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Abstract 

 

Medical Tactile Imaging uses an array of pressure sensors mounted on a rigid scanhead to 

record the surface pressures that result when the scanhead is pressed into biological 

tissue.  The resulting tactile data quantifies palpation, and contains information on the 

stiffness of the underlying tissue as well as the geometric distribution of the stiffness.  

Tactile imaging shows promise for clinical use in breast palpation and in assessing tissue 

properties in organs such as the liver.  To date, tactile information has been used to 

estimate tissue geometry but not stiffness.  We develop a linear algorithm to estimate the 

salient tissue parameters from a simple model of a solid lesion attached to the substrate of 

soft tissue.  The parameters of interest are the background stiffness and thickness, and the 

stiffness and diameter of a round lesion.  The algorithm is developed using finite element 

models, and results obtained on physical models show errors of 5.4% in estimating lesion 

modulus.  This work was extended to the case of a solid lesion floating in soft tissue, 



 

 iv

which encompasses cases of pathology in a large breast or pathology in the liver or 

prostate.  Parameter estimation from finite element data showed errors of 12% for the 

modulus of large lesions.  Extending this model to hollow areas in soft tissue, such as the 

large veins in livers, resulted in errors of 25 and 13% for estimating the size and depth of 

veins in perfused porcine livers.  Given the success of applying a linear algorithm to the 

relationship between tissue parameters and tactile information, we study the impulse 

response of the system to explore the limits of tactile imaging using the currently 

available scanheads.  Employing tactile imaging clinically in breast cancer screening 

requires registration of tactile images to other modalities such as mammograms.  A 

deformable registration algorithm is developed on finite element models and applied to a 

physical model with less than 2.4 mm registration error.  A preliminary clinical study 

shows good registration between the tactile and mammographic images, and holds 

promise for increasing the positive predictive value of breast cancer screening. 
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Chapter 1 

Introduction 

 

 

Tactile Imaging uses an array of passive pressure sensors to map the surface pressures 

that result from indenting the tactile imager into the surface of a soft material.  The field 

of medical tactile imaging evolved out of a recognition that pathologies in the human 

breast can manifest as stiffness in the otherwise relatively soft organ [Frei 78, Cundari 96, 

West 99].  The breast in particular has been a driving force behind tactile imaging 

advancement, since it is an easily accessible organ with pathologies that can be palpated 

or imaged using tactile imaging. 

 

 

1.1.  Tactile Imaging 

 

The human sense of touch is an established method for detecting pathologies that 

manifest as a stiff area under the surface of a soft organ.  Clinical palpation, however, has 

been shown to result in qualitative information highly dependent on the practitioner 

[Evans 99, Jatoi 97, Pennypacker 99].  A method to noninvasively and reliably measure 

the mechanical properties of soft tissue and map embedded structures has been the 
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driving goal for several researchers [Hendrickson 03, Kita 01, Maier 98, Sanada 00, 

Sarvazyan 97, West 99].  Tactile imaging is the most direct way of mechanically 

implementing the palpation performed clinically. 

 

In the last 25 years several advances in the field of tactile imaging have been made, 

particularly in devising better sensors in different shapes and sizes for various organs 

besides the breast.  Tactile imaging has been shown to provide a method to quantify 

palpation [Wellman 99b], however the field is still in its infancy and is not yet in 

widespread clinical use. 

 

Examples of tactile imagers are shown in figure 1.1.  The exact size and shape of the 

tactile imager varies with the specific application it was intended for, however due to 

manufacturing limitations the pressure arrays on tactile imagers used in modern studies 

are mounted on a cylindrical surface with a radius of curvature in at most only one 

direction. 

 
The most common use of the tactile information contained in the individual frames of 

pressure data collected is the generation of a two-dimensional Tactile Map [figure 1.2].  

In tactile mapping, the frames are projected onto a flat representative plane using their 

spatial position information.  Overlapping pressure information is averaged to create the 

Tactile Map [figure 1.3].  The resulting Tactile Map contains information about both the 

underlying material modulus and the geometry of the stiffness distribution.  Aliasing can 

occur wherein two distinct geometry and stiffness profiles generate the same tactile map.  

Wellman [Wellman 99a] showed that even for the simple case of a hard round lump in a 
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soft tissue, cases arise where a small hard lump generates the same tactile map as a larger 

softer lump to within 0.5% mean square difference. 

 
 
 
 
 

Array of
Pressure Sensors

 
Clinical Tactile Imager 

a 

Pressure
Sensors

Linear Driver

Indent
into

tissue

 
Laboratory Tactile Imager 

b 
 
Figure 1.1.  Tactile Imager Scanheads.  (a)  Tactile Imager built for clinical use and used 
in the data collection of Chapter 5.  Pressure is recorded by an array of 16x26 resistive 
pressure sensors, and the position of each pressure frame is recorded magnetically.  (b) 
Tactile Imager used in the model data collection of Chapters 2 and 3.  This imager has a 
16x16 array of capacitive pressure sensors.  The position of the pressure frames can be 
recorded in one dimension by a linear driver as shown here.  Alternately, the scanhead 
can be removed and the position recorded in three dimensions (6 coordinates) by a 
magnetic tracker. 
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Figure 1.2.  Sample Tactile Map.  This map was obtained in short vertical swipes using 
the tactile imager in figure 1.1b.  Note the hard lesion in red and yellow in the top left of 
the image.   
 
 
 

Scanning Dire
ctio

n

Tactile
Frames

Tactile Map

 
Figure 1.3.  Generating a Tactile Map from Tactile Frames.  Each frame is localized in 
space, projected onto a 2-D plane that best fits the spatial data, and the overlapping data 
is averaged to create the map. 
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Despite aliasing issues, tactile imaging is a valuable tool for quantifying palpation 

[Wellman 99b].  Tactile imaging can indicate the presence of stiff areas in soft tissues 

and yield quantitative information about these areas of increased stiffness [Wang 99].  

Tactile imaging has been shown to be more sensitive to changes in lesion size than 

clinical palpation [Wellman 01].  Also, the tactile map has been shown to be repeatable 

for a range of users, and thus corrects a main fault cited for clinical palpation.  The use of 

tactile imaging has been explored in various medical fields, including breast, liver, and 

prostate studies [Sarvazyan 97]. 

 

 

1.2.  Motivation 

 

Tactile imaging has been shown to reduce the subjectivity of clinical palpation, in that the 

tactile image generated is relatively clinician-invariant [Wellman 01].  The tactile map 

generated, however, has not yet been linked quantitatively to the underlying tissue 

properties such as stiffness.  This information promises to be of clinical relevance to the 

detection and management of disease [Kopans 00, Ronnov-Jessen 96].  In this work we 

seek to come up with a method for estimating these underlying tissue parameters from the 

information collected during tactile imaging. 

 

A direct application of this parameter estimation is breast cancer screening.  The current 

gold standard for breast cancer detection is based on the difference in radioopacity of 

normal and pathological tissues, however breast stiffness and the presence of lesions are 
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correlated to breast health [Jatoi 97].  Tactile imaging holds promise for improving breast 

cancer screening by quantifying palpation and adding a repeatable, reliable imaging 

modality based on tissue mechanical properties.  Therefore, in this study, we also seek a 

method to integrate tactile imaging with mammography, so that combined with the tissue 

parameter extraction discussed above a foundation will be laid for improving breast 

cancer screening. 

 

 

1.3.  Thesis Scope and Outline 

 

The purpose of this work is to further the utility of tactile imaging by expanding the 

scientific understanding of tactile information.  The research presented here concerns two 

aspects of tactile imaging, which can be applied together in a clinical setting to aid in 

breast cancer screening by providing quantitative information not currently available 

clinically.  The first part concerns extracting absolute tissue information from the tactile 

data, specifically information such as size and stiffness of embedded inclusions.  The 

second part uses tactile maps collected in a screening setting and concerns the utility of 

these maps to a screening radiologist. 

 

The rest of this chapter provides background information detailing specifics on the tactile 

imagers used in this study.  An overview of breast cancer and the imaging modalities 

currently used in screening are presented to provide context for the scope of most of the 

work presented in this thesis.  Other organs, which may benefit from the application of 
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tactile imaging, are also discussed since the work presented here will be applied to organs 

besides the human breast. 

 

Various aspects of parameter estimation from tactile information are presented in the 

following three chapters.  Chapter 2 deals with the basic problem of a round lesion 

attached to the substrate of a soft layer of tissue.  We attempt to find a closed form 

analytical solution to the problem and discuss the work of other researchers in this topic.  

A new algorithm, which can estimate the underlying stiffness and geometry parameters 

of such a structure, is developed on models with parameters in the range of physiological 

breast parameters.  Tactile Scanning, a new way of examining each frame of tactile 

information, is presented, and forms a basis for the work in this chapter.  The algorithm is 

tested both on finite element data and physical models.  The results show an 

improvement upon the work of previous estimation attempts.   

 

Chapter 3 extends the utility of the parameter estimation algorithm developed in chapter 

2 to a more complex problem.  Specifically, this chapter considers the case of a lesion 

embedded in tissue but not attached to a rigid substrate.  With only a slight modification, 

the algorithm is shown effective on finite element data of this case.  This estimation work 

is extended to include lesions softer than the background, such as the nonpathological 

case of large hollow vessels in liver tissue.  Porcine livers are imaged with the laboratory 

tactile imager, and used as a physical test bed for the algorithm developed. 
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Chapter 4 concerns the general case of estimating parameters of an underlying tissue 

stiffer than the surface layer.  We characterize the tactile scanning system as a linear 

system and find its impulse response over a range of tissue parameters.  This allows for 

continuous estimation of the underlying parameters, while providing a better 

understanding of the limitations of tactile scanning. 

 

The work presented in chapter 5 concerns registering tactile maps of the breast to 

mammograms.  This requires an understanding of the different types of deformation 

inherent in obtaining the two images.  We develop models to quantify the deformations 

resulting from the different compressions, and use this information to generate an 

algorithm to register tactile maps to their corresponding mammograms.  The algorithm 

was applied clinically in a small study, and can be applied more widely to study a 

possible increase the positive predictive value of screening mammography. 

