Advanced Functional Materials Page 9



“Mechanically Versatile Soft Machines Through Laminar Jamming” Narang, Vlassak, and Howe

Vacuum off
(0 kPa)

Vacuum on
(71 kPa)

Side viewFront view

A

Side view Side view

No joints

Actuation
cable

B
Actuation
cable

Joints

Increasing
cable tension

Increasing
cable tension

Rubber
substrate

Jamming
structure

Rubber
substrate

Actuation
cable

Vacuum
line

Vacuum
line

3-part
jamming
structure

Airtight
envelope

Airtight
envelope

Cable
anchor

Narrow
gaps

C
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Schematic of variable kinematics system. B-C) Finite element simulations of variable kinematics behavior at
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6.65 with vacuum on, quantitatively verifying the creation of joints. D) Experimental validation of variable
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vacuum was applied, the grasper could perform a stable pinch grasp on a ball of one-eighth the diameter.
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around smaller objects[25, 26]; it is challeng-
ing to design and fabricate hands capable of
both. To accomplish the task, we built a two-
fingered grasper in which each finger consisted
of a cable-actuated variable kinematics system
with a rounded fingertip. When no vacuum was
applied and the cables were pulled, the device
could perform a stable wrap grasp on a ball of
diameter 20cm; when vacuum was applied first,
the device could perform a stable pinch grasp on
a ball of one-eighth the diameter (Figure 5E).

To evaluate the stability of the grasps, multi-
axis stiffness measurements were conducted and
a perturbation test was performed (SI: Func-
tions and Applications: Two-Fingered
Grasper). Stiffness measurements showed that
the maximum bending stiffness of a finger in-
creased by at least a factor of thirty-two when
vacuum was applied. Simultaneously, the off-
axis bending stiffness (i.e., the stiffness along the
perpendicular bending axis) increased by a fac-
tor of 2.5, and the torsional stiffness increased by
a factor of 2.7. Furthermore, perturbation tests
demonstrated that the force required to dislodge
the ball during the pinch grasp increased by at
least a factor of eight when vacuum was applied.

Discussion

Modeling

Earlier studies of laminar jamming exclusively
predicted the stiffness of jamming structures
during pre-slip, as well as the first transition load
(i.e., the load at which the structures move from
pre-slip to the transition regime) [17, 20, 27]. In
contrast, our analytical model predicted the elas-
tica, stiffness, energy dissipation, and damping
of two-layer jamming structures during pre-slip,
the transition regime, and full-slip, as well as de-

termining both the first transition load and the
second transition load (i.e., the load at which
the structures move from the transition regime
to full-slip). Our finite element models of many-
layer jamming structures then extended the pre-
dictions of the analytical model to structures
with arbitrary numbers of layers. Thus, the
analytical and finite element models completely
described the mechanical behavior of jamming
structures over all three phases of deformation.

Together, the models provide designers with
an accurate and efficient means to predict the
mechanical behavior of arbitrary jamming struc-
tures. In particular, no models have existed for
mechanical behavior in the transition regime or
full-slip. To determine how a particular jamming
structure will behave in these phases, designers
have had to fabricate and characterize the struc-
ture. In our experience, this process requires
hours of continuous labor per structure. In con-
trast, the analytical model can predict experi-
mental behavior for a two-layer jamming struc-
ture immediately, and a finite element simulation
can predict experimental behavior for a many-
layer structure in less than one hour without su-
pervision.

In addition, the functional dependencies of
performance metrics on design inputs were
extracted for many-layer jamming structures.
These relations provide researchers with a rapid
means to meet arbitrary design requirements.
For instance, if the full-slip stiffness of a jam-
ming structure must be reduced by a factor of
four (e.g., for an orthosis that softens at high
loads for user safety), the relations show that the
the number of layers or vacuum pressure can be
reduced by a factor of four, or the coefficient of
friction can be reduced by a factor of two (Table
S1). Likewise, if the full-slip damping of a jam-
ming structure must be increased by a factor of
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four (e.g., for a field robot that dampens im-
pacts to protect components), then the number
of layers, vacuum pressure, or coefficient of fric-
tion can be increased by a factor of four. Note
that vacuum pressure can be controlled on com-
mand with a vacuum regulator; thus, full-slip
stiffness and damping can be adjusted in real-
time. The finite element models can be used
to derive functional dependencies between addi-
tional performance metrics and design inputs as
desired.

Useful Functions

Previous studies applied laminar jamming to di-
verse applications. However, these studies al-
most exclusively used laminar jamming to con-
trol stiffness; furthermore, when the jamming
structures were integrated with actuators, the
structures controlled the stiffness of the system
while the actuators were continuously powered.
We expanded on these capabilities by demon-
strating shape-locking and variable kinematics.
The former enables soft machines to preserve
their shape after the actuation input is removed,
whereas the latter enables them to select be-
tween continuous and discrete bending.

Shape-locking illustrates one way in which
laminar jamming structures can enable soft ma-
chines to reversibly emulate traditional rigid
robots. Nearly all traditional robotic arms
can navigate to an arbitrary location in their
workspace and resist static loading. Further-
more, some arms have brakes that allow them
to resist loading after power is disconnected.
Shape-locking endows soft machines with pre-
cisely this ability, as it enables them to achieve
an arbitrary configuration, lock in place, and re-
sist static loading, even after disconnecting the
actuation input. Soft machines can thus save

power by requiring no control effort to preserve
their shape; furthermore, soft machines with
high material strain (e.g., McKibben actuators)
can be deflated after locking, mitigating the risk
of catastrophic rupture.

Variable kinematics comprises a second way in
which laminar jamming structures can link the
behavior of soft machines and traditional rigid
robots. Specifically, this function can allow soft
machines to transform between a compliant state
in which they can conform to arbitrary shapes,
and a rigid, jointed state in which they can be-
have like a serial manipulator. As demonstrated
in this study, variable kinematics can enhance
the performance of robotic graspers. More-
over, this capability can be useful for any device
where both conformability and rigidity are de-
sired (e.g., in surgical devices that must traverse
vasculature, but subsequently apply high forces).

More generally, variable kinematics facilitates
the modeling, sensing, and control of soft ma-
chines. For traditional rigid robots, multi-rigid-
body mechanics can describe forward and inverse
kinematics; on the other hand, soft machines re-
quire the mathematical tools of continuum me-
chanics, which are generally far more complex.
Furthermore, in traditional rigid robots, a small
number of sensors can accurately estimate con-
figuration; in soft machines, many sensors are
required. Because modeling and sensing is more
complex for soft machines, control is inherently
more difficult[28]. Variable kinematics allows
soft machines to behave like multi-rigid-body
systems, with rigid links connected by joints.
Thus, they can be modeled and sensed like tradi-
tional rigid robots, greatly simplifying their con-
trol. (It is interesting to note that octopuses use
variable kinematics to simplify control, creating
joints along their tentacles to facilitate fetching
tasks[29].)
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Limitations

Our modeling and demonstrations have three no-
table limitations, each of which can be resolved
as described. First, in our finite element models
of many-layer jamming structures, the execution
time of the simulations scaled linearly with the
number of layers; for models of jamming struc-
tures with exceptionally high numbers of layers,
the time may become prohibitive. Nevertheless,
as the numbers of layers increases in a jamming
structure with a fixed total thickness, the struc-
ture may be accurately approximated as a single
crystal with a single slip system. This structure
can be simulated more simply than a multi-layer
structure, reducing execution time (SI: Finite
Element Modeling: Limiting Behavior).

Second, in our shape-locking demonstration,
our prototype still required a vacuum source to
be connected after depressurization. Thus, the
device would be challenging to operate in en-
vironments where supporting equipment is un-
available. This difficulty could be resolved by
using a one-way valve to maintain vacuum after
the vacuum input is disconnected.

Third, in our demonstrations, vacuum was
used to actuate the jamming structures. As
a result, the maximum pressure gradient act-
ing on the jamming structures was limited to
the absolute ambient pressure, which in turn
reduced the maximum load that could be sus-
tained by the structures before their stiffness de-
clined. This limit may be overcome by using
electrostatic actuation[27] or elastic actuation,
in which the layers are reversibly compressed
by an external elastic structure (e.g., a mesh
envelope[23] or spring clips (SI: Additional
Concepts: Spring-Based Jamming)).

Conclusions

This paper demonstrates how the nonlinear
structural phenomenon of laminar jamming can
bridge the paradigms of soft robotics and tra-
ditional rigid robotics. We have derived an
analytical model for two-layer jamming struc-
tures over all major phases of deformation, con-
structed highly accurate finite element models of
many-layer laminar jamming structures, and ex-
tracted functional dependencies of major perfor-
mance metrics on critical design inputs. We have
demonstrated two novel functions, shape-locking
and variable kinematics, that illustrate how lam-
inar jamming can reversibly endow soft machines
with behavior typical of traditional rigid robots.
We also built a simple grasper capable of both
pinch grasps and wrap grasps, demonstrating
how laminar jamming can enhance the perfor-
mance of real-world soft robotic systems. Col-
lectively, our work elucidates the mechanics of
laminar jamming, accelerates the design process
of jamming structures, and provides a founda-
tion for creating mechanically versatile machines
and structures that cannot simply be categorized
as “soft” or “rigid.”

Experimental Section

The following is an abridged description of the methods used
in this study. For complete detail, see Supporting Informa-
tion.

Analytical Modeling

The axial strain fields in each layer of the jamming structure
were approximated as a superposition of a field that varied
linearly with the vertical coordinate and a field that was con-
stant with the vertical coordinate. An interfacial displacement
variable was defined. Moment-stress relations and static equi-
librium were used to derive governing equations for sections of
the structure with cohesive interfaces and sections with slipped
interfaces. Boundary conditions were formulated for clamped
and free boundaries, and continuity conditions were defined to
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couple cohesive and slipped interfaces. The boundary-value
problem was then explicitly solved to determine the elastica of
a cantilevered jamming structure with a uniform distributed
load in the pre-slip regime, transition regime, and full-slip
regime. During the transition regime, the location of the tran-
sition between cohesive and slipped interfaces was also deter-
mined. The results were then used to derive stiffness, energy
dissipation, and damping in each regime, as well as critical
loads between the regimes. Dimensionless parameters were
defined to nondimensionalize all results.

Finite Element Modeling

All finite element models were constructed using finite element
simulation software (ABAQUS 6.14r2, Dassault Systèmes, Vil-
lacoublay, France). In the finite element models of the two-
layer and many-layer jamming structures, each layer was ap-
proximated as a 2D plane-strain structure. Pressure equal to
vacuum pressure was applied to all outer surfaces, and loads
were subsequently applied. Large-deformation analysis was
enabled, and the interfaces between the layers were defined as
contact surfaces with a penalty friction formulation. A uniform
mesh was used consisting of square four-node bilinear plane-
strain quadrilateral elements with reduced integration. Each
layer was meshed with two elements across its thickness.

In the finite element models of the variable kinematics struc-
tures, the rubber substrate and each of the jamming structures
was modeled as a homogeneous 2D plane-strain structure. To
simulate the vacuum-on condition, the elastic modulus of the
jamming structure was assigned to that of paper, and to sim-
ulate the vacuum-off condition, the modulus was reduced by
a factor of n2, with n = 20 to match experimental condi-
tions. Cable actuation was approximated as a pure moment
load. Large-deformation analysis was enabled. A uniform
mesh was used consisting of square four-node bilinear plane-
strain quadrilateral hybrid elements with reduced integration.
The structure was meshed with four elements across its thick-
ness.

Fabrication of Jamming Structures

The jamming structures were fabricated in five distinct steps.
1) Sheets of copy paper (HP Ultra White Multipurpose Copy
Paper) were cut into strips on a laser cutter (VLS4.60, Univer-
sal Laser Systems, Inc., Scottsdale, AZ). 2) An acrylic frame
enclosing the strips was cut on the laser cutter. 3) A sheet of
thermoplastic polyurethane (TPU) (American Polyfilm, Inc.,
Branford, CT) was formed to the acrylic frame on a vacuum
former (Formech 300XQ, Formech International Limited, Hert-
fordshire, UK). 4) The strips of paper and TPU tubing (Eldon
James Corp., Denver, CO) were placed into the frame. The
TPU sheet was folded over its contents, and the two sides of
the sheet were sealed together on a heat press (Powerpress,
Fancierstudio, Hayward, CA) at 100◦C, creating a jamming
structure. 5) The end of the structure containing the TPU tub-
ing was sandwiched between two conforming aluminum blocks.

The blocks were heated to 171◦C on the heat press, creating
a circumferential seal around the tubing.

Experimental Characterization

Jamming structures were tested on a three-point bending fix-
ture in a universal materials testing device (Instron 5566, Illi-
nois Tool Works, Norwood, MA). The structures were placed
on the fixture and connected to a manual vacuum regulator
(EW-07061-30, Cole-Parmer, Vernon Hills, IL) set to the de-
sired pressure. The loading anvil of the testing device was low-
ered at a rate of 25 mm/min until reaching the desired max-
imum displacement. Force and displacement measurements
were simultaneously recorded.

Functions and Applications

All molds were designed using CAD software (Solidworks 2015,
Dassault Systèmes, Villacoublay, France) and 3D printed us-
ing a stereolithography-based printer (Objet30 Scholar, Strata-
sys, Ltd., Eden Prairie, MN). For the actuator used in shape-
locking demonstrations, a two-part mold was designed, and
the actuator was cast from shore 10A platinum-cure silicone
rubber (Dragon Skin 10 Medium, Smooth-On, Inc., Macungie,
PA). The actuator and jamming structure were bonded us-
ing silicone building sealant (Dow Corning 795, Dow Corning,
Midland, MI).

For the substrate used in the variable kinematics demon-
strations, a one-part mold was designed with an inserted rod to
create a channel for an actuation cable. The substrate was cast
from high-stiffness PDMS rubber (Sylgard 184, Dow Corning,
Midland, MI). The substrate and three-part jamming struc-
ture were again bonded using silicone building sealant. The
cable consisted of braided polyethylene (Hollow Spectra, BHP
Tackle, Harrington Park, NJ) and was tensioned using a turn-
buckle mechanism.