 

 

1.4.  Background 

 

1.4.1.  Tactile Imagers 

 

The two tactile imagers used in this study are shown in figure 1.1.  The radius of 

curvature for both sensors is 3.8 cm, which is optimized for recording maps on the human 

breast [Wellman 99].  The clinical tactile imager (figure 1.1a) uses a 26x16 array of 

resistive pressure sensors, each 1.5mm apart on center, to record tactile frames at 16Hz.  
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The location and orientation of each tactile frame are determined by a magnetic tracker 

incorporated into the plastic handle.  The tracker must work in the vicinity of the 

magnetic transmitter, and in the absence of electromagnetic interference, the position of 

each frame can be determined to an accuracy better than 2mm for a 30cm work area.  The 

resistive pressure array of this imager is prone to a random noise caused by the 

mechanics of the resistive ink in each sensor, and as such even with calibration we can 

expect gaussian noise with a standard deviation of 10% of the signal in each tactile frame 

collected. 

 

The laboratory tactile imager used in this study is shown in figure 1.1b.  This imager 

employs a 16x16 array of capacitive pressure sensors spaced 2mm apart on center to 

record tactile frames at 10Hz.  This imager has two modes of operation, depending on 

whether the tactile information sought is to be collected on a straight line or in a 2-D 

map.  For maps collected in a straight line, the imager can be mounted on a linear driver, 

whose positional accuracy is less than a millimeter.  For tactile information collected 

anywhere in space, the same magnetic tracker as in the first tactile sensor is utilized.  The 

capacitive pressure sensors are less prone to random noise than the resistive sensors, 

however noise upwards of 5% is commonly found in practice. 
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1.4.2.  Breast Anatomy and Pathology  

 

The breast, by virtue of being an external organ, is an ideal candidate for full tactile 

imaging, and the great social impact and high prevalence of breast disease are good cause 

to examine the role that tactile imaging may play in breast cancer screening and 

detection.  In this section we present an overview of the anatomy and pathology of the 

human breast to provide context for the work of this thesis. 

 

Anatomy 

 

The human female breast, after puberty and before menopause, is made up of glandular 

tissue (the mammary glands), adipose tissue (fat cells), and supporting tissue (stroma, 

mainly collagen and elastin fibers).  The general anatomy of the breast is shown in figure 

1.4.  The glandular tissue, located in a cone with its apex at the nipple, is the site of milk 

production.  The adipose tissue, in layers under the skin and above the chest wall, is the 

greatest contributor to the general shape and size of the breast.  The supporting tissue is 

thin and sparse and affects mainly the gross appearance and motion of the breast.   
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Figure 1.4.  General anatomy of the human female breast, after puberty and before 
menopause.  The glandular tissue is essentially a cone-shaped area under the nipple, with 
an extension superolaterally into the axilla (towards the armpit) to form the axillary tail.  
The adipose tissue (fat) naturally occurs in layers under the skin and above the chest wall.  
This figure also shows a small lesion growing from the cells that line a terminal gland. 
 
 

Menopause marks the conclusion of replacement of the glandular tissue by fat in a 

process called involution.  Although there is a great variety in timing between 

individuals, involution of the breast begins at about 30 years of age and continues until 

menopause during a period called perimenopause.  Involution manifests as the glandular 

component atrophies and is replaced in discrete sections by adipose tissue until the entire 

glandular component is replaced.  The other components of the breast also undergo 

menopausal changes.  Specifically, the volume of adipose tissue increases, while the 

elastic and collagen fibers weaken.  

 

Examination of the breast by palpation yields very different results depending on the 

relative age of the subject.  A premenopausal breast has a high glandular tissue 

component under the superficial adipose tissue, leading to an inhomogeneous texture.  
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Postmenopausal breasts, on the other hand, are far more uniform, and the adipose tissue 

is softer and easier to palpate in searching for stiff pathologies. 

 

Mechanical Properties 

 

Biological tissues are generally viscoelastic and strain-hardening [Fung 93], and the 

tissues found in the human breast are no exception [figure 1.5].  Under slow 

manipulation, however, (~1Hz) viscoelasticity effects are minimal [Wellman 99] and can 

be ignored for all of the breast tissues in question.  The supporting tissues plays a role 

when the breast is under tension, however under compression they offer negligible 

structural support, and naturally occupy such a small volume of the breast that their 

presence under compression can be ignored.  Local mechanical properties, especially 

with the breast supported against gravity and examined in compression, are thus 

determined almost entirely by the glandular and adipose tissues.  Adipose tissue exhibits 

linear elastic behaviour through strains of 15% and in this linear regime has a Young’s 

modulus of 15±4kPa.  Glandular tissue exhibits linear elastic behaviour through strains of 

6% at a Young’s modulus of 45±6kPa [Krouskop 02, Wellman 99].   
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Figure 1.5.  Breast Tissue Modulus Variation (data from Wellman 99).  Legend:  Fat 
(normal adipose tissue), Gland (normal glandular tissue), FA (benign Fibroadenoma), 
IDC (malignant Intraductal Carcinoma), Pap (precancerous Papilloma). 
 
 

Pathological tissues are even stiffer than glandular tissues, and so can be felt as distinct 

under palpation, and viewed as stiffer in tactile imaging.  The clearest distinction is made 

in postmenopausal breasts in which the background is almost entirely soft adipose tissue, 

however due to the distinct modulus, pathologies are often felt under palpation even in 

premenopausal breasts. 

 

Roots of Pathology 

 

Glandular tissue is the most metabolically dynamic tissue in the breast, increasing and 

decreasing its volume and cellularity with menstruation and pregnancy.  This property of 

glandular tissue results in this tissue being the source of almost all pathologies indigenous 

to the breast [Lester 99]. Problematic pathologies are detected as they grow to 

differentiate themselves from their glandular tissue source.  It is suspected that most 

pathologies, especially malignant tumors, have an initial dormant phase of little growth, 
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where they remain less than 2mm in size [Grundfest 88].  After a variable amount of time 

(which can be as long as decades) they begin to grow rapidly.  As the glandular tissue 

involutes, the pathology does not, and remains behind as an island of stiff tissue among 

soft fat.  The latency in the active growth phase is the reason that most breast cancers are 

found in post-menopausal women who have little to no glandular tissue left to generate 

new growths. 

 

Breast Cancer Statistics 

 

In America, the chances that a woman will develop breast cancer in her lifetime (assumed 

to be 85 years) is now one in eight [Imaginis 03].  Breast cancer accounts for one-third of 

new cancer cases, making it second only to skin cancers as the most common cancer in 

women.  Of these 175,000 new cases of invasive cancer each year, more than 43,000 

women will die from the disease, making breast cancer the leading cause of cancer death 

of women next to lung cancer.  Men, too, are not spared from this disease, with 1,300 

new cases diagnosed each year in the United States, and 400 deaths.  The occurrence of 

breast cancer is not uniform across each region of the breast, with a disproportionate 

number of cases found in the upper outer quadrant of the breast [figure 1.6].  The age 

breakdown of breast cancer cases is shown in figure 1.7. 
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Figure 1.6.  Incidence of breast cancer in the nipple and four quadrants of the breast.  The 
upper outer quadrant has a disproportionate number of cases. 
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Figure 1.7.  A woman’s risk of developing breast cancer in age brackets indicated.  Data 
from Komen [03]. 
 

A woman’s aggregate risk of a breast cancer diagnosis increases as she ages, with a large 

increase around age 50.  From table 1.1 we see that this coincides with the modal age of 

menopause. 

Table 1.1.  Onset of menopause.  Data from [Taber 97] 
By age… % of women 

47 25 
50 50 
52 75 
55 95 
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From this we see that the vast majority of breast cancer cases occur in postmenopausal 

women, whose breasts are composed almost entirely of fat.  The high modulus contrast 

between the pathology and the background tissue in postmenopausal women make this an 

ideal situation for tactile imaging.  The high prevalence of breast cancer in modern 

society provides us not only with a disease for which we can easily find clinical subjects, 

but also with a disease in which even a small percentage increase in the effectiveness of 

clinical care can make a large impact on many lives. 

 

 

1.4.3.  Imaging Modalities for Breast Cancer Screening 

 

Until more than halfway through the 20th century, the only screening tool for breast 

cancer was feeling for lumps in the breast with the fingerpads.  In 1963, a large screening 

mammography study was funded in New York [Friedlander 99] and a 30% decrease in 

long-term mortality from breast cancer was observed in the participants.  Although no 

one imaging technique is perfect (or else one might argue that the mortality rate would be 

zero) mammography offered both a new tool which can detect lesions by a different 

criteria than was previously available, and also, by mandating screening, it brought about 

a greater awareness of breast cancer, which at the very least leads to better self 

examinations, if not more thorough clinical assessments.   

 

Today, the triad of self breast exam, clinical breast exam, and mammography are the 

mainstay of breast cancer screening.  It is recommended that every postpubertal woman 
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performs a self exam monthly, and has a clinical breast exam at least yearly [ACS 03].  

Biannual mammograms are suggested for women 40-50 years of age (with some 

organizations recommending yearly), and yearly thereafter.  Despite this screening 

regimen, however, breast cancer rates are still very high, and missed or delayed diagnosis 

of breast cancer is the leading cause of medical malpractice suits [Pennypacker 99]. 

 

Breast Self Exam 

 

It is recommended that all women perform breast self examination (BSE) monthly, to 

develop a routine and a knowledge of their breasts, so that they can better feel any 

changes.  A breast self exam entails visual inspection for any changes in the breast 

contour (since pathology can sometimes affect the skin or ligaments of the breast, causing 

distortion) and manual palpation of the bulk of the breast.  A recent study concluded that 

an average woman would have sensitivity and specificity scores of 46% and 61%, 

respectively, but that with training on proper technique and what to look for, these 

numbers change to 59% and 57 % (specificity decreases due to the increase in total 

number of lumps found) [Barton 99].  Although the percentage of women who perform 

them regularly is not known, and is expected to be quite low.   

 

Clinical Breast Exam 

 

A clinical breast exam (CBE) is similar to the self breast exam that women should 

perform on themselves monthly.  As with BSE, a CBE begins with the clinician 
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observing the movement of the breasts with arm motion while the woman sits or stands.  

The woman then lays supine and the clinician manually palpates the breast by pressing 

gently with the pads of the fingers until all the breast tissue is covered.  The clinician 

feels for nodules which exhibit the three D’s: Discrete, Different, and Dominant, 

although most diagnoses from CBE are based on qualitative experience.  Sensitivity and 

specificity of CBE are estimated at 54% and 94%, respectively [Barton 99]. 