For the fingertips of the fingers in the two-fingered grasper,
a two-part mold was designed, and the fingertip was cast
from shore 00-10A silicone rubber (Ecoflex 00-10, Smooth-On,
Inc., Macungie, PA). Multi-axis stiffness tests and perturba-
tion tests were performed using a digital force gauge (Chatillon
DFI10, AMETEK Sensors, Test & Calibration, Berwyn, PA)
and custom-built fixtures.

Supporting Information

Supporting Information is available from the Wiley Online Li-
brary or from the author.
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Analytical Modeling 
 

Governing Equations 
 

Consider a two-layer jamming structure. Let each layer be approximated as a thin beam 

with a width 𝑏, height ℎ, length 𝐿, elastic modulus 𝐸, Poisson’s ratio 𝜈, and coefficient of 

friction 𝜇. 

 

Define a coordinate system with the origin located on the left edge of the structure at the 

interface between the layers (Figure S1A). Let the 𝑥-axis be horizontal (i.e., along the 

length of the undeformed structure), and let the 𝑦-axis be vertical (i.e., along the height of 

the undeformed structure). 

 

Let the jamming structure be subject to a pressure gradient 𝑃. In this study, the jamming 

structure is actuated by enclosing the layers in an airtight envelope and applying a 

vacuum to the envelope. The pressure gradient 𝑃 is equal to the vacuum pressure (i.e., the 

pressure in the envelope below ambient pressure). Thus, under standard atmospheric 

conditions, 𝑃 has a maximum value of 1 𝑎𝑡𝑚. 

 

Now let the jamming structure be loaded in the transverse direction. As the load 

increases, the longitudinal shear stress along the interface between the layers increases. 

At some regions of the interface, the longitudinal shear stress may be less than the 

maximum frictional stress (i.e., 𝜏𝑓, which is equal to 𝜇𝑃). These regions will remain 

cohesive (i.e., points that are initially coincident along the interface will remain 

coincident). On the other hand, at other regions of the interface, the longitudinal shear 

stress may equal the maximum frictional stress. These regions will slip (i.e., points that 

are initially coincident along the interface will move relative to each another), unless a 

boundary condition prevents slip from occurring. 

 

We can write governing equations for cohesive sections of the jamming structure (i.e., 

sections of the jamming structure where the interface is cohesive) and slipped sections of 

the structure (i.e., sections of the jamming structure where the interface will slip, unless a 

boundary condition prevents slip from occurring). 

 

 Cohesive Sections 
 

For cohesive sections of the jamming structure, we can write governing equations 

by directly using Euler-Bernoulli beam theory. The axial strain fields in the layers 

of the jamming structure are 

 

𝜖1(𝑥, 𝑦) = −𝜅(𝑥)𝑦  

𝜖2(𝑥, 𝑦) = −𝜅(𝑥)𝑦  
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where 𝜖1(𝑥, 𝑦) and 𝜖2(𝑥, 𝑦) are the axial strains in the bottom and top layers, 

respectively, and 𝜅(𝑥) is the curvature along the interface. 

 

Let us assume the layers are elastic and isotropic. The corresponding stress fields 

are 

 

𝜎1(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 (1) 

𝜎2(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 (2) 

 

Note that when we later compare analytical results to finite element results, we 

substitute the plane-strain modulus �̅� =
𝐸

1−𝜈2 for the elastic modulus, as 𝑏 ≫ ℎ for 

the layers of the jamming structure that is investigated (SI: Finite Element 

Model: Two-Layer Jamming Structure). 

 

We derive the first governing equation using the relationship between the 

resultant moment and the axial stress in the jamming structure (Figure S1B). The 

moment-stress relation for a single beam is given by 𝑀(𝑥) = ∫ −𝜎(𝑥, 𝑦)𝑦 𝑑𝑆
𝑆

, 

where 𝜎(𝑥, 𝑦) is the axial stress and 𝑆 is the cross-section of the beam. For a two-

layer jamming structure, 

 

𝑀(𝑥) = ∫ −𝜎1(𝑥, 𝑦)𝑦 𝑑𝑆1
𝑆1

+ ∫ −𝜎2(𝑥, 𝑦)𝑦 𝑑𝑆2
𝑆2

(3) 

 

where 𝑆1 and 𝑆2 are the cross-sections of the bottom and top layers, respectively. 

Substituting equations (1) and (2), 

 

𝑀(𝑥) = 2𝜅(𝑥)𝐸𝐼 (4) 

 

where 𝐼 is the second moment of area of a cross-section of the top layer about the 

interface between the layers (i.e., 
𝑏ℎ3

3
). Equation (4) is the only governing 

equation for cohesive sections of the jamming structure. 

 

Slipped Sections 
 

In slipped sections of the jamming structure, each layer may have a distinct 

neutral axis, and the vertical location of each neutral axis may vary in the 

horizontal direction. Thus, we can describe the axial strain fields in the bottom 

and top layers as  

 

𝜖1(𝑥, 𝑦) = −𝜅(𝑥)𝑦 + 𝐴1(𝑥) (5) 

𝜖2(𝑥, 𝑦) = −𝜅(𝑥)𝑦 + 𝐴2(𝑥) (6) 
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where 𝐴1(𝑥) and 𝐴2(𝑥) are axial strain components that are introduced to allow 

the neutral axes of the layers to be distinct. 

 

Again assuming the layers are elastic and isotropic, the corresponding stress fields 

are 

 

𝜎1(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 + 𝐸𝐴1(𝑥) (7) 

𝜎2(𝑥, 𝑦) = −𝐸𝜅(𝑥)𝑦 + 𝐸𝐴2(𝑥) (8) 

 

  Substituting into equation (3), 

 

𝑀(𝑥) = 2𝜅(𝑥)𝐸𝐼 + (𝐴1(𝑥) − 𝐴2(𝑥))𝐸𝐽 (9) 

 

where 𝐽 is the first moment of area of a cross-section of the top layer about the 

interface between the layers (i.e., 
𝑏ℎ2

2
).  

 

We derive two more equations by performing static force equilibrium. From 

equilibrium of thin sections of the bottom layer (Figure S1C) and top layer 

(Figure S1D), respectively, 

 

−𝜏(𝑥)𝑏𝑑𝑥 + ∫ 𝜎1(𝑥 + 𝑑𝑥, 𝑦) 𝑑𝑆1
𝑆1

− ∫ 𝜎1(𝑥, 𝑦) 𝑑𝑆1
𝑆1

= 0 

𝜏(𝑥)𝑏𝑑𝑥 + ∫ 𝜎2(𝑥 + 𝑑𝑥, 𝑦) 𝑑𝑆2
𝑆2

− ∫ 𝜎2(𝑥, 𝑦) 𝑑𝑆2
𝑆2

= 0 

 

where 𝜏(𝑥) is the shear stress exerted by the top surface of the bottom layer onto 

the bottom surface of the top layer. Substituting equations (7) and (8), 

 

−𝜏(𝑥)𝑏 + 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴1

𝑑𝑥
= 0  

𝜏(𝑥)𝑏 − 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴2

𝑑𝑥
= 0  

 

where 𝑆0 is the cross-sectional area of a single layer (i.e., 𝑏ℎ).  

 

In slipped sections of the jamming structure, 𝜏(𝑥) = 𝜏𝑓. Substituting, 

 

−𝜏𝑓𝑏 + 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴1

𝑑𝑥
= 0 (10) 

𝜏𝑓𝑏 − 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴2

𝑑𝑥
= 0 (11) 

 

Since the jamming structure is loaded in the transverse direction (and not in the 

axial direction), the integrals of axial stress over any cross-section should be zero. 
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From equations (7) and (8), we find that 𝐴1(𝑥) + 𝐴2(𝑥) = 0. Thus, equations 
(9)-(11) can be simplified to 

 

𝑀(𝑥) = 2𝜅(𝑥)𝐸𝐼 + 2𝐴1(𝑥)𝐸𝐽 (12) 

−𝜏𝑓𝑏 + 𝐸𝐽
𝑑𝜅

𝑑𝑥
+ 𝐸𝑆0

𝑑𝐴1

𝑑𝑥
= 0 (13) 

 

Equations (12) and (13) are the two governing equations for slipped sections of 

the jamming structure. 

 

 Strain-Displacement Relations 
 

  Slipped Sections 
 

For slipped sections of the jamming structure, it is useful to define variable 𝛿1(𝑥) 

as the interfacial displacement for the bottom layer (i.e., the displacement of 

points along the top surface of the bottom layer) and variable 𝛿2(𝑥) as the 

interfacial displacement for the top layer (i.e., the displacement of points along 

the bottom surface of the top layer). 

 

From equations (5) and (6), the axial strain fields at the interface (i.e., at 𝑦 = 0) 

simplify to 𝜖1(𝑥) = 𝐴1(𝑥) and 𝜖2(𝑥) = 𝐴2(𝑥). Thus, the interfacial 

displacements are related to 𝐴1(𝑥) and 𝐴2(𝑥) by the strain-displacement relations 

 

𝛿1(𝑥) = ∫ 𝐴1(𝑥) 𝑑𝑥 (14) 

𝛿2(𝑥) = ∫ 𝐴2(𝑥) 𝑑𝑥 (15) 

  

 Boundary Conditions 
 

In practice, a jamming structure may be subject to one of several boundary conditions 

along its length (e.g., clamped, pinned, roller-supported, free). We provide clamped and 

free boundary conditions that will be relevant for our analysis of a cantilevered jamming 

structure. Additional boundary conditions can be readily derived for other physical 

scenarios. 

 

 Cohesive Sections 
 

  Clamped Conditions 

 

Clamped boundary conditions at 𝑥 = 𝑎 in cohesive sections of the 

jamming structure are 

  
𝑤(𝑎) = 0 (16) 
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𝑑𝑤

𝑑𝑥
(𝑎) = 0 (17) 

   

where 𝑤(𝑥) is the transverse deflection of the jamming structure. 

 

 Slipped Sections 
 

  Clamped Conditions 

 

As in cohesive sections, clamped boundary conditions at 𝑥 = 𝑎 in slipped 

sections of the jamming structure are 

  
𝑤(𝑎) = 0 (18) 

𝑑𝑤

𝑑𝑥
(𝑎) = 0 (19) 

 

We can also formulate additional clamped boundary conditions for slipped 

sections. At a clamped point, the neutral axes of both layers (i.e., where 

𝜖(𝑎, 𝑦) = 0) must be located at the interface (i.e., at 𝑦 = 0). Substituting 

into equations (5) and (6), we find the boundary conditions 

 

𝐴1(𝑎) = 0 (20) 

𝐴2(𝑎) = 0  

 

In addition, at a clamped point, no interfacial displacements can occur. 

Thus, we can also write the boundary conditions 

 

𝛿1(𝑎) = 0 (21) 

𝛿2(𝑎) = 0  

 

Free Conditions 

 

For a free boundary at 𝑥 = 𝑏, we know 𝜎1(𝑏, 𝑦) = 𝜎2(𝑏, 𝑦) = 0.  

Substituting into equations (7) and (8), we find the boundary condition 

  

𝜅(𝑏) = 0 (22) 

 

Continuity 
 

If a cohesive section and a slipped section of a jamming structure are adjacent, 

transverse deflections and slopes must be continuous. Symbolically, if the 

sections share a boundary at 𝑥 = 𝑐, 

 

𝑤(𝑐−) = 𝑤(𝑐+) (23) 
𝑑𝑤

𝑑𝑥
(𝑐−) =

𝑑𝑤

𝑑𝑥
(𝑐+) (24) 
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Explicit Solution 
 

In general, for a vacuumed jamming structure subject to small loads, we expect that the 

longitudinal shear stress along all regions of the interface will be less than the maximum 

frictional stress. The jamming structure will remain entirely cohesive. We call this 

loading regime pre-slip. 

 

As we progressively increase the load, we expect that the longitudinal shear stress along 

some regions of the interface will equal the maximum frictional stress. Along these 

regions, the layers will slip (except in areas where boundary conditions prevent slip from 

occurring), and along other regions, the layers will remain cohesive. We call this loading 

regime the transition regime. 

 

Finally, past a certain load, we expect that the longitudinal shear stress along all regions 

of the interface will equal the maximum frictional stress. The jamming structure will be 

entirely slipped, except at regions of the interface where boundary conditions prevent slip 

from occurring. We call this loading regime full-slip. 

 

We now solve the boundary problem for a typical jamming structure in each of these 

three loading regimes. We choose to analyze a cantilevered jamming structure clamped at 

𝑥 = 0 and subject to a uniform distributed load 𝜔; such a case lucidly illustrates slip 

propagation (i.e., the gradual slip of adjacent layers along their interface), a mechanical 

phenomenon that jamming structures generally exhibit. (In contrast, a two-layer jamming 

structure in three-point bending would not exhibit slip propagation. Since longitudinal 

shear stress has a constant magnitude along the interface between the layers, the layers 

would slip along the full length of their interface at once.) 

 

Specifically, we will provide explicit solutions for the deflection 𝑤, effective stiffness 𝑘, 

energy dissipated to friction 𝐸𝑑𝑖𝑠𝑠, and effective damping 𝑑 of the jamming structure. We 

define the effective stiffness as the incremental relationship between the distributed load 

and the deflection at the free end (i.e., 
𝜕𝜔

𝜕𝑤(𝑥=𝐿)
), and we define the effective damping as 

the incremental relationship between the dissipated energy and the deflection at the free 

end (i.e., 
𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝑤(𝑥=𝐿)
). 

 

Throughout the solution, we will use the small-displacement approximation 𝜅(𝑥) ≅
𝑑2𝑤

𝑑𝑥2 , 

where 𝜅(𝑥) is the curvature of the jamming structure. This approximation allows the 

boundary-value problem to be explicitly solved, thus granting us deeper insight into the 

behavior of jamming structures. Note that when we later compare the results of the 

analytical model to the results of the finite element model (in which no small-

displacement approximation is made), the analytical results still predict the finite element 

results with high accuracy (SI: Finite Element Model: Two-Layer Jamming 

Structure). 
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  Resultant Shear and Moment 
 

For a jamming structure clamped at 𝑥 = 0 with a uniform distributed load 𝜔, the 

resultant shear is 

 

𝑉(𝑥) = 𝜔(𝐿 − 𝑥) (25) 

 

and the resultant moment is 

 

𝑀(𝑥) = −
𝜔𝐿2

2
+ 𝜔 (𝐿𝑥 −

𝑥2

2
) (26) 

 

Pre-slip Regime 
 

Deflection 

 

During pre-slip, the jamming structure is cohesive. Thus, we can start with 

governing equation (4). Substituting equation (26) into equation (4) and 

solving for 
𝑑2𝑤

𝑑𝑥2 , 

 

𝑑2𝑤

𝑑𝑥2
= −

𝜔𝐿2

4𝐸𝐼
+

𝜔𝐿

2𝐸𝐼
𝑥 −

𝜔

4𝐸𝐼
𝑥2 

 

Integrating twice, 

 

𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4 + 𝐶1𝑥 + 𝐶2 (27) 

 

Applying clamped boundary conditions (18) and (19) at 𝑥 = 0, 

 

𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4 

 

which is a standard result from Euler-Bernoulli beam theory. 