 

The causes of palpable breast lumps can be broken down as follows [Tavassolis 96] 

• fibrocystic changes 40% 
• no major pathology (i.e. normal) 30% 
• benign diseases 13% 
• cancer 10% 
• fibroadenoma 7% 

 

It has been shown that a trained clinician can feel a lump as small as 3mm in diameter 

[Pennypacker 99], however the diagnostic ability of the CBE is highly dependent on the 

clinician administering the test.  A proper CBE takes time and can make some patients 

and clinicians feel uncomfortable, and is not often performed in full. 

 

Mammography 

 

Mammography works on the same principle as any X-ray, though since the breast is 

solely made up of soft tissue, it is a very low dose exposure.  The breast is compressed 

between two flat parallel plates to obtain the maximum tissue spread and thinnest profile 

possible.  Photons in the X-ray frequency range pass through the top plate, through the 

breast tissue, and expose photographic film in the bottom plate.  The X-rays pass through 
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some tissue preferentially over others.  Regions of calcification, for example, are 

considered “radio-opaque”, and the x-ray image (which is effectively a photo negative) 

will remain white under these regions.  Since mammography uses very low doses, a small 

calcification (on the order of a mm) can easily be picked up.  Other areas of 

radiologically dense tissue, however, prove to be more difficult, and are subject to the 

experience and expertise of the radiologist reading the film.  A clinically occult 

carcinoma can appear as microcalcifications or a stellate mass on mammography, and so 

in general, any areas of calcification and most irregular densities are tagged as suspicious 

and are recommended for biopsy.  If a region of calcification that is clinically occult is 

excised, the excised specimen is reimaged after pathological examination to confirm that 

the lesion of concern was indeed excised. 

 

Although the reading of mammography films remains highly subjective, there are many 

that believe that mammography “is the most accurate imaging technique available for the 

diagnosis of breast cancer” [Hermann 92].  In fact, there are many lesions which it cannot 

pick up, and many false positives, as benign densities often appear as opaque as cancers 

on film.  This is reflected in the sensitivity and specificity numbers of about 80% and 

40%, respectively.  Friedlander [99] summarized the strengths and weaknesses of 

mammography by stating: 

 

“Mammography continues to be the best screening tool for the detection 

of breast abnormalities, especially for older women.  It appears to have 
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limitation for those with dense breast tissue or women using hormone 

replacement.”  

 

Despite its limitations, and the fact that it is very uncomfortable (and even painful) for 

many women, mammography continues to be the most common screening tool used for 

breast cancer. 

 

 

Tactile Imaging and Breast Cancer Screening 

 

Although breast cancer screening ideally involves information from both palpation and 

mammography, the information from the various imaging modalities is rarely 

assimilated.  The manner in which each modality is performed plays a large role in this.  

Clinical breast exams are performed by a clinician with the woman laying supine.  

Mammography, on the other hand, is performed by a radiologist with the woman 

standing.  Combining the qualitative information from the ventral-dorsal plane with the 

more quantitative radiographic information obtained in an entirely different plane is 

difficult at best, and due to the different practitioners is not often done in a screening 

setting.  Tactile imaging stands to bridge the gap between the two pieces of information, 

by providing a quantitative image of palpation that can be obtained in the same plane as a 

mammogram. 

 

 



Chapter 1.  Introduction  Galea 

   21

 

1.4.4.  Other Organs 

 

Tactile information is useful in organs other than the breast, particularly in solid organs 

such as the liver, spleen, and prostate.  Because of the liver’s size and the prostate’s 

location, palpation is regularly used in assessing the health of these organs.  A prostate 

screening exam consists of a blood analysis and manual palpation of the prostate, while 

in cases of liver surgery, distinct pathology under the surface is located by the surgeon 

using manual palpation to outline the area of stiffness.  Here we present a basic overview 

of liver anatomy and pathology as background for the work in this thesis.  The breast and 

liver provide ideal first test-beds for establishing the utility of tactile imaging since a 

direct relationship between modulus and pathology for both the parenchyma and 

embedded inclusions is currently being explored in these organs [Kopans 00, Sanada 00].   

 

Anatomy and Pathology of the Liver 

 

The average human adult liver is wedge-shaped and weighs 1200-1600g [figure 1.8].  Its 

thickness varies from 6-12 cm at the midclivicular line to 4-8 cm at the midsternal line.  

Its parenchyma is composed of isotropically distributed lobules, and is contained in a thin 

fibrous capsule that surrounds the entire organ.  The liver parenchyma, like most 

biological tissues, exhibits viscoelastic behaviour and a nonlinear stress-strain curve.  In 

the linear regime under slow compression, its modulus can be approximated as 10kPa 

[Ottensmeyer 01]. 
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Figure 1.8.  Human Liver Anatomy.  The liver parenchyma is macroscopically 
homogenous and isotropic, save for the few large vessels that run through the center of 
the liver.  The arteries, bile ducts, and portal vein (“portal triad”, entering from the 
bottom) are well-enmeshed with the liver parenchyma, however the hepatic vein (large 
vessel leaving through the top) presents a cylindrical gap in the tissue, due to its low 
blood pressure and large volume.  The arrows indicate the direction of fluid flow.  The 
green sac at the bottom of the liver is the gall bladder. 
 

 

The liver receives 25% of the total body blood flow in its task of eliminating toxins from 

the blood.  As such, it has an extensive system of vessels, both at high pressure (hepatic 

artery) and at low pressure (portal vein, hepatic vein, bile duct).  These vessels enter the 

liver as relatively large tubes, and in the case especially of the hepatic vein, continue to 

be a significant part of the liver cross-section at distal locations [figure 1.9].  The shape of 

the hepatic vein is actually determined by the cylindrical void created for it by the 

hepatocytes, and this void plays a role in determining the mechanical properties of the 

liver. 
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Figure 1.9.  Porcine Liver Lobe.  This is one of the five distinct lobes of a porcine liver.  
Thin slices (right) of the lobe show the large hepatic veins that run along the main axis of 
the liver and remain open even without perfusion. 
 
 
 

Liver cirrhosis is a sadly common condition which leads to liver failure and is one of the 

top ten causes of death in the Western World [Crawford 99].  Cirrhosis leads to an 

increase in diffuse liver stiffness due to the formation of scars between the lobules.  Each 

scar is very small and thin, however their abundance leads to changes in the gross 

properties of the liver.  Studies have shown that the extent of disease correlates well to 

the modulus of the liver [Sanada 00].  Most other liver pathologies manifest locally, 

generally resulting in round lesions stiffer than the background parenchyma.  These are 

differentially diagnosed from blood tests, symptomatic assessment, and x-rays, and are 

excised by surgeons who feel for their round, stiff, presence under the liver surface with 

their fingers. 
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Figure 1.10.  Advanced Liver cirrhosis with hepatocellular carcinoma.  The overall 
stiffness modulus of the liver is greater than normal.  The abnormal nodules are stiffer 
yet, and started out much smaller. 
 

 

Porcine organs, including the liver, have been used extensively as a testbed for the study 

of their human counterparts [Carter 01, Ottensmeyer 01].  Porcine organs in general are 

structurally and functionally similar to their human counterparts, however porcine livers 

are more collagenous than human livers, and as such are characteristically stiffer, with a 

modulus in the elastic regime of 15 kPa.  Porcine livers also display a distinctly lobulated 

structure, which each lobe containing its own venous structure.  The large portal veins in 

the porcine liver traverse the middle of the lobes’ parenchyma [figure 1.9].  Smaller 

venules branch off the main vein at sharp angles to supply the peripheries of the 

individual lobes. 
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Chapter 2 

Fixed Lesion Parameter Estimation 

 

 

2.1.  Introduction 

 

Breast stiffness is a recognized indicator of breast health [Ronnov-Jessen 96].  Absolute 

stiffness changes over the course of a woman's reproductive life, and deviations from 

expected stiffness ranges can signal an underlying pathology.  Diffuse granularity and 

increased background stiffness are hallmarks of fibrocystic changes [Lester 99], and may 

indicate an increased risk for breast cancer [Thomas 97].  A discrete lump can indicate 

the presence of local pathology, be it a fibroadenoma, cyst, or malignancy.  These 

different pathologies present with varying physical characteristics such as stiffness and 

mobility [Kopans 00]. 

 

Using palpation to feel breast stiffness locally (as in a lump) and diffusely is an 

established screening mechanism for assessing breast health [Evans 99].  Women are 

advised to obtain Clinical Breast Exams (CBE) at regular intervals [Jatoi 97] and to 

perform Breast Self Exams (BSE) at home [ACS 03].  Reproducibility and efficacy of 
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CBEs is limited by the experience of the clinician and by human variability [Pennypacker 

99, Lavin 80]. 

 

A method for noninvasively estimating breast stiffness and lesion size and stiffness holds 

promise of clinical utility.  As discussed in chapter 1, different breast pathologies occupy 

different regions on the stiffness scale, and so knowing the stiffness of a lesion can help 

in lesion identification and disease management.  Lesion size, as well, is an important 

factor in assessing the extent of disease.  Even in the absence of a lesion, the general 

stiffness of the breast may correlate well with breast cancer risk [Kopans 00]. 

 

Tactile images contain modulus and geometry information.  In this chapter we develop an 

algorithm for using tactile information to quantify parameters of soft tissue with stiff 

inclusions in a simple geometry that models many cases of breast pathology.  In 

subsequent chapters, we will expand the algorithm to more complicated cases that 

encompass other cases of breast pathology as well as structures in other organs.  Along 

the way, we introduce a new way of handling tactile data, called Tactile Scanning, that 

will enable us to estimate the parameters of interest from tactile information. 

 

 

2.1.1.  Problem Statement 

 

With few exceptions, breast pathologies originate in the glandular tissue of the 

premenopausal breast.  Most remain in a benign dormant state for many years, while the 
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breast undergoes involution and the surrounding glandular tissue is replaced by fat.  

Therefore most lesions, although arising from glandular tissue, are found amid the soft fat 

of the postmenopausal breast.  Specifically, since most lesions arise from the milk-

producing cells at the terminal end of the glandular tissue, most of these lesions are not 

near the surface of the breast, but rather near the chest wall, with a layer of fat between 

them and the skin. 

 

Mechanical forces at play in the growth of the lesions help to keep the lesions round in 

shape.  The thin basement membrane that anchored the cells of the originating duct 

remains and grows, resulting in lesions that have smooth, distinct borders.  A few sample 

lesions are shown in figure 2.1.  These benign and malignant lesions are representative of 

the lesions commonly encountered in breast pathology. 