 

Substituting the explicit expression for 𝐼 provided earlier (i.e., 𝐼 =
𝑏ℎ3

3
), 

we find the equivalent expression 

 

𝑤(𝑥) = −
3𝜔𝐿2

8𝐸𝑏ℎ3
𝑥2 +

𝜔𝐿

4𝐸𝑏ℎ3
𝑥3 −

𝜔

16𝐸𝑏ℎ3
𝑥4 (28) 

   

   Stiffness, Dissipated Energy, and Damping 

 



SI for “Mechanically Versatile Soft Machines Through Laminar Jamming”  Narang, Vlassak, and Howe 

Initial Submission to Advanced Functional Materials  SI Page 8 

Substituting equation (28) into the definition of the effective stiffness of 

the jamming structure, 

 

𝑘 =
16𝐸𝑏ℎ3

3𝐿4
(29) 

 

Note that the effective stiffness is constant. Thus, the coefficient of 

friction and the vacuum pressure have no effect on the stiffness in the pre-

slip regime. 

 

Since there is no slip in the pre-slip regime, no energy is dissipated to 

friction. Thus, the dissipated energy and effective damping are 

 

𝐸𝑑𝑖𝑠𝑠 = 0 (30) 

𝑑 = 0 (31) 

 

Transition Regime 
 

From equation (25), the resultant shear is maximum at the clamped end of the 

jamming structure and zero at the free end; thus, longitudinal shear stress is also 

maximum at the clamped end and zero at the free end. Therefore, we expect that 

the layers would begin slipping along their interface near the clamped end, and 

that the slipped region would grow until reaching the free end. 

 

Thus, in the transition regime, we can divide the jamming structure into a slipped 

section and a cohesive section. Let 𝜒 be the value of 𝑥 where the interface 

transitions from slipped to cohesive. We do not know 𝜒 a priori and will solve for 

its value. 

 

Slipped Section (𝟎 ≤ 𝒙 ≤ 𝝌) 

 

  Deflection 

 

To calculate 𝑤(𝑥) in the slipped section of the jamming structure 

in the transition regime, we first find general expressions for 

𝐴1(𝑥), 𝛿1(𝑥), and 𝑤(𝑥). 

 

We begin with 𝐴1(𝑥). Solving for 
𝑑𝐴1

𝑑𝑥
 in governing equation (13) 

and integrating, 

 

𝐴1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0
𝑥 −

𝐽

𝑆0

𝑑2𝑤

𝑑𝑥2
+ 𝐶2 (32) 

 

We proceed to 𝛿1(𝑥). Substituting equation (32) into strain-

displacement relation (14), 
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𝛿1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0

𝑥2

2
 −

𝐽

𝑆0

𝑑𝑤

𝑑𝑥
+ 𝐶2𝑥 + 𝐶1 (33) 

 

Finally, we proceed to 𝑤(𝑥). Substituting equation (26) into 

governing equation (12) and solving for 
𝑑2𝑤

𝑑𝑥2 , 

 

𝑑2𝑤

𝑑𝑥2
= −

𝜔𝐿2

4𝐸𝐼
+

𝜔

2𝐸𝐼
(𝐿𝑥 −

𝑥2

2
) −

𝐽

𝐼
𝐴1(𝑥)  

 

   Substituting equation (32), 

 

𝑑2𝑤

𝑑𝑥2
(1 −  

𝐽2

𝑆0𝐼
) = −

𝜔𝐿2

4𝐸𝐼
+

𝜔

2𝐸𝐼
(𝐿𝑥 −

𝑥2

2
) −

𝐽

𝐼
(

𝜏𝑓𝑏

𝐸𝑆0
𝑥 + 𝐶2) 

 

   Integrating twice, 

 

𝑤(𝑥) (1 −  
𝐽2

𝑆0𝐼
) = −

𝜔𝐿2

4𝐸𝐼

𝑥2

2
 +

𝜔

2𝐸𝐼
(𝐿

𝑥3

6
−

𝑥4

24
) −

𝐽

𝐼
(

𝜏𝑓𝑏

𝐸𝑆0

𝑥3

6
+ 𝐶2

𝑥2

2
) + 𝐶3𝑥 + 𝐶4 (34) 

 

We can now apply clamped boundary conditions to equations 

(32)-(34) to explicitly solve for 𝑤(𝑥). Applying conditions (19) 

and (21) to equation (33) at 𝑥 = 0, we find 𝐶1 = 0. Next, 

applying conditions (18) and (19) to equation (34) at 𝑥 = 0, we 

find 𝐶3 = 𝐶4 = 0. Finally, applying conditions (20) and (21) to 

equations (32) and (33), respectively, at 𝑥 = 𝜒, 

 

0 =
𝜏𝑓𝑏

𝐸𝑆0
𝜒 −

𝐽

𝑆0

𝑑2𝑤

𝑑𝑥2
|

𝑥=𝜒

+ 𝐶2 (35) 

0 =
𝜏𝑓𝑏

𝐸𝑆0

𝜒2

2
 −

𝐽

𝑆0

𝑑𝑤

𝑑𝑥
|

𝑥=𝜒
+ 𝐶2𝜒 (36) 

 

These equations must be consistent with the expressions for 
𝑑𝑤

𝑑𝑥
|

𝑥=𝜒
 and 

𝑑2𝑤

𝑑𝑥2 |
𝑥=𝜒

 that can be derived from equation (34). 

Enforcing consistency and solving equations (35) and (36) for 𝐶2 

and 𝜒, we find one trivial solution (where 𝜒 = 0) and one non-

trivial solution. The non-trivial solution is 

 

𝐶2 =
3(𝜏𝑓𝑏)

2
𝐼

4𝜔𝐸𝑆0𝐽
−

𝜔𝐿2𝐽

16𝐸𝑆0𝐼
−

3𝜏𝑓𝑏𝐿

4𝐸𝑆0

(37) 

𝜒 =
3𝐿

2
−

3𝜏𝑓𝑏𝐼

𝜔𝐽
(38) 
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Substituting equation (37) into equation (34) and solving for 

𝑤(𝑥), we find 

 

𝑤(𝑥) =
1

1−
𝐽2

𝑆0𝐼

((
𝜔(𝐿𝐽)2

32𝐸𝑆0𝐼2 +
3𝜏𝑓𝑏𝐿𝐽

8𝐸𝑆0𝐼
−

3(𝜏𝑓𝑏)
2

8𝜔𝐸𝑆0
−

𝜔𝐿2

8𝐸𝐼
) 𝑥2  + (

𝜔𝐿

12𝐸𝐼
−

𝜏𝑓𝑏𝐽

6𝐸𝑆0𝐼
) 𝑥3 −

𝜔

48𝐸𝐼
𝑥4) (39) 

 

As desired, equation (39) is the deflection in the slipped section of 

the jamming structure in the transition regime. Equation (38) 

provides the length of the slipped section (i.e., the length of the 

slipped region along the interface between the layers) as a function 

of the distributed load and the maximum frictional stress. 

 

If we substitute the explicit expressions for 𝐽, 𝐼, and 𝜏𝑓 provided 

earlier (i.e., 𝐽 =
𝑏ℎ2

2
, 𝐼 =

𝑏ℎ3

3
, and 𝜏𝑓 = 𝜇𝑃) into equations (38) 

and (39) and simplify, we find the equivalent expressions 

 

𝜒 =
3𝐿

2
−

2𝜇𝑃𝑏ℎ

𝜔
(40) 

𝑤(𝑥) = (
9𝜇𝑃𝐿

4𝐸ℎ2
−

3(𝜇𝑃)2𝑏

2𝜔𝐸ℎ
−

39𝜔𝐿2

32𝐸𝑏ℎ3
) 𝑥2 + (

𝜔𝐿

𝐸𝑏ℎ3
−

𝜇𝑃

𝐸ℎ2
) 𝑥3 −

𝜔

4𝐸𝑏ℎ3
𝑥4 (41) 

 

This form of the expressions shows the exact functional 

dependence of the slipped length and the deflection on all critical 

design inputs (i.e., dimensions, material properties, the vacuum 

pressure, and the distributed load). Note that the slipped length 

grows from a minimum value of zero to a maximum value of the 

length of the structure. In addition, its growth rate (i.e., 
𝑑𝜒

𝑑𝜔
) scales 

with the vacuum pressure and the inverse square of the distributed 

load. 

 

    Stiffness, Dissipated Energy, and Damping 

 

We previously defined the effective stiffness k of the jamming 

structure as the incremental relationship between the distributed 

load and the deflection at the tip. Since equation (41) is only valid 

for the slipped section of the jamming structure (i.e., for 0 ≤ 𝑥 ≤
𝜒, where 𝜒 < 𝐿), we do not yet know the deflection at the free end. 

Thus, we postpone the calculation of 𝑘 to our subsequent 

investigation of the cohesive section. 

 

Nevertheless, all the energy dissipated to friction in the transition 

regime arises in the slipped section, as no slip occurs in the 
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cohesive section. Thus, we can calculate the dissipated energy 

𝐸𝑑𝑖𝑠𝑠. 

 

We first compute 𝛿1(𝑥) and 𝛿2(𝑥). Substituting equation (37), 

equation (41), and the result 𝐶1 = 0 all into equation (33), 

 

𝛿1(𝑥) =
1

(1 −
𝐽2

𝑆0𝐼)

(36(𝜏𝑓𝑏𝐼)
2

− 36𝜔𝜏𝑓𝑏𝐿𝐽𝐼 + 9(𝜔𝐿𝐽)2) 𝑥 + (24𝜔𝜏𝑓𝑏𝐽𝐼 − 12(𝜔𝐽)2𝐿)𝑥2 + 4(𝜔𝐽)2𝑥3

48𝜔𝐸𝑆0𝐽𝐼
(42) 

 

From the earlier result 𝐴1(𝑥) + 𝐴2(𝑥) = 0 and the clamped 

boundary condition 𝛿2(0) = 0, we find the intuitive result 𝛿2(𝑥) =
−𝛿1(𝑥). We can define 𝛿𝑟(𝑥) as the relative displacement between 

points that were initially coincident on the interface (i.e., 𝛿1(𝑥) −
𝛿2(𝑥)). Thus, 𝛿𝑟(𝑥) = 2𝛿1(𝑥). 

 

The dissipated energy 𝐸𝑑𝑖𝑠𝑠 is the local frictional force per unit 

length at the interface, multiplied by the relative interfacial 

displacement, integrated over the length of the slipped section. 

Symbolically, 

 

𝐸𝑑𝑖𝑠𝑠 = ∫ 𝜏𝑓𝑏𝛿𝑟(𝑥)𝑑𝑥
𝜒

0

(43) 

 

Substituting 𝛿𝑟(𝑥), 

 

𝐸𝑑𝑖𝑠𝑠 =
1

(1 −
𝐽2

𝑆0𝐼)

36(𝜏𝑓𝑏)
3

(𝜒𝐼)2 + 4𝜔(𝜏𝑓𝑏𝜒)
2

𝐽𝐼(4𝜒 − 9𝐿) + 𝜔2𝜏𝑓𝑏(𝜒𝐽)2(9𝐿2 − 8𝐿𝜒 + 2𝜒2)

48𝜔𝐸𝑆0𝐽𝐼  

 

Substituting the explicit expressions for 𝐼, 𝐽, 𝜏𝑓, and 𝜒, we find the 

equivalent expression 

 

𝐸𝑑𝑖𝑠𝑠 =
256(𝜇𝑃)5(𝑏ℎ)4 − 768𝜔𝐿(𝜇𝑃)4(𝑏ℎ)3 + 864(𝜔𝐿𝑏ℎ)2(𝜇𝑃)3 − 432(𝜔𝐿)3(𝜇𝑃)2𝑏ℎ + 81(𝜔𝐿)4𝜇𝑃

192𝜔3𝐸ℎ2
(44) 

 

This form of the expression shows the exact functional dependence 

of the dissipated energy in the transition regime on all critical 

design inputs (i.e., dimensions, material properties, the vacuum 

pressure, and the distributed load). 

 

Finally, as described earlier, we define the effective damping d as 

the incremental relationship between 𝐸𝑑𝑖𝑠𝑠 and the maximum 

deflection. From the chain rule, we know that 
𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝑤(𝑥=𝐿)
=
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𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝜔

𝜕𝜔

𝜕𝑤(𝑥=𝐿)
. Simplifying,  𝑑 = 𝑘

𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝜔
. Again, we cannot yet 

calculate 𝑑 of the jamming structure in the transition regime, as we 

have had to postpone our calculation of 𝑘 to the subsequent 

investigation of the cohesive section. 

 

Cohesive Section (𝝌 ≤ 𝒙 ≤ 𝑳): 

 

   Deflection 

 

To solve for 𝑤(𝑥) in the cohesive section of the jamming structure 

in the transition regime, we may begin with equation (27). 