 
 

a 
 

b 
 

c 
Figure 2.1.  Gross anatomy of various breast pathologies.  (a)  Cysts in fibrocystic tissue.  
(b)  Glandular cell tumor.  (c)  Ductal carcinoma that has invaded beyond this focal site.  
Note that each pathology manifests as a round lesion.  Images from Transmed [97], used 
with permission. 
 
 

In light of the general shape and position of many breast pathologies, we propose the 

model shown in figure 2.2 for the basis of our study.  The tissue is modeled as a soft slab 
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of constant thickness in the vicinity of the lesion.  The indentor is a rigid cylinder of finite 

length that is pushed into the tissue over the lesion.  The lesion is spherical and is 

attached to the rigid tissue substrate.  The interaction between the indentor and the tissue 

is assumed to be frictionless.  We shall devise a method for estimating the four salient 

parameters of background thickness, t, and modulus, B, and lesion size, d, and modulus, 

L, from the pressure information collected at the interface between the tactile imager and 

the tissue surface. 

 

 

Vertical force
on tactile imager

Tactile Imager

Slab of tissue of
uniform thickness

Stiff
inclusion

d
L

B

t

Rigid
Substrate  

 
Figure 2.2.  Idealized model for the study of parameter estimation from tactile 
information.  The lesion is approximated as a round mass, stiffer than the background, 
attached at one point to a rigid substrate.  The background tissue near the lesion is 
assumed to have a constant thickness t.  The lesion diameter is d.  The modulus of the 
background and lesion are B and L, respectively. 
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2.1.1.1.  Simplifying Assumptions 

 

The full problem as depicted in figure 1.4 is to estimate the modulus in every point in a 

three-dimensional breast.  This is a complex three-dimensional problem that has no 

closed-form expression.  Figure 2.2 shows the idealized problem of interest.  If we focus 

on the centerline of the problem, the problem simplifies to that shown in figure 2.3.  As a 

first approximation, we will consider the two dimensional model of figure 2.3 as a plane 

strain model, thus representing a long cylindrical lesion embedded in tissue and indented 

by an infinite cylindrical scanhead.  We approximate the healthy breast tissue as a slab of 

material with finite thickness which is fixed to a flat, incompressible chest wall.  The 

lesion, stiffer than the background tissue, is also attached to the chest wall at one point.  

We will assume that both materials in the slab are linear elastic and isotropic, and are 

perfectly bound to each other.  These assumptions are all based on physical data, and will 

now be discussed in more detail.   

t
BL

d

Background
Tissue

Lesion
Chest Wall

Tactile Imager
Indentor

 

Figure 2.3.  Centerline of the problem of interest.  The arrows at the indentor indicate the 
direction of force (clear arrow) and motion (line arrow).  Our goal is to develop a method 
of estimating the four parameters indicated from surface contact pressure information 
collected via tactile imaging. 
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Tissue of Constant Thickness 

Our assumptions require a swath of tissue of approximately constant thickness for a few 

centimeters near a breast lesion.  This is not physically unreasonable, especially 

considering that most breast lesions are found in the upper outer quadrant of the breast 

[ACS 03], where the soft tissue is relatively thin and flat. 

 

Round Lesion 

There is no body of literature that documents the validity of this assumption.  Previous 

work performed by Wellman [99, 01] employed this assumption in the generation of an 

inversion algorithm and tested the algorithm on clinical lesions.  The clinical results were 

found to match well with the results on models with round lesions, when one considers 

the main diameter of the physical lesion.  This leads us to accept round lesions as an 

adequate model to clinically relevant lesions. 

 

Lesion Attached to Substrate 

This assumption is made only for the work in this chapter, and will be expanded on in 

chapter 3. 

 

Homogenous Isotropic Tissues 

The main tissues of the breast are glandular, adipose, and fibrous tissues.  Glandular and 

adipose tissues are well modeled by isotropic materials [Thomas 97].  Fibrous tissue, 

however, is highly directional.  Tactile imaging is performed as small compressions with 
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the breast relaxed.  Under these conditions, the sparse ligaments and other fibrous tissues 

that traverse the breast do not affect its gross mechanical properties and thus the bulk of 

the breast is well modeled by an isotropic material. 

Although each of the glandular and adipose tissue found in the breast can be 

macroscopically modeled as a homogenous material, in premenopausal breasts the bulk 

consists of both glandular and adipose tissue.  Most breast cancers, however, as discussed 

in chapter 1, are found in postmenopausal women, where the glandular component is in 

large part absent.  Postmenopausal breasts are therefore well modeled by a single 

homogenous material, and we will study the effect of varying the stiffness of this material 

from that of adipose tissue to glandular tissue.   

Most pathologies in the breast are composed of a few cells in a disorganized network of 

fibrous tissue [Ronnov-Jessen 96].  The disordered nature and high density of the fibrous 

tissue in the lesions provide for homogenous isotropic material properties. 

 

Incompressible Linear Elastic Materials 

Biological tissues, by virtue of being comprised mainly of water, can be considered 

incompressible [Fung 93].  The elastic modulus is shown versus the strain for various 

breast tissues in figure 1.5.  The elastic modulus clearly increases for higher values of 

strain.  This effect is small for the softer tissues such as fat and is far greater for the stiffer 

tissues.  For the entire range shown, fat can be modeled as having a constant modulus 

with little error.  The error in assuming a single elastic modulus increases for stiffer 

tissues.  We can keep the absolute error in lesion modulus to 30% by limiting the strain to 

4%. 
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Frictionless Contact 

This assumption is applicable to real tactile imaging situations as long as the surface of 

the tissue is well lubricated.  This is standard procedure with clinical tactile image 

collection. 

 

Plane Strain 

We shall use this assumption to generate an inversion algorithm to estimate the 

parameters from tactile data.  We will test our algorithm on three-dimensional models, 

which will intrinsically test the validity of this assumption. 

 

 

2.1.2.  Previous Work 

 

The estimation of lesion parameters in tactile imaging has been explored most notably by 

Wellman [99, 01].  He assumed the model of a round lesion in a homogenous fatty tissue 

on a stiff substrate as shown in figure 2.3.  Wellman showed that finite element analysis 

on the plane strain problem of the centerline can be used to accurately predict the 

centerline interfacial pressure distribution of spherical lesions.  He used these two 

dimensional finite element models to devise a tactile map feature-based algorithm to 

predict the diameter and depth of a very stiff lesion in soft tissue.  His results were 

limited to lesions at least 100 times stiffer than the background fat, which applies only to 

cases of the stiffest cancers.  Nevertheless, he showed that his algorithm’s predictions are 
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more accurate in determining the size of a stiff spherical region than manual palpation 

[Wellman 01].   

 

Weber [00] reproduced this work and attempted to find a more complete set of lesion 

parameters that includes the elastic modulus of a lesion of linear elastic material.  His 

method was limited in accuracy, even with the input information of imager displacement, 

and the accuracy was dependent on the ratio of tumor modulus to background modulus. 

 

Both Wellman and Weber relied on fitting Gaussian curves to discrete-lump tactile maps 

in order to extract features useful for the inverse model [figure 2.4].  Based on a Gaussian 

fit, they extracted base, amplitude, and standard deviation features.  Although this method 

has merit, as evidenced by the inverse models already established, it is limited in the 

features used to establish the inverse model, and potentially useful information is ignored 

in a Gaussian fit.   

   

Figure 2.4.  Centerline tactile map with extracted features amplitude, base, and standard 
deviation (Stdev) .  The tactile map shown here was assembled from finite element data.  
Note the similarity to a Gaussian curve.  Previous work in parameter estimation has relied 
on the gaussian features indicated.  From Weber [00]. 
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Sarvazyan et al [Sarvazyan 97, 98a, Niemczyk 96] have also studied the efficacy of 

tactile imaging in the detection of cancer, most notably in the prostate.  The lesion-

detecting algorithm they employ is based on different principles than the algorithms 

employed by Wellman and Weber.  Sarvazyan [98b, 99] captures tactile data collected at 

different input forces and compares it to an expected anatomy-based map in order to 

pinpoint areas of mechanical heterogeneity in the organ.  To date, the specific parameters 

of lesion size and elasticity modulus have not been an output of the algorithm employed.  

Rather, their work has shown that tactile imaging information can provide a Boolean 

assessment of whether each of the two lobes of the prostate contains a lesion more 

accurately than a digital rectal exam. 

 

 

2.1.3.  Analytical Solution 

 

The goal of this work is to develop a method for estimating the parameters of tissue from 

tactile information.  This can be seen as an inversion of the relationship between the 

tissue parameters and the tactile data.  Analytical investigation is the most direct way of 

establishing the mathematical relations between the parameters and the surface stresses 

produced by normal displacements of the top surface by a cylindrical indentor.  There is a 

body of historical work on the analysis of similar problems, and we look to these first to 

facilitate our solution.   
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The first analysis of the stresses of two cylindrical elastic bodies in contact was presented 

by Hertz in 1882 [Johnson 1985].  He developed a closed-form solution that described 

the stresses within the entire continuum based on the assumptions of small strains and 

nonconforming bodies.  Goodier [36] developed analysis for stresses in an infinite 

medium with a spherical inclusion.  Eshelby [57, 59] extended this work to an infinite 

medium with an ellipsoidal inclusion, but focused on stress fields that result from a 

homogenous field inside the inclusion, which is not applicable to our problem of interest. 

 

Yu and Sanday [91] expanded on this previous work and dealt with the stresses in bonded 

semi-infinite half-spaces with an inclusion.  The geometry for their work is the most 

similar to the geometry of the current problem, however their work assumes a 

homogenous field in the inclusion.  The work presented here requires surface stresses due 

to surface displacements, which will not result in a homogenous field in the round 

inclusion. 

 

There is no existing solution that can be applied to this specific problem, so we return to 

the two-dimensional problem of figure 2.3 and attempt to find an analytical expression 

for the pressure at the interface between the indentor and the tissue as a function of the 

parameters of interest.  Figure 2.5 shows the axes and important parameters of the 

problem and summarizes the assumptions that will be made in seeking a solution. 
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Assumptions: 
 
– Rigid substrate and indentor 
– Incompressible tissues 
– Isotropic linear elastic tissues 
– Homogenous inclusion in homogenous 

tissue 
– Frictionless contact 
– Two dimensional plane strain model 

 

Figure 2.5. Simplified 2-D problem (width w → ∞) with relevant quantities indicated, 
and physical assumptions.  
 