Repeating for clarity, 

 

𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4 + 𝐶1𝑥 + 𝐶2 (45) 

 

Applying continuity boundary conditions (23) and (24) at 𝑥 = 𝜒, 

we find 𝐶1 = 0, 

 

𝐶2 =
1

𝑆0𝐼 − 𝐽2
(

−9𝜔𝐿4𝐽2

256𝐸𝐼
+

9𝜏𝑓𝑏𝐿3𝐽

32𝐸
−

27(𝜏𝑓𝑏𝐿)
2

𝐼

32𝜔𝐸
+

9(𝜏𝑓𝑏)
3

𝐿𝐼2

8𝜔2𝐸𝐽
−

9(𝜏𝑓𝑏)
4

𝐼3

16𝜔3𝐸𝐽2
)  

 

and 

 

𝑤(𝑥) = −
𝜔𝐿2

8𝐸𝐼
𝑥2 +

𝜔𝐿

12𝐸𝐼
𝑥3 −

𝜔

48𝐸𝐼
𝑥4

+
1

𝑆0𝐼 − 𝐽2
(

−9𝜔𝐿4𝐽2

256𝐸𝐼
+

9𝜏𝑓𝑏𝐿3𝐽

32𝐸
−

27(𝜏𝑓𝑏𝐿)
2

𝐼

32𝜔𝐸
+

9(𝜏𝑓𝑏)
3

𝐿𝐼2

8𝜔2𝐸𝐽

−
9(𝜏𝑓𝑏)

4
𝐼3

16𝜔3𝐸𝐽2
) 

 

   Substituting the explicit expressions for 𝐼, 𝐽, and 𝜏𝑓, we find 

 

𝑤(𝑥) = −
3𝜔𝐿2

8𝐸𝑏ℎ3
𝑥2 +

𝜔𝐿

4𝐸𝑏ℎ3
𝑥3 −

𝜔

16𝐸𝑏ℎ3
𝑥4 +

27𝜇𝑃𝐿3

16𝐸ℎ2
−

(𝜇𝑃)4𝑏3ℎ

𝜔3𝐸
+

3(𝜇𝑃)3𝑏2𝐿

𝜔2𝐸
−

27(𝜇𝑃)2𝑏𝐿2

8𝜔𝐸ℎ
−

81𝜔𝐿4

256𝐸𝑏ℎ3
(46) 

 

    Stiffness, Dissipated Energy, and Damping 

 

As equation (46) is valid for the cohesive section of the jamming 

structure (i.e., for 𝜒 ≤ 𝑥 ≤ 𝐿), we now know the deflection at the 

free end in the transition regime and can calculate the effective 

stiffness 𝑘. Substituting equation (46) into the definition of 𝑘, 
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𝑘 =
256𝜔4𝐸𝑏ℎ3

768(𝜇𝑃𝑏ℎ)4 − 1536𝜔𝐿(𝜇𝑃𝑏ℎ)3 + 864(𝜔𝐿𝜇𝑃𝑏ℎ)2 − 129(𝜔𝐿)4
(47) 

 

Note that the effective stiffness of the jamming structure in the 

transition regime is a function of both the distributed load and the 

vacuum pressure. 

 

We can now solve for the effective damping 𝑑 of the jamming 

structure in the transition regime as well. Substituting equations 

(47) and (44) into the earlier result 𝑑 = 𝑘
𝜕𝐸𝑑𝑖𝑠𝑠

𝜕𝜔
, 

 

𝑑 =
1024(𝜇𝑃𝑏ℎ)5 − 2048𝜔𝐿(𝜇𝑃𝑏ℎ)4 + 1152(𝜔𝐿)2(𝜇𝑃𝑏ℎ)3 − 108(𝜔𝐿)4𝜇𝑃𝑏ℎ

768(𝜇𝑃𝑏ℎ)4 − 1536𝜔𝐿(𝜇𝑃𝑏ℎ)3 + 864(𝜔𝐿𝜇𝑃𝑏ℎ)2 − 129(𝜔𝐿)4
(48) 

 

Note that the effective damping of the jamming structure in the 

transition regime is a function of both the distributed load and the 

vacuum pressure as well. 

 

  Full-slip Regime 
 

   Deflection 

 

To solve for 𝑤(𝑥) of the jamming structure in the full-slip regime, we may 

begin with equation (33), as well as equation (34) after applying clamped 

boundary conditions (18) and (19) at 𝑥 = 0. Providing for clarity, 

 

𝐴1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0
𝑥 −

𝐽

𝑆0

𝑑2𝑤

𝑑𝑥2
+ 𝐶2 (49) 

 

𝑤(𝑥) (1 − 
𝐽2

𝑆0𝐼
) = −

𝜔𝐿2

4𝐸𝐼

𝑥2

2
 +

𝜔

2𝐸𝐼
(𝐿

𝑥3

6
−

𝑥4

24
) −

𝐽

𝐼
(

𝜏𝑓𝑏

𝐸𝑆0

𝑥3

6
+ 𝐶2

𝑥2

2
) (50) 

 

We cannot apply continuity boundary conditions (23) and (24), as the 

entire interface has slipped and the value of 𝜒 has now exceeded the length 

of the structure. However, we may apply free boundary condition (22) at 

𝑥 = 𝐿. Evaluating, we find 𝐶2 =
−𝜏𝑓𝑏𝐿

𝐸𝑆0
. Substituting into equation (50) 

and solving for 𝑤(𝑥), 

 

𝑤(𝑥) =
1

1 − 
𝐽2

𝑆0𝐼

((
𝜏𝑓𝑏𝐿𝐽

2𝐸𝑆0𝐼
−

𝜔𝐿2

8𝐸𝐼
) 𝑥2 + (

𝜔𝐿

12𝐸𝐼
−

𝜏𝑓𝑏𝐽

6𝐸𝑆0𝐼
) 𝑥3 −

𝜔

48𝐸𝐼
𝑥4) (51) 
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Substituting the explicit expressions for 𝐼, 𝐽, and 𝜏𝑓, we find the equivalent 

expression 

 

𝑤(𝑥) = (
3𝜇𝑃𝐿

𝐸ℎ2
−

3𝜔𝐿2

2𝐸𝑏ℎ3
) 𝑥2 + (

𝜔𝐿

𝐸𝑏ℎ3
−

𝜇𝑃

𝐸ℎ2
) 𝑥3 −

𝜔

4𝐸𝑏ℎ3
𝑥4 (52) 

 

Note that the deflection of the jamming structure in the full-slip regime is 

a function of the coefficient of friction and the vacuum pressure. In 

contrast, the deflection of a two-layer structure with a frictionless interface 

(or equivalently, the deflection of a two-layer structure when no vacuum is 

applied) is 𝑤(𝑥) = −
3𝜔𝐿2

2𝐸𝑏ℎ3 𝑥2 +
𝜔𝐿

𝐸𝑏ℎ3 𝑥3 −
𝜔

4𝐸𝑏ℎ3 𝑥4, which depends on 

neither the coefficient of friction nor the vacuum pressure. 

 

Stiffness, Dissipated Energy, and Damping 

 

Substituting equation (52) into the definition of the effective stiffness of 

the jamming structure, 

 

𝑘 =
4𝐸𝑏ℎ3

3𝐿4
(53) 

 

Note that the effective stiffness of the jamming structure in the full-slip 

regime is constant. In addition, this stiffness is equal to the effective 

stiffness of a two-layer structure with a frictionless interface (or 

equivalently, the stiffness of a two-layer structure when no vacuum is 

applied). 

 

Analogous to the slipped section of the transition regime, to calculate 

𝐸𝑑𝑖𝑠𝑠, we first compute 𝛿𝑟(𝑥). We may begin with equation (33). 

Repeating for clarity, 

 

𝛿1(𝑥) =
𝜏𝑓𝑏

𝐸𝑆0

𝑥2

2
 −

𝐽

𝑆0

𝑑𝑤

𝑑𝑥
+ 𝐶2𝑥 + 𝐶1  

 

Applying clamped boundary conditions (19) and (21) at 𝑥 = 0, we find 

𝐶1 = 0. Substituting equation (52) and the earlier result 𝐶2 =
−𝜏𝑓𝑏𝐿

𝐸𝑆0
, 

 

𝛿1(𝑥) =
1

(1 −
𝐽2

𝑆0𝐼)

(3𝜔𝐿2𝐽 − 12𝜏𝑓𝑏𝐿𝐼)𝑥 + (6𝜏𝑓𝑏𝐼 − 3𝜔𝐿𝐽)𝑥2 + 𝜔𝐽𝑥3

12𝐸𝑆0𝐼
 

 

As before, 𝛿𝑟(𝑥) = 2𝛿1(𝑥). Substituting into equation (43) with 𝜒 = 𝐿, 
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𝐸𝑑𝑖𝑠𝑠 =
1

(1 −
𝐽2

𝑆0𝐼)

3𝜔𝜏𝑓𝑏𝐿4𝐽 − 16(𝜏𝑓𝑏)
2

𝐿3𝐼

24𝐸𝑆0𝐼
 

 

Substituting the explicit expressions for 𝐼, 𝐽, and 𝜏𝑓, we find the equivalent 

expression 

 

𝐸𝑑𝑖𝑠𝑠 =
9𝜔𝜇𝑃𝐿4 − 32(𝜇𝑃)2𝑏ℎ𝐿3

12𝐸ℎ2
(54) 

 

Note that the dissipated energy in the full-slip regime is a function of both 

the distributed load and the vacuum pressure. 

 

Finally, substituting equation (57) into the definition of the effective 

damping 𝑑 of the jamming structure, we find 

 

𝑑 = 𝜇𝑃𝑏ℎ (55) 

 

Note that the effective damping of the jamming structure in the full-slip 

regime is independent of the distributed load, but scales with the vacuum 

pressure. This result suggests that damping may be controlled in a real-

world jamming structure over a continuum of values by forcing the 

structure into the full-slip regime and varying vacuum pressure as desired. 

This concept is investigated later for many-layer jamming structures (SI: 

Additional Concepts: Continuously-Variable Damping). 

 

  Transition Loads Between Regimes 
 

Let us define the first transition load 𝜔1 to be the load at which the jamming 

structure shifts from the pre-slip regime to the transition regime. The first 

transition load can be found by solving equation (40) for 𝜔 when 𝜒 = 0. 

Explicitly, 

𝜔1 =
4𝜇𝑃𝑏ℎ

3𝐿
(56) 

 

Let us define the second transition load 𝜔2 to be the load at which the jamming 

structure shifts from the transition regime to the full-slip regime. The second 

transition load can be found by solving equation (40) for 𝜔 when 𝜒 = 𝐿. 

Explicitly, 

 

𝜔2 =
4𝜇𝑃𝑏ℎ

𝐿
(57) 

 

  Summary of Formulae 
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Equation (28) describes the deflection of the two-layer jamming structure during 

the pre-slip regime, and equation (29) describes the effective stiffness of the 

structure in this regime. Equations (30) and (31) describe the dissipated energy 

and the effective damping, which are zero. 

 

Equations (40), (41), and (46) describe the deflection of the jamming structure 

during the transition regime (in both the slipped and cohesive sections of the 

structure), and equation (47) describes the effective stiffness of the structure in 

this regime. Equations (44) and (48) describe the dissipated energy and the 

effective damping, respectively. 

 

Equation (52) describes the deflection of the structure during the full-slip regime, 

and equation (53) describes the effective stiffness of the two-layer structure 

during this regime. Equations (54) and (55) describe the dissipated energy and 

the effective damping, respectively. 

 

Finally, equations (56) and (57) describe the loads at which the jamming 

structure shifts between consecutive regimes. 

 

Thus, we have formulated a complete model for the kinematics, stiffness, 

dissipated energy, and damping of a two-layer jamming structure over all major 

phases of deformation. 

 

Dimensionless Forms 
 

Through nondimensionalization, all the preceding formulae can be dramatically 

simplified. We can define dimensionless variables 𝑤∗ =
𝑤

𝐿
, 𝑥∗ =

𝑥

𝐿
, 𝑘∗ =

𝑘

𝐸
, 

𝐸𝑑𝑖𝑠𝑠
∗ =

𝐸𝑑𝑖𝑠𝑠

𝐸𝐿3 , 𝑑∗ =
𝑑

𝐸𝐿2, 𝜔∗ =
𝜔

𝐸𝐿
, 𝜇∗ = 𝜇, 𝑃∗ =

𝑃

𝐸
, 𝑏∗ =

𝑏

𝐿
, and ℎ∗ =

ℎ

𝐿
. We can also 

define the composite dimensionless variables 𝛼 = 𝜇∗𝑃∗𝑏∗ℎ∗ and 𝛽 = 𝑏∗ℎ∗3
. 

Substituting these variables into the formulae, we find the following 

dimensionless formulae: 

 

 Pre-slip Regime 

 

𝑤∗ = −
3𝜔∗

8𝛼∗
𝑥∗2 +

𝜔∗

4𝛼∗
𝑥∗3 −

𝜔∗

16𝛼∗
𝑥∗4

 

 

𝑘∗ =
16𝛼∗

3
 

 

𝐸𝑑𝑖𝑠𝑠
∗ = 0 

 

𝑑∗ = 0 

 

 Transition Regime 



SI for “Mechanically Versatile Soft Machines Through Laminar Jamming”  Narang, Vlassak, and Howe 

Initial Submission to Advanced Functional Materials  SI Page 17 

  

𝑘∗ =
256𝜔∗4𝛼∗

768𝛽∗4 − 1536𝜔∗𝛽∗3 + 864𝜔∗2𝛽∗2 − 129𝜔∗4
 

 

𝐸𝑑𝑖𝑠𝑠
∗ =

256𝛽∗5 − 768𝜔∗𝛽∗4 + 864𝜔∗2𝛽∗3 − 432𝜔∗3𝛽∗2 + 81𝜔∗4𝛽∗

192𝜔∗3𝛼∗
 

 

𝑑∗ =
1024𝛽∗5 − 2048𝜔∗𝛽∗4 + 1152𝜔∗2𝛽∗3 − 108𝜔∗4𝛽∗

768𝛽∗4 − 1536𝜔∗𝛽∗3 + 864𝜔∗2𝛽∗2 − 129𝜔∗4
 

 

  Slipped Section 

 

𝜒∗ =
3

2
−

2𝛽∗

𝜔∗
 

 

𝑤∗ = (
9𝛽∗

4𝛼∗
−

3𝛽∗2

2𝜔∗𝛼∗
−

39𝜔∗

32𝛼∗
) 𝑥∗2 + (

𝜔∗

𝛼∗
−

𝛽∗

𝛼∗
) 𝑥∗3 −

𝜔∗

4𝛼∗
𝑥∗4

 

 

  Cohesive Section 

 

𝑤∗ = −
3𝜔∗

8𝛼∗
𝑥∗2 +

𝜔∗

4𝛼∗
𝑥∗3 −

𝜔∗

16𝛼∗
𝑥∗4 +

27𝛽∗

16𝛼∗
−

𝛽∗4

𝜔3𝛼∗
+

3𝛽∗3

𝜔∗2𝛼∗

−
27𝛽∗2

8𝜔∗𝛼∗
−

81𝜔∗

256𝛼∗
 

 

 Full-slip Regime 

 

𝑤∗ = (
3𝛽∗

𝛼∗
−

3𝜔∗

2𝛼∗
) 𝑥∗2 + (

𝜔∗

𝛼∗
−

𝛽∗

𝛼∗
) 𝑥∗3 −

𝜔∗

4𝛼∗
𝑥∗4

 

 

𝑘∗ =
4𝛼∗

3
 

 

𝐸𝑑𝑖𝑠𝑠
∗ =

9𝜔∗𝛽∗ − 32𝛽∗2

12𝛼∗
 

 

𝑑∗ = 𝛽∗ 

 

 Transition Loads 

 

𝜔1
∗ =

4𝛽∗

3
 

 

𝜔2
∗ = 4𝛽∗ 
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Note that dimensionless deflections are found to depend on at most 4 

dimensionless parameters (i.e., 𝜔∗, 𝑥∗, 𝛼∗, and 𝛽∗); dimensionless stiffnesses and 

dissipated energies depend on at most 3 parameters (i.e., 𝜔∗, 𝛼∗, and 𝛽∗); 

dimensionless damping values depend on at most 2 parameters (i.e., 𝜔∗ and 𝛽∗); 

and dimensionless transition loads depend on just 1 parameter (i.e., 𝛽∗). 