We will first tackle the problem as depicted in figure 2.5, and look for the analytical 

solution to the pressure profile when the indentor is directly over the lesion.  As with all 

mechanics problems, the solution must satisfy the equations of geometry, equilibrium, 

compatibility, and the constitutive relations: 

 

• Geometry: 

The strain tensor ε  is defined by its relationship to the displacement u of 

the body   

)(
2
1 Tuu ∇+∇=ε . 

  

• Equilibrium:   

Force equilibrium in continuum mechanics becomes  

0=+⋅∇ fσ  

where σ is the stress tensor and f the local force tensor. 
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Establishing momentum equilibrium requires a symmetric stress tensor 

(i.e. the stress on the x-plane in the y-direction is equal to the stress on 

the y-plane in the x-direction, etc.) 

Tσσ = . 

 

• Compatibility: 

For this two-dimensional problem, the only nontrivial compatibility 

relation that remains to be satisfied for a unique solution is 

02 11,2222,1112,12 =−− εεε , 

where the subscripts ,ij imply derivatives taken in the i and j directions. 

 

• Constitutive Relations: 

Continuous media can be characterized by the two dimensional relation 

klijklij C εσ = . 

Here σ and ε are 2-tensors, due to the symmetry of σ, as stated in the 

moment equilibrium equation. 

 

The solution to the above equations is subject to the boundary conditions on all surfaces.  

In this case, we have zero displacement on the bottom edge, a fixed displacement in the 

shape of the scanhead in the region under the tactile imager, and zero stress on the sides 

and the areas of the top surface not in contact with the scanhead.  We also have zero 
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shear stress under the scanhead, which follows from the assumptions of slack skin and a 

frictionless contact.  These can be expressed as:  

 

 0)0,()0,( 21 ==== yxuyxu  Bottom attached to rigid substrate 

 tbrxrtyaxau +−+−−==≤≤− 2/122
2 )(),2/2/(  Displacement under indentor 

 0)2/(11 =±= wxσ  Stress-free left and right edges 

 0)2/(12 =±= wxσ  Shear stress-free left and right edges 

 0),2/|(|22 ==> tyaxσ  Stress-free surface away from indentor 

 0)(12 == tyσ  No surface shear stress 

 

Note that at the interface between the background tissue and the inclusion, displacements 

are continuous across the inclusion boundary, although stresses will not be due to the 

different material properties. 

 

Subject to equilibrium considerations, we impose the subjective constraints 

1212,1122,2211, ;; σφσφσφ −=== to the sole non-trivial equation of compatibility.  The 

compatibility equation can then be written as 02 22
1122,2222,1111, =∇∇=−+ φφφφ .  Solution 

of the problem now entails finding suitable base functions for φ, the Airy stress function, 

that satisfy the boundary conditions. 

 

In terms of φ, the boundary conditions at the top surface are 

)2/,(0)2/,( 12,12 dtyxdtyx −===−= φσ  
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)2/,2/|(|0)2/,2/|(| 11,22 dtyaxdtyax −=>==−=> φσ . 

 

The normal stresses under the indentor,  

)2/,2/|(|22 dtyax −=<σ )2/,2/|(|11, dtyax −=<= φ , are actually the desired solution. 

 

The problem at hand is to find the boundary condition that is consistent with the Airy 

stress function formulation.  We can either guess a boundary condition, establish 

functions for the Airy stress function that seem reasonable based on the known boundary 

conditions, and use that to validate our guess of the desired boundary conditions, or we 

can conjecture the proper form of the Airy stress function based on the known boundary 

conditions and assume that that form holds for under the indentor, thereby establishing 

the boundary conditions. 

 

In either case, the solution is not guaranteed to be exact, as it is approached iteratively.  

The problem statement itself, therefore, which requires finding the contact stresses under 

the indentor where the displacements are prescribed, precludes an exact solution, and 

requires iterative methods.  Numerical methods for iterating a solution are well 

established and are used extensively for complicated mechanics problems.  Breaking the 

problem into small components and using Finite Element Methods to solve it is one way 

of obtaining a solution in which convergence, and thus accuracy, can be checked. 
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2.1.4.  Tactile Scanning 

 

Previous studies on parameter estimation from Tactile Imaging were unable to accurately 

estimate lesion modulus.  These earlier studies developed inversion schemes based on 

tactile maps, which spatially averages the tactile data to create a single image of the 

relative pressures collected as discussed in §1.1.  This spatial averaging results in a loss 

of the detailed information found in separate pressure frames.  In order to avoid the loss 

of information inherent in tactile mapping, we propose to develop an inversion algorithm 

based on a new tactile imaging modality called tactile scanning. 

 

The salient difference between tactile scanning and tactile mapping is that in tactile 

scanning all of the relevant information in the centerline of the pressure frames is used.  

The centerline is easily identified as the row or column with the greatest difference 

between its minimum and maximum values.  In tactile scanning, each centerline pressure 

profile is merely concatenated to the previous pressure frames.  The pressure profiles 

collected overlap spatially. 

  

The data from tactile scanning is best visualized as a Composite Tactile Image (CTI).  An 

example CTI for a single lump model is shown in figure 2.6.  The frames for this CTI 

were generated using finite element analysis, as will be detailed in the following section.  

This two-dimensional CTI is formed from the one-dimensional centerline pressure 

frames, collected every 2.5 mm for 80 mm centered at the lump.  The pressure frames are 
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stacked vertically, and the strong diagonal line of increased pressure attests to the 

symmetry of the imaged model.  

 

 
Figure 2.6.  Compiling the information from Tactile Scanning into a Composite Tactile 
Image (CTI).  The CTI is visualized as a two-dimensional image, where each row is a 
distinct pressure frame centerline.  The CTI shown illustrates the compilation of the CTI.  
The pressure data was calculated from a finite element model, with a round lesion of 
diameter 20 mm embedded in tissue 40 mm deep.  The lesion is 10 times as stiff as the 
background.  The pressure frames are collected every 2.5 mm and stacked to form the 
CTI.  Since the lesion and tissue are symmetric in the direction of the scan, when the 
frames are stacked the CTI is symmetric (in the matrix sense: aij = aji).  
 

 

It is important to note that in tactile imaging, the ends of the pressure frames will most 

likely not decrease to zero.  Since the pressure sensors do not cover the entire surface of 

the imager, the furthest extent of the imager that makes contact with the tissue is not 

covered with pressure sensors.  This has the effect of cropping the pressure frames 

laterally to the width of the pressure sensor. 
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2.1.5.  Parameter Ranges 

 

The ranges of interest for breast and lesion size and modulus are shown in Table 2.1.  The 

modulus of the background varies from the softest fat to the stiffest glandular tissue, 

while the lesion modulus varies from glandular tissue to cancer [Krouskop 99].  The 

thickness range of the breast tissue covers the range expected for the upper outer quadrant 

of the breast when the woman is laying supine [Gray 01].  This position is the standard 

position for obtaining tactile images, and the upper outer quadrant of the breast is the 

most common site of breast cancer, with more than half of all cancers occurring in this 

quadrant [Komen 03].  The minimum lesion diameter used in this study, 5 mm, 

corresponds to the minimum lesion diameter that is found by mammography [Lester 99], 

which is the current gold standard for detecting breast pathology.  The maximum lesion 

diameter is 20 mm, which is the lower limit of invasiveness.   

 
 
 
 

Table 2.1.  Range of parameters for breast and lesion modulus and size 
 

Parameter Background 
Modulus 

B 

Lesion 
Modulus 

 
L 

Tissue 
Thickness 

t 

Lesion 
Diameter 

d 

Minimum 7.5 kPa 45 kPa 20 mm 5 mm 
Maximum 50 kPa 750 kPa 40 mm 20 mm 
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2.2.  Mechanical Modeling 

 

Wellman [99] showed that finite element analysis can accurately model tactile imaging, 

and so we have constructed finite element models of the problem in order to obtain 

surface pressure profiles to study for parameter estimation. 

   

2.2.1.  Finite Element Model Construction 

 

A typical finite element model as used in this study is shown in figure 2.7.  The finite 

elements in the regions far from the surface and the lesion are set to a size where the 

results do not differ by more than 3% from the solution with a much finer mesh.  In order 

to model the lesion as circular in cross section, we require a finer mesh in its vicinity.  A 

finer mesh is also used at the surface, so that the indentation is smooth, and the resultant 

surface pressure information is spatially resolved.  In these regions, a finer mesh will also 

allow for a more detailed representation of the large spatial variations we expect in the 

stress field. 

 
Figure 2.7.  Sample finite element model used in this study.  This model has 30 mm 
tissue thickness with an embedded lesion of 10 mm diameter.  The tactile scanhead is 
modeled as a partial cylinder with infinite modulus. 
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The model is constructed with a plane strain assumption, so that the slice shown in figure 

2.7 represents a long indentor above an infinitely long slab of tissue in which is 

embedded a cylindrical lesion.  The models were created in Femap v8.0 (EDS Inc., 

Plano, TX) and solved using Abaqus Standard 5.8.1 (HKS Inc., Pawtucket, RI) with 

nonlinear geometry formulation.  The Poisson’s ratio for each of the materials was set at 

0.499, since the glandular and fatty tissues in the breast are mostly water and can be 

considered incompressible [Fung 93]. 

 

The background tissue and the lesion are assumed to be composed of isotropic, linearly 

elastic tissue.  These assumptions are valid within the ranges discussed in §2.1.5.  In 

keeping the assumptions valid, the models in this study were kept to 6% strain for fat, and 

4% strain for the softest lesions studied, less for stiffer lesions. 