 

Case Study 
 

The analytical model was evaluated for an example two-layer jamming structure. Each 

layer had dimensions 𝑏 = 50 𝑚𝑚, ℎ = 0.1 𝑚𝑚, and 𝐿 = 250 𝑚𝑚, as well as a 

Poisson’s ratio 𝑣 = 0.156 and coefficient of friction 𝜇 = 0.65. These dimensions and 

material properties coincided with those of the real-life jamming structures examined 

later during experimental characterization (SI: Experimental Characterization: 

Characterization Process). 

 

If a two-layer jamming structure with the above properties consisted of compliant 

material, it would not slip until the structure exhibited exceptionally large deflections. 

Thus, the elastic modulus 𝐸 was set to 6 𝑇𝑃𝑎 in order to illustrate slip over a more 

reasonable range of deflection. In addition, as described earlier, the plane-strain modulus 

�̅� =
𝐸

1−𝜈2 was substituted for the elastic modulus in the analytical formulae, as 𝑏 ≫ ℎ. 

 

A vacuum pressure 𝑃 = 101 𝑘𝑃𝑎 was imposed, and a uniform distributed load 𝜔 = 7
𝑁

𝑚
 

was applied over 100 equal increments. The elastica (i.e., shape), the deflection at the 

free end of the jamming structure, and the dissipated energy were computed for each load 

increment. 

 

Curvature Reversal 
 

For a typical cantilever beam under a uniform distributed load, the curvature of the beam 

maintains a consistent sign. However, for a two-layer jamming structure, the analytical 

model predicts that the curvature reverses (i.e., changes sign) along its length at moderate 

loads and higher. Curvature reversal can be seen on close inspection of the elastica in the 

case study (Figure 2B). 

 

The analytical model in the transition regime may provide a first explanation of this 

counterintuitive phenomenon. Because the net force on any cross section is zero, 𝐴1(𝑥) +
𝐴2(𝑥) = 0 for all 𝑥. Furthermore, because the jamming structure is cohesive for 𝜒 ≤ 𝑥 <
𝐿, interfacial displacements must be zero at 𝑥 = 𝜒. Thus, positive values of 𝐴1(𝑥) within 

the slipped section of the jamming structure (i.e., 0 ≤ 𝑥 ≤ 𝜒) must be balanced by 

negative values of 𝐴1(𝑥) elsewhere in the slipped section; likewise, positive values of 

𝐴2(𝑥) must be balanced by negative values of 𝐴2(𝑥). Equations (5) and (6) imply a 

similar (but not identical) relationship for 𝜅(𝑥). 
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Curvature reversal was corroborated in detail by finite element models of two-layer 

jamming structures, as well as finite element models and experimental observations of 

many-layer jamming structures (SI: Finite Element Modeling: Two-Layer Jamming 

Structures). 

 

Extending the Model 
 

The analytical modeling procedure for two-layer jamming structures can  

be adapted to solve for the deflection of jamming structures with arbitrary numbers of  

layers and arbitrary boundary conditions. 

 

Arbitrary Numbers of Layers 
 

Three important results may be simply derived for many-layer jamming 

structures. First, the elastica of a vacuumed jamming structure during the pre-slip 

regime can be determined by approximating the structure as a cohesive thin beam 

and directly using Euler-Bernoulli beam theory to calculate deflection. 

 

Second, as cited in the main text, the bending stiffness of a vacuumed many-layer 

jamming structure during the pre-slip regime is a factor of 𝑛2 greater than the 

stiffness when no vacuum is applied, where 𝑛 is the number of layers (Reference: 

17). This result can be derived from second area moments of inertia. When a 

vacuumed jamming structure is in the pre-slip regime, the structure is cohesive, 

and the second area moment of inertia of the jamming structure is given by 𝐼 =
𝑏(𝑛ℎ)3

12
= 𝑛3 𝑏ℎ3

12
. When no vacuum is applied to a jamming structure, the layers are 

decoupled, and 𝐼 = 𝑛
𝑏ℎ3

12
. Since bending stiffness is proportional to 𝐼, the stiffness 

in the former case is a factor of 𝑛2 greater than that in the latter case. 

 

Third, the first transition load (i.e., the load at which a jamming structure shifts 

from the pre-slip regime to the transition regime) for many layer-jamming 

structures is given by 𝑉𝑚𝑎𝑥 =
2𝜇𝑃𝐴

3
, where 𝑉𝑚𝑎𝑥 is the maximum resultant shear at 

any cross-section of the beam, which is proportional to the applied load; and 𝐴 is 

the total cross-sectional area (i.e., 𝑛𝑏ℎ) (Reference: 27). This result can be 

derived from the definition of slip. Slip occurs when the maximum longitudinal 

shear stress at an interface equals the maximum possible shear stress. During the 

pre-slip regime, the maximum longitudinal shear stress occurs at the innermost 

interface and is given by the well-known formula 𝜏𝑚𝑎𝑥 =
3𝑉𝑚𝑎𝑥

2𝐴
. Furthermore, the 

maximum possible shear stress is 𝜇𝑃. Equating the two expressions and solving 

for 𝑉𝑚𝑎𝑥, we see 𝑉𝑚𝑎𝑥 =
2𝜇𝑃𝐴

3
. 

 

Despite the simplicity of deriving the previous three results, solving for the 

deformation of a many-layer jamming structure during the transition regime and 

full-slip regime is a far greater challenge. This paper has provided detailed 
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methods for solving for the deformation of a two-layer jamming structure during 

these regimes; these methods may be extended to solve the many-layer problem 

as well. 

 

For a many-layer jamming structure, strain distributions can again be defined for 

each layer as the superposition of a linear strain term and a unique axial strain 

term. The moment-stress relation can be used to derive a first governing equation. 

Static force equilibrium can then be performed on thin sections of each layer to 

derive subsequent governing equations. For the outermost layers, these equations 

would be similar to equations (10) and (11) for the two-layer jamming structure; 

for inner layers, shear stress would act on both the top and bottom surfaces of the 

thin section, producing a second shear stress term. 

 

Whereas slip propagates along one dimension (i.e., along the 𝑥-axis, as defined in 

Figure S1A) for a two-layer jamming structure, slip would propagate along two 

dimensions (i.e., along the 𝑥- and 𝑦-axes) for a many-layer jamming structure. 

Shear stress varies through the thickness of the structure, and slip would occur 

along distinct interfaces at disparate loads. Thus, a unique 𝜒 variable would be 

required for each interface. Moreover, boundary conditions (20) and (21) would 

only be valid at 𝑥 = 𝜒 if 𝜒 corresponded to an interface located along the 𝑥-axis; 

for other interfaces, alternative boundary conditions would need to be formulated. 

For example, continuity of incremental interfacial displacements and axial strains 

may be enforced. 

 

Although the process of solving for the deflection of a many-layer jamming 

structure is straightforward, the solution itself may be algebraically taxing. 

Furthermore, the analytical solution would only be valid for small deflections. 

Thus, numerical solutions (e.g., finite element analysis) may be far more 

convenient. 

 

  Arbitrary Boundary Conditions 

 

For arbitrary boundary conditions, the direction of shear stress and frictional 

stress may change along the length of an interface. Thus, the signs in the 

governing equations based on static force equilibrium may vary throughout the 

jamming structure. Furthermore, each interface may consist of multiple slipped 

and cohesive regions. More than one 𝜒 variable would be necessary for each 

interface, along with continuity boundary conditions between adjacent slipped and 

cohesive sections of the structure. 

 

Finite Element Modeling 
 

All finite element models were constructed using finite element simulation software (ABAQUS 

6.14r2, Dassault Systèmes, Villacoublay, France). Analysis of simulation results was performed 

using numerical computing software (MATLAB 2017a, MathWorks, Natick, MA). 
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Two-Layer Jamming Structures 
 

A finite element model was constructed for a two-layer jamming structure. Each layer 

was approximated as a 2D plane-strain structure, and the jamming structure had 

dimensions, material properties, vacuum pressure, and distributed load equal to those 

specified in the case study for the analytical model of a two-layer jamming structure (SI: 

Analytical Modeling: Case Study). 

Boundary conditions and loads were also identical to those used in the case study. First, 

pressure (equal to the vacuum pressure) was applied to all outer surfaces of the jamming 

structure; then, the uniform distributed load was applied as a ramp over 100 equal 

increments. Large-deformation analysis was enabled. The interface between the two 

layers was chosen to be a contact surface with a penalty friction formulation. The 

mitigate undesired simulation of elastic slip, the slip tolerance was set to 5 ∗ 10−5. A 

uniform mesh was used that consisted of square four-node bilinear plane-strain 

quadrilateral elements with reduced integration (CPE4R). Each layer had two elements 

across its thickness. A mesh refinement study was conducted later for many-layer 

jamming structures to ensure that a finer mesh was not required (SI: Finite Element 

Modeling: Stiffness of Many-Layer Jamming Structures). The elastica, deflection at 

the free end, and dissipated energy were extracted at each load increment. 

The analytical model predicted finite element results for a two-layer jamming structure 

with high accuracy (Figure S2A-C). Elastica were predicted with coefficients of 

determination (𝑅2) between 0.9207 and 0.9759. Furthermore, the load-versus-deflection 

curve of the structure was predicted with 𝑅2 = 0.9639, and the dissipated-energy-versus-

deflection curve was predicted with 𝑅2 = 0.9977. Note that finite element models of 

many-layer jamming structures were later found to predict experimental results with 

exceptional accuracy; thus, the analytical model was deemed predictive of real-world 

jamming structures as well. 

 

The curvature reversal phenomenon predicted by the analytical model (SI: Analytical 

Modeling: Curvature Reversal) was also corroborated by the finite element results 

(Figure S2D-E). For the analytical model, curvatures were computed for each of the 

analytical elastica in Figure S2A using appropriate first and second derivatives of the 

formulae for deflection (SI: Analytical Modeling: Summary of Formulae). For the 

finite element model, fourth-order best-fit polynomials were first determined for each of 

the finite element elastica in Figure S2A. Curvatures were then computed using 

appropriate first and second derivatives of the best-fit polynomials. The analytical 

curvature profiles (Figure S2D) were visually predictive of the finite element curvature 

profiles (Figure S2E), including the 𝑥-coordinates at which curvature reversal occurred. 

 

Curvature reversal was also observed later for both finite element models and 

experimental samples of many-layer jamming structures in three-point bending (Figure 

S2F). 

 

Stiffness of Many-Layer Jamming Structures 
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Finite element models of many-layer jamming structures were constructed according to 

the same process used for two-layer jamming structures; however, the structures were 

loaded in three-point bending. Rollers (i.e., zero-vertical-displacement boundary 

conditions) were applied to two points on the bottom surface, 60 𝑚𝑚 from either side; 

the location of these virtual rollers coincided with the location of the rollers used later 

during experimental characterization. In addition, to stabilize the finite element model, a 

zero-horizontal-displacement boundary condition was applied at the center of the top 

surface of the structure. 

After applying pressure to all outer surfaces of the jamming structure, a concentrated 

transverse displacement was applied to the midpoint of the top surface. The displacement 

had a minimum value of 0 𝑚𝑚 and a maximum value of 8 𝑚𝑚 and was applied as a 

ramp over 100 equal increments. The displacement range coincided with the range used 

later during experimental characterization. The interface between each pair of adjacent 

layers was chosen to be a contact surface with a penalty friction formulation. As with the 

two-layer jamming structures, a uniform mesh of square elements was used, and each 

layer had two elements across its thickness. 

A mesh refinement study was conducted to ensure that a finer mesh was not required. 

The study was performed for a twenty-layer jamming structure with vacuum pressure 

𝑃 = 71.1 𝑘𝑃𝑎 and coefficient of friction μ = 0.65. The number of elements across the 

thickness of each layer was varied between one and four (i.e., the areal density of 

elements was varied by a factor of sixteen). The one-element simulation did not 

converge; however, the two-, three-, and four-element simulations converged 

successfully. In each of the converged simulations, the transverse load and maximum 

deflection were extracted at each displacement increment. The converged simulations 

produced force-versus-maximum-deflection curves that were nearly indistinguishable 

(Figure S3A). The mean force difference between the two- and three-element 

simulations was 0.050 𝑁 (0.54% of the range of the two-element simulation), and the 

mean difference between the two-and four-element simulations was 0.073 𝑁 (0.78% of 

the range of the two-element simulation). Thus, it was deemed sufficiently accurate to 

mesh each layer with just two elements across its thickness. 

The three major design inputs (i.e., the number of layers 𝑛, vacuum pressure 𝑃, and 

coefficient of friction 𝜇) were then systematically varied. The quantity 𝑛 was varied from 

5 to 20 in increments of 5 (with 𝑃 = 71.1 𝑘𝑃𝑎 and 𝜇 = 0.65); 𝑃 was varied from 

23.7 𝑘𝑃𝑎 to 71.1 𝑘𝑃𝑎 in increments of 23.7 𝑘𝑃𝑎 (with 𝑛 = 20 and 𝜇 = 0.65); and 𝜇 

was varied from 0.25 to 1 in increments of 0.25 (with 𝑛 = 20 and 𝑃 = 71.1 𝑘𝑃𝑎). For 

each set of design inputs, the transverse force and maximum deflection were extracted at 

each displacement increment. Recall that the effective stiffness 𝑘 is simply the slope of 

the force-versus-maximum-deflection curve. 

Aside from providing information about the macroscopic deformation of many-layer 

jamming structures, the finite element models also illustrated the microscopic 

phenomenon of the slipping of adjacent layers along their interface at high loads (Figure 

S3B-C). 
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Damping of Many-Layer Jamming Structures 

In laminar jamming structures, the layers are coupled via dry friction. The relevant 

damping phenomenon is Coulomb damping, in which the damping force is independent 

of the rate of deformation (as opposed to viscous damping, in which the damping force is 

rate-dependent). Even when jamming structures are loaded quasi-statically, energy is still 

dissipated. Thus, finite element models of jamming structures subject to static loading are 

sufficient to characterize damping, and dynamic simulations are not required. 

 

If interfacial velocities (i.e., the velocities at which adjacent layers slip) were high, the 

damping force could theoretically become rate-dependent. However, from the second 

term of equation (33) in SI: Analytical Modeling: Explicit Solution, interfacial 

displacements are observed to scale with 
ℎ

𝐿
 times the transverse deflection, where ℎ is the 

thickness of a layer and 𝐿 is the length. In the jamming structures analyzed in the paper, ℎ 

is smaller than 𝐿 by four orders of magnitude; thus, interfacial velocities are negligible 

unless transverse velocities are exceptionally high. 

 

The finite element models to analyze damping were built according to the same process 

as the finite element models to analyze stiffness. However, after the maximum input 

displacement of 8 𝑚𝑚 was applied, the transverse load was reduced to 0 𝑁 over 100 

equal increments. The force-versus-maximum-deflection curves then illustrated 

hysteresis, and the area under the curves depicted the energy dissipated over the loading 

cycle (Figure S4). 

 

Recall that the effective damping 𝑑 is simply the dissipated energy per unit deflection.  

The quantity 𝑑 was not explicitly calculated, but can easily be determined. For each point 

on the force-versus-maximum-deflection curve, an elastic unloading line can be drawn 

(with a slope equal to that of the pre-slip loading line), and the area under the resulting 

curve can be computed. This area is the dissipated energy at that particular deflection. 

After performing this procedure for all points, the dissipated energy can then be plotted 

against deflection. The value of 𝑑 is the slope of this curve. 
 

Functional Dependencies 

The finite element simulations for the many-layer jamming structures were rerun over an 

extended displacement range (from 0 𝑚𝑚 to 16 𝑚𝑚 over 400 equal increments) to 

ensure that all structures entered the full-slip regime, allowing accurate measurement of 

full-slip stiffness and damping. Furthermore, the simulations were executed for larger 

sets of the design inputs to provide more data points for determining functional 

dependence. The numbers of layers examined were 2, 5, 7, 10, 12, 13, 15, 17, 18, and 20; 

the vacuum pressures were 0.34, 11.9, 23.7, 35.6, 47.4, 59.3, 71.1, 83.0, 94.8, and 

101.1 𝑘𝑃𝑎; and the coefficients of friction were 

0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, and 0.8. 
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For each simulation, best-fit lines were fit to the first 1% and the last 1% of the force-

versus-maximum-deflection curve. The slope of the former line approximated the 

effective stiffness 𝑘 during pre-slip, whereas the slope of the latter line approximated 𝑘 

during full-slip. A best-fit line was then fit to the last 1% of the dissipated-energy-versus-

maximum-deflection curve. The slope of this line approximated the effective damping 𝑑 

during full-slip. (Recall that 𝑑 during pre-slip is simply 0). 

For each design input (e.g., number of layers), each performance metric (e.g., pre-slip 

stiffness) was plotted against the values of the design input (e.g., 2 layers, 5 layers, 7 

layers, etc.). Based on the formulae derived in the analytical model for two-layer 

jamming structures, it was hypothesized that the performance metrics for many-layer 

jamming structures had polynomial dependence on the design inputs. Thus, best-fit 

polynomials were fit to each plot; however, the appropriate order for each polynomial 

needed to be determined. 

Best-fit polynomials from zero- to fourth-order were tested on each plot, and the root-

mean-square error 𝑒𝑟𝑚𝑠 was computed for each polynomial. From physical reasoning, 

pre-slip stiffness should be unaffected by the coefficient of friction 𝜇 and the vacuum 

pressure 𝑃, as jamming structures are cohesive in pre-slip; thus, the pre-slip stiffness 

should have zero-order dependence on 𝜇 and 𝑃. When zero-order polynomials (i.e., flat 

lines) were fit to the pre-slip stiffness plots for 𝜇 and 𝑃, it was found that 𝑒𝑟𝑚𝑠 ≅

0.0070
𝑁

𝑚𝑚
. This value quantified numerical noise in the finite element simulations and 

was used as the cutoff for determining the appropriate order of the best-fit polynomial for 

the other stiffness plots. Specifically, for a given pre-slip or full-slip stiffness plot, the 

lowest-order best-fit polynomial for which 𝑒𝑟𝑚𝑠 ≤ 0.0070
𝑁

𝑚𝑚
 was determined to be the 

appropriate polynomial. 

For the full-slip damping plots, dimensional analysis suggested that the 𝑒𝑟𝑚𝑠 threshold 

should be multiplied by a characteristic length in order to exhibit the correct units (i.e., 

[𝑁]). As the layers in a jamming structure slip in the direction of their length, the length 

𝐿 = 250 𝑚𝑚 was chosen as the characteristic length, and 𝑒𝑟𝑚𝑠 ≅ 0.0070
𝑁

𝑚𝑚
∗

250 𝑚𝑚 = 1.8 𝑁 was used as the cutoff for determining the appropriate order of the 

best-fit polynomial for the damping plots. 

The polynomial orders were then tabulated to assess functional dependencies (Table S1). 

As expected, pre-slip and full-slip stiffness scaled with 𝑛3and 𝑛, respectively, where 𝑛 is 

the number of layers. Full-slip stiffness also scaled with 𝑃 and 𝜇2. In contrast, the 

analytical model predicted that the full-slip stiffness of a two-layer jamming structure  

was independent of 𝑃 and 𝜇. The dependence of full-slip stiffness on these quantities in 

the finite element model is likely a result of contact pressure distributions arising from 

the concentrated load and roller supports. 

Full-slip damping scaled with 𝑛, 𝑃, and 𝜇. Damping should scale with the number of 

interfaces, which in turn scales with 𝑛; furthermore, damping should scale with the 

frictional stress at the interfaces, which again is equal to 𝜇𝑃 everywhere during full-slip. 
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Thus, these scaling relationships are also physically reasonable. Note that the scaling of 

full-slip damping with 𝑃 and 𝜇 was also predicted by the analytical model for a two-layer 

jamming structure. 

For practical applications, one final functional dependence is critical: the dependence of 

the first transition load for a many-layer jamming structure (i.e., the load at which the 

jamming structure moves from the pre-slip regime to the transition regime) on the design 

inputs. However, finite element analysis was not necessary to determine this dependence; 

as described earlier, the first transition load can be accurately predicted by Euler-

Bernoulli beam theory and scales with 𝑛, 𝑃, and 𝜇 (SI: Analytical Modeling: Extending 

the Model). Note that the scaling of this load with 𝑃 and 𝜇 was predicted by the 

analytical model for a two-layer jamming structure as well. 

Limiting Behavior 
 

For practical applications, the limiting behavior of jamming structures may be useful to 

examine. Consider an application in which the bending stiffness ratio between the 

jammed and unjammed states must be maximized (e.g., for a splint that must gently 

conform to the shape of a limb and then stiffen to immobilize a joint). This goal can be 

accomplished by constructing the layers out of exceptionally thin material (e.g., metal 

foil) and stacking as many layers as possible within the total allowable height 𝐻. When 

the structure is unjammed, the stiffness will be negligible, as the layers are thin and 

flexible. When the structure is jammed, the stiffness will be equal to that of a cohesive 

metal structure of height 𝐻. 

 

Nevertheless, such a configuration may have adverse consequences. If the structure is 

jammed and unintentionally forced into the full-slip regime (e.g., upon a collision), the 

structure will then exhibit a stiffness approximately equal to its unjammed stiffness; 

because the unjammed stiffness is negligible, the structure will yield catastrophically if 

the load is maintained. Obtaining accurate predictions of the load-deformation curve 

during the transition regime and full-slip may help designers avoid such consequences. 

Unfortunately, many-layer finite element simulations can be computationally expensive 

when the number of layers (and in turn, the number of contact interactions) are 

particularly large. 

 

One solution would be to approximate the system by the limiting case in which the layers 

of the jamming structure are infinitesimally thin, and an infinite number of layers are 

stacked within the height 𝐻. In other words, the structure is approximated as a 

continuum. The structure may then be modeled as a single crystal with a single slip 

system, with slip planes parallel to the 𝑥𝑧-plane and the slip direction parallel to the 𝑥-

axis. The structure may then be computationally modeled using existing finite element 

packages for crystal plasticity. 

 

 Variable Kinematics 
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The variable kinematics system was modeled as four parts: one rubber substrate and three 

jamming structures adhered to the bottom. The substrate was approximated as a 2D 

plane-strain structure with in-plane dimensions of 150 𝑚𝑚 x 20 𝑚𝑚. Each jamming 

structure represented a twenty-layer jamming structure, but was approximated as a 

homogeneous 2D plane-strain structure. The in-plane dimensions of each jamming 

structure were 49.33 𝑚𝑚 x 20 𝑚𝑚, and the thickness was equal to the total thickness of 

twenty layers of paper (i.e., 2 𝑚𝑚). Adjacent jamming structures were separated by 

1 𝑚𝑚 gaps. 

Both the substrate and the jamming structures were approximated as elastic. The 

substrate in subsequent experimental validation was cast from high-stiffness PDMS 

rubber (Sylgard 184, Dow Corning, Midland, MI). To accurately model this substrate in 

finite element simulations, the stress-strain curve reported in the literature for the PDMS 

rubber in uniaxial tension was digitally traced over small deformations (Reference: 30). 

The elastic modulus was determined by computing the slope of the curve, and this elastic 

modulus (i.e., 19.1 𝑀𝑃𝑎) was assigned to the substrate in the finite element model. 

Each jamming structure was assigned an elastic modulus in its vacuum-on state and its 

vacuum-off state. In the vacuum-on state, the elastic modulus equaled that of paper 

(6 𝐺𝑃𝑎); in the vacuum-off state, the elastic modulus was reduced by a factor of 𝑛2 

(15 𝑀𝑃𝑎). The substrate and jamming structures were assigned a Poisson’s ratio of 0.49 

and 0.156, respectively. Finally, as described in the main text, the thickness of the rubber 

substrate was chosen such that the bending stiffness of the substrate (𝑘𝑠𝑢𝑏) was the 

geometric mean of the bending stiffness of the jamming structures in the vacuum-off 

state (𝑘𝑗𝑎𝑚
𝑛𝑣 ) and the bending stiffness in the vacuum-on state (𝑘𝑗𝑎𝑚

𝑣 ). Because the 

jamming structures were intended to deform exclusively in the pre-slip regime, standard 

Euler-Bernoulli beam theory could be used to approximate bending stiffness simply as 

𝐸𝐼, where 𝐸 is the elastic modulus and 𝐼 is the second area moment of inertia. Using this 

approximation, the desired thickness of the rubber substrate was 5.0 𝑚𝑚. 

One end of the rubber substrate was fixed. To approximate the effect of cable actuation, a 

pure moment load was applied to a point on the free end. Two simulations were executed: 

one where the jamming structures were assigned their vacuum-off elastic modulus, and 

another where they were assigned their vacuum-on modulus. The magnitude of the 

moment loads were chosen such that the free end of the rubber substrate would nearly 

contact the fixed end at maximum load; the vacuum-off simulation had a maximum load 

of 350 𝑁 ∙ 𝑚𝑚, and the vacuum-on simulation had a maximum load of 1 𝑁 ∙ 𝑚𝑚. The 

loads were applied as ramps over 400 equal increments, and large deformation analysis 

was enabled. A uniform mesh was used that consisted of square four-node bilinear plane-

strain quadrilateral hybrid elements with reduced integration (CPE4RH). Four elements 

were used across the thickness of the structure. 

For both the vacuum-on and vacuum-off cases, the shape of the variable kinematics 

system was visualized at each load increment. In addition, the coordinates of the nodes 

along the ventral surface of the system (i.e., the longitudinal surface with the smaller 

radius of curvature when the system was actuated) were extracted at each load increment. 
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The exact local curvatures were then calculated along the surface using appropriate first 

and second derivatives of the coordinates. 

Experimental Characterization 
 

 Fabrication Process 
 

The many-layer jamming structures used in experimental characterization consisted of 

three parts: strips of copy paper (HP Ultra White Multipurpose Copy Paper), an envelope 

of thermoplastic polyurethane with a thickness of 0.038 𝑚𝑚 (American Polyfilm, Inc., 

Branford, CT), and thermoplastic polyurethane tubing with an outer diameter of 3 𝑚𝑚 

(Eldon James Corp., Denver, CO). 

 

The fabrication process for the laminar jamming samples consisted of five major steps 

(Figure S4). First, the strips of copy paper were manufactured. Sheets of copy paper 

were placed on a laser cutter (VLS4.60, Universal Laser Systems, Inc., Scottsdale, AZ), 

and strips were cut along the machine direction of the paper (i.e., the long axis) (Figure 

S4A). 

 

Next, the thermoplastic polyurethane (TPU) envelope was created. A frame was cut on 

the laser cutter from acrylic plastic (Figure S4B); this frame defined the region of the 

TPU sheet that would be sealed in a later step. Since the TPU sheet was intended to form 

an envelope around the paper strips and TPU tubing, the shape of the frame comprised a 

close perimeter around these contents. Furthermore, since the frame would be in contact 

with hot elements in subsequent steps, it was coated with polytetrafluoroethylene (PTFE) 

tape to prevent adherence. 