 

To simulate tactile imaging, the scanhead is indented into the tissue 4 cm to the left of the 

inclusion by a set vertical force.  While maintaining this force, the scanhead is then 

moved laterally by 8 cm.  The increments of the finite element analysis are small, 

generating one pressure frame for approximately each 0.5 mm of travel.  The pressure 

frame closest to each 2.5 mm increment is recorded in the CTI.  This spacing is the most 

analogous to that of frames collected using the laboratory tactile imager described in 

§1.4.1., with a data recording rate of 10 Hz and a travel speed of approximately 2.5 cm/s. 
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2.2.2.  Tactile Information from Finite Element Models 

 

Figure 2.8 shows a sampling of the pressure frames obtained from Finite Element 

Analysis.  Pressure frames were obtained every 2.5 mm for 40 mm to either side of the 

lesion.  The pressure frames were cropped to 32 mm in width, corresponding to the width 

of the pressure sensor area on the laboratory sensor.  In order to use all of the tactile 

information of each frame, we reassemble the frames into a CTI [figure 2.9] as described 

in §2.1.4.  The CTIs vary from having uniform rows (in the absence of a lesion) to 

exhibiting a very distinct diagonal bar of high pressure in the middle.  As the indentor 

approaches from the left of the lesion, the pressure profile peak will shift to the right, and 

vice versa.   
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Figure 2.8.  Sample finite element model results.  The indentor is pressed into the tissue 
far from the lesion, then scanned across the top of the tissue at the same vertical force.  
This model has tissue thickness t = 20 mm, lesion diameter d = 10 mm, background 
modulus B = 15 kPa, and lesion modulus L = 150 kPa.  The lesion is outlined in the top 
image for clarity.  The force applied is 8.0 N/mm.  The pressure profile at the interface of 
the indentor and the tissue for each frame is shown at left. 
 

 
Figure 2.9.  Composite Tactile Image from finite element model data.  Each row 
approximates the pressure profile along the centerline of the indentor from a plane strain 
model.  This CTI is a collection of the 33 pressure frames obtained every 2.5 mm over an 
80 mm range with the lesion in the center.  The CTI data is from a model with parameters 
t = 25 mm, and d/t = 0.6, L/B = 50.   
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Typical single-lesion CTIs are shown in figure 2.10.  From these images we note that the 

geometry (d, t) affects the how far the peak of the CTI rises from the background more so 

than the modulus ratio L/B.  The gross appearance of the CTI shows little variation for a 

constant geometry with a  modulus ratio greater than L/B = 3. 
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Figure 2.10.  CTIs for various models.  The frames of these CTIs were obtained at the 
same force (80 N/mm), and each CTI color scheme normalized to the highest value in the 
image. 
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2.3.  Inversion Algorithm 

 
2.3.1.  Algorithm Development 
 
 

By lining up the individual pressure frames without performing spatial averaging (as in 

tactile mapping) we keep all available tactile information.  We can vectorize the CTI into 

a pressure vector P with all the rows of the CTI appended end to end, and similarly 

construct a column vector G of the parameters of interest.  The problem then becomes to 

find the transformation matrix A that minimizes the error ε in 

G = AP + ε 

for 



















=

d
t
L
B

G  and P = [CTI]v 

where the notation [CTI]v implies appending the rows of the CTI together into a row 

vector. 

 

The above describes a linear system, with the transformation matrix A responsible for a 

linear transformation between the pressure data P and the parameters in G.  The 

relationship between the pressure in P and the parameters [ B, L, t, d ], however, is not 

linear.  Figure 2.11, for example, shows the relationship between the peak pressures 

collected over the lesion to the lesion modulus and diameter and those collected far from 

the lesion to the tissue thickness.  These relationships are highly nonlinear.  The same is 

true of other principal characteristics of the pressure data. 
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To improve the accuracy of a linear model, we look for parameters in G from which the 

parameters [ B, L, t, d ] can be calculated, but which are more linearly related to the 

tactile information.  We therefore consider the following input parameter vector 



















=

)(
)(
)(
 )(

4

3

2

1

df
tf
Lf
Bf

G . 

In order to establish the appropriate functions fi, we look to mechanics to understand the 

relationship between the parameters and the pressure frames. 
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Figure 2.11.  Model parameters versus resultant pressure information.  The data was 
obtained on models in which only the parameter of interest was varied.  For L: B = 15 
kPa, t = 30 mm, d = 15 mm.  For d: B = 15 kPa, t = 30 mm, L = {75 kPa, 150 kPa}.  For 
t:  B = 15 kPa, d = 0. 
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Far away from the lesion, the parameters that affect the surface pressure are the 

background modulus B and thickness t.  As an approximation, suppose that the total 

scanhead force F can be described by F = P Asensor where Asensor is the area of the entire 

scanhead, and P is the representative pressure recorded.  Approximating the tissue 

directly under the scanhead as a linear spring, as shown in figure 2.12, then  

t
t

BAF sensor ∆=  

where ∆t is the indentation distance into the tissue.  Then 

t
t
BP ∆= . 

 
 

A
F

kB t

 
Figure 2.12.  Approximating the tissue under the sensor as a spring. 

 
 

The indentation distance is dependent on the force applied, which is constant across all 

models.  Therefore we see that the pressure information P is related directly to the 

background modulus B and inversely to the tissue thickness t.  Plots of the maximum 

background pressure versus the linearized parameters B and 1/t bear out the linear 

relationship between these parameters and the peak pressure obtained in the absence of a 

lesion  [figures 2.13 & 2.14]. 
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Figure 2.13.  Maximum background pressure versus background modulus for finite 
element models with tissue thickness t = 40 mm.  The line shows a linear regression (R2 
= 0.99). 
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Figure 2.14.  Maximum background pressure versus linearized tissue thickness for finite 
element models with tissue modulus B = 15 kPa, and no lesion.  The line shows a linear 
regression (R2 = 1.00). 
 
 

As an alternate model, the Hertz theory for cylindrical indentation suggests a square root 

relationship between the peak background pressure and the background modulus 

[Johnson 85].  A function Pbackground = f(B1/2) fits the data in figure 2.13 slightly better 
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then the linear relationship shown, with R2 = 1.00.  With the limited range for the 

background modulus, however, and the strong linear relationship between the 

background pressure and modulus, a fit to B1/2 will likely show at most only a small 

improvement over using the modulus B directly.  We therefore choose to use the simpler 

linear model. 

 

Over the lesion, the situation is more complicated.  If we consider the lesion and the 

background tissue above it to be represented by a linear spring each, then the tissue 

through the lesion can be modeled as two springs in series.  The spring constant for the 

spring through the lesion is L/d while that through the tissue is B/(t-d) [figure 2.15].  The 

total spring constant k seen by the tactile imager directly over the lesion becomes 

BddtL
LB

L
d

B
dtk

+−
=






 +

−
=

−

)(

1

. 

 

A
F

kL=L/d
B t kB=B/(t-d)

d

 
Figure 2.15.  Representation of the tissue through the lesion as two springs in series. 

 

In our parameter ranges of interest, 2B ≤ L ≤ 100B [Wellman 99], so in general L >> B.  

With this assumption, the above relationship collapses to 
)( dt

Bk
−

= .  This is analogous 
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to the situation far from the lesion, if we take the linearized thickness of interest to be 

1/d’, where d’ = t – d.  Therefore the parameter f4(d)
dt −

=
1 .  This is a positive single 

valued function in d, and increases as d increases.  Plots of the peak CTI pressure versus 

various single-valued combinations of d and t show that the peak pressure is well related 

to various f(d), with a slight improvement in the correlation for the function 
dt

df
−

=
1)(  

[figure 2.16]. 
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Figure 2.16.  Maximum pressure over lesion versus lesion diameter d and two linearized 
diameters.  The data was calculated from finite element models of tissue thickness t 
between 20 and 40 mm and background stiffness B = 15 kPa. 
 
 
 
Since the lesion is buried under soft tissue we do not expect a direct relationship between 

the lesion modulus L and the resulting tactile information.  As the preceding linearization 

for the lesion diameter suggests, the much lower modulus of the background tissue results 

in a weak dependence of the surface pressure on the lesion modulus.  This accords with 

previous work that found estimating the lesion modulus from tactile information 

problematic [Wellman 99, Weber 00].   
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We consider the average modulus through the tissue at the center of the lesion.  In 

practice, we find that using the depth-averaged modulus 
t

dtB
t
dLS −

+=  yields 

exponential errors in the estimation of the average modulus and thus the lesion modulus.  

This points us [Hyvarinen 01] to the use of the natural logarithm of the depth-averaged 

modulus as the true linearized parameter.  A plot of ln(S) versus the maximum CTI 

pressure Pmax shows that indeed the pressure tends to increase more linearly with the 

natural logarithm of the depth-averaged stiffness [figure 2.17] than with the modulus 

directly [figure 2.11].  Although this relationship is not as strong as that for the other 

linearized parameters, it is more linear than that found for other attempts at parameter 

linearization for the lesion modulus such as L/B and L1/2 or S1/2.   
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Figure 2.17.  Peak pressure versus linearized stiffness parameter (natural logarithm of 
depth-averaged modulus through the lesion) shown for two sets of finite element models.  
The upper data set is for models with B = 15 kPa, t = 25 mm, d = 15 mm.  The lower data 
set is for models with B = 15 kPa, t = 30 mm, d = 15 mm.  A linear fit through the data 
sets has an R2 value of 0.90 for the upper data set and 0.94 for the lower data set. 
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The linearized parameters used in G thus become  
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
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




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
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−
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)(1
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)ln(

dt
t
S

B

G  

where  
B = elastic modulus of background tissue (refer to figure 2.3), 

S = weighted modulus at lesion center = 
t

dtBLd )( −+   

 and L is the lesion modulus,   
t = tissue thickness, and 
d = lesion diameter. 

 

 

2.3.2.  Calculating the Transformation Matrix 

 

Applying the above algorithm to tactile scanning data requires determining the 

transformation matrix A that maps the tactile information in P to the tissue parameters in 

G.   For any tactile imager (modeled or physical) sets of the linearized parameters and the 

resultant pressure profiles, {P,G}, are collected for each of M tissue samples that span the 

range of parameters of interest.  These data sets are appended into matrices PM and GM 

and used to find A = GMPM′, where PM′ is the pseudoinverse of PM,  

PM' = (PM
T PM)-1 PM

T. 

The transformation matrix A is then found by 
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We can test how well the transformation matrix maps the system by using this A to 

estimate the parameters in a new column vector Gn, whose associated pressure 

information Pn (a row vector) was not used to calculate A.  The estimated parameter 

vector Ĝn is 

Ĝn = APn . 

 

Due to nonlinearities in the actual system and other factors such as noise in the pressure 

data, the error ε = Ĝn-Gn will not be zero.  Obtaining the pseudoinverse of P performs a 

least-squares fit.  Thus the resulting A is a least-squares fit to the set of transformation 

matrices that fit each of the data sets perfectly.  The above needs only be done once in 

order to establish the correct transformation matrix for the system at hand. 

 

 

2.4. The Transformation Matrix 

 

2.4.1.  Rank Deficiency 

 

The four rows of A are independent to the extent that the four underlying parameters are 

independent.  However, for each parameter, the transformation matrix is required to map 

a long vector of pressure data to a singular parameter.  For c frames in one CTI with s 

pressure points per frame, the pressure vector for each parameter is cs elements long.  In 

the system considered here, we collect four frames per centimeter between -40 mm and 

40 mm, resulting in 33 frames of tactile information.  With 16 sensors per frame, the 
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transformation matrix must then map 33 x 16 = 528 data points to a single scalar 

parameter.   

 

We can calculate the transformation matrix using data collected on lesions at the limits 

and midpoints of each parameter range.  With four independent parameters, that results in 

81 data sets to use in PM, which results in a maximum rank of 81.  In performing the 

inversion of PM, we attempt to find the 528 elements of Ai from a system with a 

maximum rank of 81.  This is a vastly underconstrained system, and as such we have no 

guarantee that the A matrix that we find is an adequate representation of the linear 

transformations required to calculate the correct Gn from every Pn allowed in our 

parameter range. 

 

The columns of P, however, are not wholly independent.  Besides the symmetry inherent 

in the underlying data, each pressure value is not entirely independent of its neighbour.  

In the absence of noise, in fact, the pressure profiles will be smooth and it would be 

possible to approximate any one pressure quantity from a simple relationship to its 

neighbours.  This strong relationship between the columns of P can simplify the 

transformation required of the A matrix so that there may be enough information to 

construct an adequate A matrix. 

 

A singular value decomposition of PM can provide insight into the information content of 

the transformation matrix.  Figure 2.18 shows the largest singular values for a PM matrix 

that was composed of 81 data sets calculated from finite element models spanning the 
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parameter ranges of tactile 2.1.  The first singular value corresponds to the average of the 

PM matrix, and as expected is much higher than the rest of the singular values.  Besides 

this first singular value, the next two are an order of magnitude larger than the rest.  This 

indicates that most of the information in the pressure matrix is contained in only a few 

components.  There are only three dominant singular values, however, indicating that the 

information in the pressure data is contained to a large degree in a three-dimensional 

space.  Since we are trying to estimate four parameters, this three-dimensional space may 

be too confined for accurate estimation of one of the four parameters. 
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Figure 2.18.  First 16 singular values for tactile information matrix PM.  The PM matrix 
was created from 81 finite element models which had parameters at the edge and middle 
of the ranges of interest.  The first singular value is clearly dominant, and is due to the 
high nonzero average of the pressure profiles. 
 

 

In the rest of this section we will obtain a transformation matrix by three methods.  First 

we will calculate a numerical transformation matrix, using the algorithm in § 2.3.2 on 

finite element model data.  Next, we will analyze the singular values contained in the 

transformation matrix Ai for each linearized parameter and reconstruct an analytical 
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transformation matrix from the dominant singular values.  With the knowledge gathered 

from generating these transformation matrices and mechanical reasoning we will generate 

a synthetic transformation matrix that models the major trends in the data.  We will test 

each of these transformation matrices on the finite element model data sets in order to 

gain insight into the important features of the mapping inherent in using a transformation 

matrix. 

 

2.4.2.  Visualizing the Transformation Matrix 

 

By performing a least-squares fit to the data, the transformation matrix A automatically 

picks out the important features of the CTI for inversion of each individual parameter.  

Each row Ai of A corresponds to one parameter Gi in G, and as such is independent of the 

other rows, save any dependence potentially present between the Gi.  For each linearized 

parameter, we have 

 Gi = Ai P. 2.1 

 

For any linearized parameter i, we can wrap Ai to a matrix of the same dimensions as the 

CTI, Ãi, in order to visualize which aspects of the CTI are important for the parameter Gi.   

 

2.4.3.  Numerical Transformation Matrix 

 

The wrapped transformation matrices Ãi for each parameter Gi found using the tactile 

information from the finite element models are shown in figure 2.19.  The finite element 
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models spanned the ranges of interest of the parameters indicated in table 2.1.  The 81 

models had parameters at the limits and midpoints of the respective range.  A singular 

value decomposition (SVD) of the Ãi indicates that, as expected from the SVD of PM, 

there are only a few dominant singular values of the transformation matrix.  The singular 

values of the Ãi are shown in figure 2.20.  For the background parameters B and t, there is 

clearly one dominant singular value, while for the lesion parameters S and d the second 

and possibly third values remain significant.   

 

 
Figure 2.19.  Wrapped transformation matrices Ãi for each of the four parameters in G.  
The transformation matrices are shown wrapped to the same dimensions as the CTI, and 
a set of CTI contours (B = 15 kPa, t = 25 mm, d = 10 mm, L = 150 kPa) is indicated for 
reference.  The matrices are normalized to their highest values. 
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Figure 2.20.  Singular value decomposition of the transformation matrices Ãi for each 
linearized parameter in G.  The first 16 singular values are shown.  As expected, a few 
singular values dominate the decomposition of the matrices. 
 

 

2.4.4.  Reconstituted Transformation Matrix 

 

In order to determine the importance of the dominant singular values of Ãi in estimating 

the tissue parameters, we reconstitute the Ãi using the first and second singular values.  In 

other words, for Ã = U S VT, the reconstruction using the first singular value is 

Ã T
ji

SVD
ij VSU 1111

1 = , and using both the first and second singular values, the reconstruction is 

Ã T
ji

SVD
ij VSU 2:1,2:1,2:12:1,

2 =  (commas added for clarity). Figure 2.21 shows the Ãi matrices 

reconstituted from the first singular value and vector for each parameter, while figure 

2.22 shows the matrices reconstructed using the first two singular values and vectors.  

The reconstituted matrices capture the gross features of the transformation matrices as 

seen in figure 2.19.  The discrepancies are shown in figure 2.23.  The errors for the 

background modulus are low, while those for the background thickness and lesion 

modulus are generally low, but with a few high outliers.  The discrepancy between the 

reconstituted and numeric transformation matrices for the lesion diameter are much 
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higher on average, which is an indication that there are additional singular values that 

contain nonnegligible information about the transformation matrix for this parameter. 

 
Figure 2.21.  Wrapped transformation matrices Ãi for each linearized parameter in G, 
reconstructed from the first singular value and its corresponding vector. 

 
Figure 2.22.  Wrapped transformation matrices Ãi for each linearized parameter in G, 
reconstructed from the first two singular values and their corresponding vectors. 
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Figure 2.23.  Discrepancy between the actual transformation matrices and the matrices 
reconstructed from the first two singular values.  The error is shown as a multiple of the 
value of the transformation matrix. 
 

 

2.4.5.  Physical Basis of the Transformation Matrix 

 

Figure 2.19 shows that the transformation matrix selects specific regions of the pressure 

data for determining the required parameters.  With the transformation matrix in the form 

shown in figure 2.19, we can perform pointwise multiplication with the CTI in order to 

visualize which aspects of the CTI are important for the parameter Gi.  This wrapping and 

multiplication yields the Accumulation Matrix G*, whose components G*
mn yield the 

estimated parameter Gi from  

 ∑=

n
m

mni GG * .  
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The accumulation matrices that result from multiplying the transformation matrices in 

figure 2.19 with a CTI constructed from a finite element model with parameters in the 

middle of the range of interest are shown in figure 2.24.  The accumulation matrix differs 

only slightly from the transformation matrix, due to the peaks in the pressure data. 

 

 
Figure 2.24.  Accumulation matrices Gi

* (normalized).  Adding the value at all points will 
yield the estimated value of the parameter of interest. 
 

 

As expected, the main regions of interest in calculating the background parameters B and 

1/t are contained in the frames far from the lesion (at the top and bottom of the 

transformation and accumulation matrices).  Tissue thickness requiring a positive 

contribution from the pressure peaks in this area and a negative contribution from the 
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edge.  Conversely, the background stiffness requires only a positive contribution from the 

edge.  Part of the reason for this can be seen from figure 2.25, which shows the pressure 

distribution through the tissue model for the first frame collected (the top row of the 

CTI).  The pressure sensors in the middle of the indentor record a higher pressure 

stemming from the compression of the underlying tissue between the bottom of the 

indentor and the rigid substrate.  This pressure is related to B/t as discussed in §2.3.1.  

The sensors at the edge of contact, however, record a pressure that stems from the much 

lower compression of the tissue located beneath and obliquely from them (i.e. away from 

the center of contact).  This pressure is dependent on the local tissue properties, since the 

rigid substrate, located approximately t away, plays a minor role.  Thus, the edge sensors 

record information related to B, and the transformation matrix at this edge region is 

important for the estimation of B.  The information recorded at the center is related to 

both B and 1/t.  Thus, the transformation matrix for 1/t renders this region as positive, and 

subtracts the contribution of B from the calculation of 1/t. 

 

 
Figure 2.25.   VonMises Stresses for furthest frame collection.  The scanhead midpoint is 
40 mm away from the lesion midpoint along the top of the tissue.  The tissue is 30 mm 
thick and the lesion diameter is 20 mm.  The background modulus is 15 kPa and the 
lesion modulus is 150 kPa.  
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The situation for the linearized lesion diameter 1/(t-d) is analogous to that for 1/t 

discussed above.  As discussed in §2.3.1, the peak pressure directly over the lesion is 

related most strongly to the parameter B/(t-d).  Thus, this central region is required to be 

positive for the calculation of the parameter 1/(t-d).  We also note involvement of the area 

corresponding to the positive contribution to 1/t.  This is due to the mathematical 

relationship between 1/t and 1/(t-d) for constant d.  There is also a negative contribution 

from the area directly between this central background region and the region of pressure 

frames collected just off the lesion.  Since a larger diameter lesion will extend further 

laterally as well as in height, it would result in a pressure signature in this region, 

resulting in a contribution to the pressure frames both in magnitude and in breadth.  This 

area, just off the lesion, being negative in the transformation matrix implies that the 

combination of these two effects grows faster than linearly with the lesion diameter.  

Rendering this area as negative for the calculation of the lesion diameter prevents an 

overestimation of this parameter for larger lesions. 

 

The region for the linearized stiffness parameter ln(S) is, as expected, the most complex.  