 

The TPU sheet was then formed to the acrylic frame on a vacuum former (Formech 

300XQ, Formech International Limited, Hertfordshire, United Kingdom) to create a 

pocket in which to place the paper and tubing (Figure S4C). After placing the paper and 

tubing into the pocket, the sheet of TPU was folded once upon itself to enclose the pocket 

(Figure S4D). The TPU sheet was then covered temporarily with a PTFE sheet and heat-

sealed using a one-sided heat press (Powerpress, Fancierstudio, Hayward, CA) at 100 °𝐶. 

Since the heat conduction to the TPU was greatest through the acrylic frame, only the 

region of the TPU sheet in contact with the frame was sealed, forming an envelope. 

 

To prevent leakage of air into the envelope, another step was performed to improve the 

bond between the TPU envelope and the TPU tubing. A block of aluminum-6061 was 

machined with a circular channel through its center, with the diameter of the channel 

equal to the diameter of the tubing. The block was then sawed in half through the 

channel, and each half was placed on either side of the tubing, sandwiching the tubing 

between the two sides of the TPU envelope (Figure S4E). The assembly was then 

covered temporarily with a PTFE sheet and heat-sealed at 171 °𝐶. Since only the 

aluminum blocks were in contact with the heating element of the heat press, only the 

region of the TPU envelope between the blocks was sealed. Thus, a circumferential seal 
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of the TPU envelope onto the tubing was achieved. The jamming envelope was then 

trimmed to its final form (Figure S4F). 

 

Repeatability Analysis 
 

Five twenty-layer jamming structures were fabricated. Each sample was placed in a 

universal materials testing device (Instron 5566, Illinois Tool Works, Norwood, MA) and 

centered on a static three-point bending fixture (Instron 2810-400) with the supporting 

anvils (10 𝑚𝑚 diameter) set 130 𝑚𝑚 apart (Figure S5A). 

Vacuum pressure was controlled using a manual vacuum regulator (EW-07061-30, Cole-

Parmer, Vernon Hills, IL). The TPU tubing in each sample was connected to the 

regulator via highly flexible polyurethane tubing in order to mitigate parasitic loading of 

the sample by the rigid regulator. Prior to each test, a vacuum pressure of 68 ± 1.7 𝑘𝑃𝑎 

was applied, and a roller was used to remove residual air pockets from the sample.  

The loading anvil (10 𝑚𝑚 diameter) was attached to a 100 𝑁 load cell (Instron 2525-

807) and lowered at a rate of 5
𝑚𝑚

𝑚𝑖𝑛
 until contacting the sample. When the load cell 

measured a value of 0.010 𝑁, the transverse force and displacement of the loading anvil 

began to be recorded. The anvil was then lowered at a rate of 25
𝑚𝑚

𝑚𝑖𝑛
 until reaching a 

maximum displacement of 8 𝑚𝑚. Tests were conducted at approximately 20% relative 

humidity. After each test, the sample was disconnected from the regulator and gently 

flexed multiple times to accelerate its return to ambient pressure. Each sample was tested 

ten consecutive times. 

Occasionally, the loading anvil initially contacted the jamming structure at protruding 

corners of the seam of its polyurethane envelope; this initial contact caused the materials 

testing device to undesirably begin measuring force and deflection prior to contacting the 

bulk of the jamming structure. To discard measurements of the corners of the envelope, 

we neglected data collected before a small initial force threshold of 0.050 𝑁 was reached, 

and we defined zero deflection as the deflection at this threshold. This procedure was 

always implemented, except for cases in which the force range during a test was 

comparable to 0.050 𝑁 (e.g., for five-layer samples in later experimental 

characterization). No further filtering or smoothing was performed on the raw data. 

 

For each sample, transverse force was plotted against maximum deflection for all ten 

trials. A mean curve was generated, and standard deviations were computed at each point 

on the mean curve (Figure S5B-F). The maximum standard deviation at any deflection 

was 0.2516 𝑁, which constituted 2.881% of the range of the mean curve for that sample. 

Thus, the mechanical behavior of the structures was highly repeatable from trial to trial, 

indicating that fatigue was negligible over the examined range of forces and deflections. 

The mean curves of all five samples were then aggregated, and a mean curve of the mean 

curves was generated (Figure S5G). The maximum standard deviation at any deflection 

was 0.1233 𝑁, which constituted 1.414% of the range of the curve. Thus, the mechanical 
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behavior of the structures was also highly repeatable from sample to sample, 

demonstrating that the fabrication process was sufficiently precise. Together, the high 

trial-to-trial and sample-to-sample repeatability of the jamming structures showed that 

many samples and trials were not required in order to collect statistically representative 

data during experimental characterization. 

Materials Testing 

To provide a fair comparison between experimental and finite element results for many-

layer jamming structures, the elastic modulus 𝐸 and coefficient of friction 𝜇 of the copy 

paper used in the jamming samples were experimentally measured; these values were 

then used as material properties of the layers in the finite element simulations. The elastic 

modulus was measured to be approximately 6 𝐺𝑃𝑎, and the coefficient of friction was 

measured to be approximately 0.65. Both properties were measured according to 

methods outlined in international paper testing standards (References: 31, 32), and the 

values fell within the ranges reported in literature (References: 33, 34). The Poisson’s 

ratio of the copy paper was challenging to measure; thus, a literature value of 0.156 was 

used instead (Reference: 33). 

 Stiffness Characterization Process 
 

The stiffness characterization tests were identical to those conducted for the repeatability 

analysis (SI: Experimental Characterization: Repeatability Analysis). However, 

fewer samples were tested and fewer trials were executed, as the repeatability analysis 

showed that many samples and trials were unnecessary. When conducting the tests for the 

effect of number of layers on stiffness, three samples were fabricated for each number of 

layers (i.e., three five-layer samples, three ten-layer samples, etc.), and each sample was 

tested four times at a constant vacuum pressure of 71.1 ± 1.7 𝑘𝑃𝑎. When conducting the 

tests for the effect of vacuum pressure, three twenty-layer samples were made in total, 

and each sample was tested four times at vacuum pressures of 0, 23.7 ± 1.7, 47.4 ± 1.7, 
and 71.1 ± 1.7 𝑘𝑃𝑎. No tests were conducted for the effect of coefficient of friction, as 

this property could not be precisely varied experimentally. 

For each testing group, transverse force was plotted against maximum deflection for all 

trials. Recall that the effective stiffness 𝑘 of a jamming structure in three-point bending is 

equal to the slope of the force-versus-maximum-deflection curve. Again, mean curves 

were generated, and standard deviations were computed at each point on the mean curve. 

Damping Characterization Process 

To evaluate finite element predictions for how major design inputs affected the damping 

of many-layer jamming structures, the damping of jamming structures was 

experimentally characterized as well. The tests were identical to those conducted for the 

stiffness characterization. However, after the loading anvil reached its maximum 

displacement of 8 𝑚𝑚, it was then retracted at a rate of 25
𝑚𝑚

𝑚𝑖𝑛
 until returning to its 
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original position of 0 𝑚𝑚. The transverse force and displacement experienced by the 

loading anvil continued to be recorded during its retraction. Thus, the behavior of the 

jamming structures was measured both during loading and unloading. 

Due to the extreme similarity of the damping characterization tests to the stiffness 

characterization tests, a minimal number of samples were tested, and a minimal number 

of trials were conducted. When conducting the tests for the effect of number of layers on 

damping, one sample was fabricated for each number of layers, and each sample was 

tested once at a constant vacuum pressure of 71.1 ± 1.7𝑘𝑃𝑎. When conducting the tests 

for the effect of vacuum pressure, one twenty-layer sample was made, and the sample 

was tested once at vacuum pressures of 0, 23.7 ± 1.7, 47.4 ± 1.7, and 71.1 ± 1.7 𝑘𝑃𝑎. 

For each test, transverse force was plotted against maximum deflection for all trials. The 

unloading of the sample during each test allowed the hysteresis curve to be observed. The 

area under each hysteresis curve depicted the energy dissipated during the loading cycle, 

and the effective damping 𝑑 was simply the energy dissipated per unit deflection. Finite 

element results for many-layer jamming structures accurately predicted experimental 

results (Figure S6). Thus, finite element simulations were not only able to predict the 

stiffness of many-layer jamming structures, but also their damping behavior. 

Functions and Applications 
 

All molds for the subsequent demonstrations were designed using CAD software (SolidWorks 

2015, Dassault Systèmes, Villacoublay, France) and 3D printed using a stereolithography-based 

printer (Objet30 Scholar, Stratasys, Ltd., Eden Prairie, MN). 

 Shape-Locking 

A soft pneumatic bending actuator was designed and fabricated based on previous 

literature (References: 2, 35). The top of the actuator (i.e., the inflatable chambers) was 

cast using a two-part mold, whereas the bottom (i.e., a thick, flat layer to promote 

bending rather than extension) was cast using a one-part mold. All parts were cast from 

shore 10A platinum-cure silicone rubber (Dragon Skin 10 Medium, Smooth-On, Inc., 

Macungie, PA). A twenty-layer jamming structure was then designed and fabricated 

using the techniques described earlier (SI: Experimental Characterization: 

Fabrication Process). The structure spanned the ventral surface of the actuator (i.e., the 

longitudinal surface with the smaller radius of curvature when the actuator was 

pressurized). Finally, the actuator and jamming structure were bonded using silicone 

building sealant (Dow Corning 795, Dow Corning, Midland, MI). 

The actuator and jamming structure were connected to pressure and vacuum inputs, 

respectively. The pressure source was regulated by a digital pressure regulator (ITV1031, 

SMC Pneumatics, Yorba Linda, CA), whereas the vacuum source was regulated by the 

device used in experimental characterization. The output from each of the regulators 

passed through two miniature pneumatic solenoid valves (V2 Valves, Parker Hannifin, 
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Hollis, NH) before entering the actuator and jamming structure. The valves were 

controlled by pushbuttons and enabled the actuator and jamming structure to each have 

three states: a pressurizing (or vacuuming) state, a hold state where the internal pressure 

(or vacuum) is preserved, and a depressurizing (or vacuum-relieving) state. 

The actuator was pressurized to 16 𝑘𝑃𝑎, and a photograph was taken perpendicular to the 

bending plane. Two tests were then conducted. In the first test, the actuator was 

depressurized to 0 𝑘𝑃𝑎. In the second test, a vacuum of 85 𝑘𝑃𝑎 was first applied to the 

jamming structure, and the actuator was then depressurized to 0 𝑘𝑃𝑎. A photograph was 

again taken once the system came to rest. 

For each photograph, the arc of the ventral surface of the shape-locking system was 

digitally traced. The data points comprising each arc were then interpolated over 100 

equally spaced points. The coefficient of determination (𝑅2) value was computed 

between the two interpolated arcs. 

 Variable Kinematics 

The substrate of the variable kinematics system was fabricated according to the same 

process used for the actuator component of the shape-locking system. However, the 

substrate was cast using a one-part mold with an inserted hexagonal rod, which created a 

channel to route a cable; furthermore, the substrate was cast from high-stiffness PDMS 

rubber (Sylgard 184, Dow Corning, Midland, MI). The jamming structure was also 

designed and fabricated according to the techniques described earlier, but with three 

distinct stacks of twenty strips separated by 1 𝑚𝑚 gaps within the TPU envelope. The 

jamming structure and rubber substrate were again bonded with silicone building sealant 

(Dow Corning 795, Dow Corning, Midland, MI). 

Braided polyethylene cable (Hollow Spectra, BHP Tackle, Harrington Park, NJ) was then 

routed through the channel in the substrate. The cable was tied at one end to a turnbuckle 

and at the other end to a small washer. During testing, the turnbuckles were manually 

twisted, which pulled the cable, compressed the washer against the end of the variable 

kinematics structure, and induced bending. 

Two-Fingered Grasper 

Each fingertip in the two-fingered grasper had a cylindrical surface with a radius of 

5 𝑚𝑚. The fingertips were cast using a two-part mold according to the same process used 

for the shape-locking actuator and variable-kinematics substrate; however, the fingertips 

were cast from shore 00-10A silicone rubber (Ecoflex 00-10, Smooth-On, Inc., 

Macungie, PA). 

To test bending stiffness and off-axis bending stiffness, the cable was removed from the 

finger being tested, and the finger was clamped in the vertical position. A digital force 

gauge (Chatillon DFI10, AMETEK Sensors, Test & Calibration, Berwyn, PA) was 

moved along a rigid guiderail until contacting the finger 25 𝑚𝑚 from its distal end. The 
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force gauge was then pushed forward in 12.5 𝑚𝑚 increments. To mitigate viscous 

effects, approximately five seconds were allowed to elapse, and the force measurement 

was then recorded. The test was conducted with vacuum off and vacuum on. When 

measuring bending stiffness, the force gauge was pushed in the direction of the thickness 

of the substrate; when measuring off-axis bending stiffness, the gauge was in the 

direction of the width. Because the minimum force measurable by the force gauge was 

0.05 𝑁, any reading of 0.00 𝑁 was rounded to 0.05 𝑁; thus, the stiffness increases 

reported in the main text were worst-case (i.e., lowest possible) estimates. 

To measure the torsional stiffness of the fingers in the two-fingered grasper, a custom 

testing device was designed and fabricated. In the device, a finger was coupled to a 

pulley with a radius of 16.25 𝑚𝑚, which itself was coupled via a cable to a digital force 

gauge (Chatillon DFI10 AMETEK Sensors, Test & Calibration, Berwyn, PA) (Figure 

S7). Aside from the finger, cable, and force gauge, all components of the device were 3D 

printed (Objet30 Scholar, Stratasys, Ltd., Eden Prairie, MN). When the force gauge was 

pulled, the finger was twisted about its longitudinal axis. 

 

The force gauge was retracted in 12.5 𝑚𝑚 increments, and force measurements were 

recorded at each increment. The force measurements were multiplied by the radius of the 

pulley to calculate torque. Torque was then plotted against pull distance, and the slope 

was calculated to quantify the torsional stiffness of the finger. 

 

Additional Concepts 
 

Continuously-Variable Stiffness 
 

As first outlined in a previous study (Reference: 17), continuously-variable stiffness can 

be achieved by stacking multiple jamming structures that have independent vacuum 

inputs (Figure S8A). The bending stiffness of the composite structure is determined by 

the number of jamming structures that have vacuum applied (Figure S8B). If the layers 

are compliant and the number of layers within each jamming structure is small, the 

bending stiffness of the composite structure can be selected with high resolution. 

 

Many schemes are possible for distributing layers across the jamming structures. One 

particularly appealing scheme is a binary distribution (i.e., one 2-layer structure, one 4-

layer structure, one 8-layer structure, and so on). With such a scheme, a high dynamic 

range (i.e., the ratio of the stiffness range to the stiffness resolution) can be achieved. 

 

To demonstrate this behavior, a hypothetical case study was conducted (Figure S8C). 

Consider a continuously-variable stiffness structure consisting of thirty layers. Let 𝑘 be 

the bending stiffness of a single layer. Consider the following three methods for 

distributing the layers across jamming structures: 1) the layers are distributed by binary 

numbering across four jamming structures (i.e., one two-layer jamming structure, one 

four-layer, one eight-layer, and one sixteen-layer), 2) the layers are distributed nearly 

equitably across four jamming structures (i.e., two seven-layer structures and two eight-
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layer structures), and 3) the layers are distributed equitably across fifteen jamming 

structures (i.e., fifteen two-layer structures).  

 

The four-structure binary scheme has the superior stiffness range, best-case resolution, 

and maximum dynamic range, as well as a high number of unique stiffness values; 

furthermore, with four vacuum inputs, it is simple to physically implement. The fifteen-

structure equitable scheme has superior worst-case resolution and minimum dynamic 

range, as well as the highest number of unique stiffness values; on the other hand, with 

fifteen inputs, it is challenging to implement. For most applications, a binary scheme may 

be preferred. 

 

Continuously-Variable Damping 
 

From finite element analysis, it was found that the full-slip damping of a many-layer 

jamming structure scales linearly with vacuum pressure. Thus, continuously-variable 

damping can be achieved simply by varying the vacuum pressure on a single jamming 

structure (Figure S8D). 

 

Finite element analysis also showed that the full-slip damping of a many-layer jamming 

structure scales linearly with the number of layers. In practical applications where high 

damping is desired but the pressure gradient is limited (e.g., with vacuum, where the 

gradient is limited to the ambient pressure), the maximum damping value of a 

continuously-variable damping structure can be augmented in advance by increasing the 

number of layers in the jamming structure during fabrication (Figure S8E). Note that the 

maximum damping value can also be augmented by increasing the coefficient of friction 

of the layers. 

 

In other practical applications, damping may be desired over the full range of 

deformation of the jamming structure. However, as described earlier, damping of a many-

layer jamming structure is zero during pre-slip, creating a dead zone for damping; thus, 

the deformation range over which pre-slip occurs should be minimized. As also described 

earlier, the pre-slip stiffness of a many-layer jamming structure scales with 𝑛3, whereas 

the load at which the structure begins to slip (i.e., the maximum load of pre-slip) scales 

with 𝑛 (SI: Finite Element Analysis: Functional Dependencies). In turn, the 

deformation at which the structure begins to slip (i.e., the maximum deformation of pre-

slip) scales with 𝑛−2. Thus, the deformation range over which pre-slip occurs can be 

minimized in advance by again increasing the number of layers in the jamming structure 

during fabrication (Figure S8E). 

 

In conclusion, continuously-variable damping can be achieved by simply varying the 

vacuum pressure on a many-layer jamming structure. In practical applications that require 

high energy dissipation over a maximal range of displacements with a minimal dead 

zone, such a structure should be fabricated with as many layers as possible. 

 

Spring-Based Jamming 
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As an alternative to fluidic and electrostatic means for actuating jamming structures, a 

spring-based actuation method can be implemented (Figure S9). In this method, elastic 

elements (e.g., spring clips) are arranged along the length of a jamming structure that is 

enclosed in an airtight envelope. In its default state, the elastic elements cause the layers 

in the jamming structure to be cohesive, and the structure is stiff. However, when the 

airtight envelope is pressurized, the elastic elements are pushed apart, allowing the layers 

to slip freely; the jamming structure is compliant and can be reconfigured. 

 

A spring-based actuation method has two distinct advantages. First, the maximum 

frictional stress at the interfaces between layers can be set to arbitrarily high values by 

using clips with a higher (or adjustable) spring constant. As described earlier, the load at 

which a jamming structure begins to slip scales with the pressure gradient 𝑃 (SI: Finite 

Element Modeling: Functional Dependencies); thus, the structure can maintain its pre-

slip stiffness over larger loads than a jamming structure that is actuated by vacuum 

pressure. Second, the structure only requires power to change its shape, not to preserve it. 

In applications where the time spent reshaping the jamming structure is much smaller 

than the time spent locked in a particular configuration, this actuation mechanism can 

expend negligible energy. 

 

 

Supplementary Figures 
 

 
Fig. S1: Diagrams used for analytical derivation of governing equations. A) The coordinate system and dimensions for the two-

layer jamming structure are defined. B) To derive the first governing equation, the resultant moment over the cross-section was 

computed. The resultant moment is defined as the integral of the moment of stress about the 𝑥-axis over the cross-sectional area. 

One possible stress distribution at a cross-section is shown. C) To derive the second governing equation, static force equilibrium 

of a thin section of the bottom beam was performed. Stresses were integrated over area to compute force. One possible stress 

distribution about a thin section is shown. D) To derive the third governing equation, static force equilibrium of a thin section of 

the top beam was performed. 
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Fig. S2: Finite element evaluation of analytical model. Analytical and finite element models were constructed of a two-layer 

jamming structure in cantilever bending subject to a uniform distributed load. The models had identical dimensions, material 

properties, boundary conditions, and loads. The analytical model predicted finite element results with high accuracy in all cases. 

A) Elastica are compared for six equal load increments from zero load to the maximum load. B) Load-versus-deflection curves 

are compared. Recall that the effective stiffness 𝑘 is equal to the slope. C) Dissipated-energy-versus-deflection curves are 

compared. Recall that the effective damping 𝑏 is equal to the slope. D) Curvatures are shown for the elastica of the two-layer 

analytical model. Note that the curvature crosses zero (i.e., reverses sign) for moderate loads and above. E) Curvatures are 

shown for the two-layer finite element model. The curvature profiles are predicted closely by the analytical model. F) Curvature 

reversal was also observed for finite element models (Top) and experimental samples (Bottom) of many-layer jamming structures 

in three-point bending. Sharp curvature reversal can be seen near the supports.  

 

 
 

Fig. S3: Finite element mesh refinement study and slip visualization. A) A mesh refinement study was performed for a twenty-

layer finite model in three-point bending. A uniform mesh of square elements was used, and the number of elements across the 

thickness of each layer was varied between two and four. The resulting force-versus-deflection curves were nearly 

indistinguishable; thus, two elements across the thickness was sufficiently accurate. B) The many-layer finite element models 

could illustrate slip between adjacent layers. Slip for a typical twenty-layer model in three-point bending is shown here. During 

the pre-slip regime, nodes along adjacent interfaces were coincident. C) During the full-slip regime, nodes that were initially 

coincident moved relative to each other. 
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Fig. S4: Fabrication process for real-world jamming structures. The fabrication process is illustrated for a typical sample of a 

many-layer jamming structure. A) A sheet of copy paper was placed on the bed of a laser cutter, and strips were cut along the 

machine direction. B) Acrylic was placed on the bed of the laser cutter, and a frame was cut. C) The frame was coated in PTFE 

tape and positioned on the bed of a vacuum former. A thin sheet of TPU was formed to the frame. D) The frame and TPU sheet 

were positioned on the bed of a heat press. The strips of paper and a segment of TPU tubing were placed inside, and the TPU 

sheet was folded to cover the contents. E) Aluminum blocks with a circular channel were arranged on the top and bottom of the 

end of the jamming structure, sandwiching the TPU tubing between the two sides of the TPU envelope. F) Fabrication of the 

sample was completed. 

 

 
 

Fig. S5: Testing setup and repeatability analysis for experimental characterization of jamming structures. A) The jamming 

structure was placed in a test fixture for three-point bending, which consisted of a loading anvil and two roller supports. The 

loading anvil was attached to a load cell, and the jamming structure was connected to a vacuum regulator via flexible tubing to 

mitigate parasitic loading of the tubing on the sample. B-F) Testing results for five twenty-layer jamming structures are shown in 

sequence. For each sample, a mean curve is plotted, along with a shaded error bar that spans ±1 standard deviation from the 

mean. The maximum standard deviation at any deflection is given. The structures were highly repeatable from trial to trial. G) 

The mean curves for all five samples were then aggregated. A mean curve of the mean curves is plotted, along with a shaded 

error bar. The structures were highly repeatable from sample to sample. 
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Fig. S6: Finite element predictions and experimental characterization of damping in many-layer jamming structures. 

Jamming structures were loaded in three-point bending and subsequently unloaded. Transverse force is plotted against maximum 

deflection; dashed lines indicate finite element predictions, and colored lines denote experimental results. Finite element models 

accurately predicted experimentally observed hysteresis. The area under the hysteresis curves is equal to the energy dissipated 

over the loading cycle, and the effective damping 𝑑 is equal to the energy dissipated per unit deflection. A) The number of layers 

in the jamming structures was varied. B) Vacuum pressure was varied. No finite element data is provided for the 0 𝑘𝑃𝑎 case, as 

the model was unstable. C) Coefficient of friction was varied. No experimental data is shown, as coefficients of friction could not 

be precisely varied experimentally. 

 

 

  
 

Fig. S7: Testing device for measuring the torsional stiffness of a variable kinematics system. A) Front view of the testing 

device. A variable kinematics structure is hung vertically. Its upper end is bolted in place, and its lower end is coupled to a cable 

that is connected to a force gauge. B) Zoom view of the lower end of the testing device. Two plastic pins are embedded in the 

variable kinematics structure and fastened to a pulley, and the cable is wound around the pulley. When the cable is pulled, the 

pulley spins around a bushing, and the variable kinematics structure is twisted about its longitudinal axis. C) Physical 

implementation of the testing device. The variable kinematics structure was originally oriented as shown in A and B; its lower 

end has now been twisted by approximately 80°. 
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Fig. S8: Conceptual examples of continuously-variable stiffness and damping structures. For simplicity, transition regimes 

between the pre-slip regime and the full-slip regime are not depicted. A) In one implementation of continuously-variable stiffness, 

four jamming structures are stacked and bonded. Each jamming structure has an independent vacuum input and contains three 

layers of compliant material. B) By applying or relieving vacuum from individual jamming structures, the pre-slip bending 

stiffness of the composite structure may be selected from one of five possible values. C) For a continuously-variable stiffness 

structure consisting of thirty total layers, three different ways are considered for distributing the layers across multiple jamming 

structures. Quantity 𝑘 is the bending stiffness of a single layer. A four-structure binary scheme is preferable over equitable and 

near-equitable schemes, as it has the best stiffness range, resolution, and dynamic range, and it is simple to physically 

implement. D) Conceptual load-versus-deflection curves are shown for a continuously-variable damping structure. (Because it 

may be desirable to use such a structure over multiple cycles, a full hysteresis loop is shown; the structure is loaded, unloaded, 

and then loaded and unloaded in the opposite direction to return to zero deflection.) Increasing the vacuum pressure augments 

the dissipated energy (i.e., the area enclosed by the hysteresis loop) and damping (i.e., the dissipated energy per unit deflection). 

E) Increasing the number of layers again augments damping. Furthermore, it minimizes the range of deformation over which the 

pre-slip regime occurs, maximizing the range over which damping is nonzero. 

 
Fig. S9: Conceptual example of a spring-based jamming structure. A many-layer jamming structure enclosed in an airtight 

envelope is connected to a compressed air source and has spring clips arranged along its length. When no air is supplied, the 

spring clips cause the layers to be cohesive, and the structure is stiff. When air is supplied, the clips are pushed open, and the 

layers can slip freely. The structure is then compliant and may be reconfigured. 
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Supplementary Tables 
 
Table S1: Functional dependence of performance metrics on design inputs for many-layer jamming structures. Regression 

analysis was used to determine the functional dependence of stiffness and damping on the number of layers, vacuum pressure, 

and coefficient of friction. The relationships between the parameters were well-described by best-fit polynomial functions of the 

specified order. Root-mean-square (RMS) error is provided for each polynomial relationship. 

 Pre-slip stiffness Full-slip stiffness Full-slip damping 

 Polynomial 

order 

RMS error 

[
𝑁

𝑚𝑚
] 

Polynomial 

order 

RMS error 

[
𝑁

𝑚𝑚
] 

Polynomial 

order 

RMS error [𝑁] 

Number of 

layers (n) 

3 0.0001 1 0.0006 1 0.0238 

Vacuum 

pressure (P) 

0 0.0065 1 0.0028 1 0.1326 

Coefficient of 

friction (μ) 

0 0.0072 2 0.0020 1 0.0788 

 

 

Supplementary Videos 
 

Video S1: Demonstration of real-world jamming structures. A twenty-layer jamming 

structure was fabricated, and 85 𝑘𝑃𝑎 of vacuum pressure was selectively applied. Three distinct 

functions are demonstrated: tunable stiffness, in which it can change its bending stiffness by 

several orders of magnitude; shape-locking, in which it can preserve an arbitrary shape; and 

structural plasticity, in which it can be plasticly formed to arbitrary objects in its vacuumed state 

due to energy dissipation during the full-slip regime. (Note that the shape-locking function is 

intended to be used with an actuated soft structure, as in Figure 4E-F. Also note that in the 

structural plasticity demonstrations, strong curvature reversal is exhibited at the boundaries of 

the plastically deformed regions. See SI: Analytical Modeling: Curvature Reversal for more 

details.) 

 

Video S2: Finite element model of variable kinematics systems. A variable kinematics system 

is subject to an increasing moment load with and without vacuum. With vacuum off, the system 

displays continuous deformation with nearly constant curvature. With vacuum on, the system 

exhibits discrete deformation with joints; rigid sections with low curvature are connected by 

compliant sections with much higher curvature, approximating the kinematics of a traditional 

articulated manipulator. The discreteness (i.e., the ratio of peak curvature to mean curvature) 

becomes increasingly pronounced at higher loads. 