The accumulation matrix clearly highlights the peaks of the pressure profiles collected 

just off the lesion, and extends this area to the corners associated with the background 

modulus.  The main area of interest is that of the peaks directly off the lesion, since this 

area is unique to the stiffness parameter.  This indicates that a harder lesion, even if 

smaller, will affect the peaks of the pressure profiles collected off the lesion more 

strongly than a softer and larger lesion.  This is seen qualitatively in the CTIs shown in 

figure 2.10.  The lesion modulus clearly affects the width of the CTI peak more strongly 



Chapter 2.  Fixed Lesion Parameter Estimation  Galea 

   67

than it affects its magnitude, which is more strongly dependent on the lesion diameter, as 

expected from the above discussion.  The area that is highlighted for the stiffness 

parameter extends from this area dependent on lesion stiffness to the area highlighted for 

the background modulus.  This is expected since the stiffness parameter S is equally 

dependent on B and L. 

 

 

2.4.6.  Synthetic Transformation Matrix 

 

The accumulation matrices shown in figure 2.24 are more complex than the simple 

reasoning of the previous section suggests.  We can develop a transformation matrix 

based on the above reasoning, and test this synthetic transformation matrix on the same 

data used to calculate the numerical transformation matrix.  Doing so we can quantify the 

validity of the insight gathered in the previous section. 

 

The four parameters, B, t, L, and d, each require a unique transformation matrix based on 

the areas discussed in the previous section.  These areas depend heavily on the 

boundaries between the edges and center of the sensor, and between the areas collected 

near the lump and far from the lump.  The absolute values of the synthetic transformation 

matrices are set so that the average of the synthetic transformation matrices equal the 

average of the numerically generated matrices.   
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Edge versus center of sensor 

Assuming a circular function for the pressure profile collected far from the lesion, 

P(s) = Po(w2-s2) where w = 16 mm is the half-width of the sensor and  0 ≤ s ≤ 16 mm is 

the position from the center of the indentor, the pressure profile drops to half of its 

maximum value at s = ±11 mm.  Therefore we assign the 5 mm bands on the edge of the 

pressure frames are considered to correspond to the ‘edges’ of the sensor and the central 

22 mm to the center of the sensor. 

 

Near lesion versus far from lesion 

From the parameter ranges specified in §2.1.5, the maximum lesion size expected has a 

diameter of 20 mm.  For frames collected every 2.5 mm over an 80 mm swath of tissue 

centered at the lump, the central 9 frames are acquired when the center of the sensor is 

over the lesion.  Frames beyond these central 9 frames are thus considered far from the 

lesion. 

 

Area for background modulus B 

The area used to estimate the background modulus is the intersection of the edge area and 

the area far from the lesion.  The area far from the lesion is shortened by one frame to 

ensure that the majority of the pressure sensors are off the lump for each frame.  The 

resulting transformation matrix for the background modulus is shown in figure 2.26a. 
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Area for tissue thickness 1/t 

The positive area corresponding to the tissue thickness is the intersection of the central 

area and the area far from the lesion, with the latter once again foreshortened by one 

frame to ensure that the majority of the sensels are off the lump for each frame. This is 

flanked by negative areas corresponding to the edge of the sensor.  The resulting 

transformation matrix is shown in figure 2.26b. 

 

Area for lesion diameter 1/(t-d) 

This area stems from the pressure information collected over the lesion.  Therefore, this 

area extends over the central frames (foreshortened one frame on each side so that we 

encompass the frames most likely to be collected over the lump).  The width of this area 

is 17.5 mm, the width that encompasses 75% of the lesions encountered.  The section of 

each pressure frame that is taken as positive is centered over the peak of the pressure 

profile (i.e. since adjacent frames are obtained 2.5 mm apart, the area of each frame taken 

as positive for this parameter slides over 2.5 mm for each frame away from the central 

one). 

 

Similarly to the transformation matrix for the tissue thickness, we note the need for a 

small negative area.  Since the linearized parameter depends on both t and d, this area 

cannot correspond to the area for tissue thickness.  We thus choose a small strip to either 

side of the central frames as the offset for the lesion diameter.  This corresponds to the 
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negative area in the numerical transformation matrix for this parameter.  The resulting 

transformation matrix is shown in figure 2.26c. 

 

Area for stiffness parameter ln(S) 

Given the discussion above regarding the width of the CTI, this area extends diagonally 

from the center in the frames off the lump towards to the edge of the sensor closest to the 

lesion when the sensor is far from said lesion.  Figure 2.25 shows that even at the furthest 

extent of the pressure frame collection, the edge of the pressure profile is still weakly 

influenced by the lesion.  Thus we allow this region to extend to the corner of the 

transformation matrix, corresponding to this edge of the pressure profiles.  The width of 

this region is the same as for the lesion diameter.   

 

The area thus described overlaps with half of the area of for the background modulus.  

The signal from the background modulus, however, can easily overpower the expected 

weak contribution of the lesion modulus.  In order to minimize the influence of the 

background modulus, we set the area corresponding to the rest of the frames collected off 

the lesion as negative.  The resulting transformation matrix is shown in figure 2.26d. 
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(a) Background Modulus B 

 
(b) Background Thickness 1/t 

 
(c) Lesion Diameter 1/(t-d) 

 
(d) Lesion Modulus ln(S) 

 
Figure 2.26.  Synthetic transformation matrices based on analytical knowledge for 
parameters indicated.  Positive value regions are indicated in white, negative values in 
black, and zero in gray. 
 

 

2.5.  Parameter Estimation Results 

 

2.5.1.  Results from the Numerical Transformation Matrix 
 

 
The “all-but-one” algorithm outlined in §2.3.2 was followed to create a transformation 

matrix from the pressure data collected from finite element models.  For each of 83 
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models, the other 82 models were used to compute the transformation matrix used to 

invert the data.  In order to populate the parameter space, the 83 models included at least 

two models from each extreme of the parameter ranges of interest, with the rest evenly 

spaced through the parameter ranges [Appendix A.1].  The transformation matrices that 

result from this method are qualitatively identical to those shown in figure 2.19, differing 

only slightly (< 5%) in absolute values. 

 

Figure 2.27 shows the results of estimating the background modulus B.  The mean 

absolute error of estimating B directly is 2.7%, and only 2.3% when using B1/2 in G.  

Figure 2.28 shows the results of estimating the lesion modulus, tissue thickness, and 

lesion diameter over the entire parameter range.  The mean absolute errors are less than 

9% for the geometry parameters t and d, but is almost 100% for the lesion modulus L.  

This is not entirely surprising, given the fact that the singular values in PM showed that 

the information in PM is largely limited to three dimensions [figure 2.18]. 

 

Given the accuracy by which we can estimate the background modulus, we will assume 

that the background modulus can be found accurately a priori by collecting pressure 

frames off the lesion.  This information can be used such that a tailored transformation 

can be applied to the rest of the data.  This allows us to limit our algorithm to 

transformation matrices created from sets of data with the same background modulus.  

This reduces the parameter space required for calculating the transformation matrix and 

may lead to a better estimation by essentially limiting the required information to a 

subspace of PM.  For the rest of the discussion, we limit the background modulus B to 15 
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kPa to best model the average Young’s Modulus of human breast fat.    The new 

transformation matrix is created from all but one of the 32 model data sets with 

background modulus 15 kPa [Appendix A.2].  The results of estimating the three variable 

parameters are shown in Figure 2.29.  The mean absolute errors decrease, with estimates 

of the geometry parameters incurring 1.9% mean absolute error (MAE) for the tissue 

thickness t, and 11.7% for the lesion diameter d.  If we discount testing the algorithm on 

parameters at the extremes of the parameter ranges where the estimation is based on 

extrapolation, the mean absolute error for tissue thickness estimation drops to 1.5% and 

that for lesion diameter estimation to 6.9%.  The mean absolute error for calculating the 

modulus parameter ln(S) is 3.3%, though this translates into a mean absolute error of 

32.1% in estimating the lesion modulus L, given the errors in the other parameters 

included in S. 
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Figure 2.27.  Estimating the background modulus B from surface pressure frames 
collected from finite element models.  The mean absolute error is 2.7%.  
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Figure 2.28.  Estimating the parameters t (tissue thickness), d (lesion diameter) and 
S = [Ld+B(t-d)]/t using a numerical transformation matrix created from 83 finite element 
models with parameters that span the range of interest.    The regression coefficients for 
each estimation are indicated. 
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Figure 2.29.  Estimating the parameters t (tissue thickness), d (lesion diameter) and 
S = [Ld+B(t-d)]/t using a numerical transformation matrix created from 32 finite element 
models with a constant background modulus (B = 15 kPa).  The regression coefficients 
for each estimation are indicated. 
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We may be able to estimate the lesion modulus more accurately by first estimating the 

geometry and then tailoring the accumulation matrix to the specific geometry and using it 

to estimate the lesion modulus.  To test this, 9 models were created with the lesion 

modulus spanning the entire range of interest, and the other parameters constant (B = 15 

kPa, t = 30 mm, and d = 15 mm).  The all-but-one method was used to generate and test 

the transformation matrix.  The further reduction of the parameter space inherent in this 

simplification improved the resulting estimation of the lesion modulus to a mean absolute 

error of 15.7% [figure 2.30].  This error drops to 13.2% if we discount the points 

estimated through extrapolation (i.e. the two points at the ends of the data range).  The 

errors incurred are dependent on the underlying errors in the predictions of d and t.  

These errors are quantified for representative cases in figure 2.31.  From this figure we 

see that the error of the estimated lesion modulus increases as the modulus ratio L/B 

grows.  In practice, this is offset by the fact that as the lesion modulus increases, the 

estimation of the geometry parameters improves [figure 2.32]. 
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Figure 2.30.   Estimated lesion modulus L from models with B = 15 kPa, t = 30 mm, and 
d = 15 mm. 
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Figure 2.31.  Error in estimated lesion modulus based on erroneous d/t estimation.  The 
transformation used was formed from models with t = 30 mm and d/t = 0.5.  The models 
tested are shown in the legend.  The error increases for greater lesion modulus and is 
larger for a greater error in predicted t and d/t.  If the actual d/t was higher than predicted, 
then predictions of the lesion modulus L using that transformation matrix will be too 
high, and vice versa. 
 

 

0.0

10.0

20.0

30.0

40.0

50.0

0 200000 400000 600000 800000

Lesion Stiffness [Pa]

Er
ro

r i
n 

G
eo

m
et

ry
 E

st
im

at
io

n 
[%

]

error in t
error in d

 
Figure 2.32.  Error in estimating geometry parameters versus lesion modulus for the cases 
in figure 2.29.  The errors tend to decrease as the lesion modulus grows. 
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2.5.2.  Results from the Reconstituted Transformation Matrix 

 

The inversion algorithm was applied to the 32 models with constant background modulus 

once more, using the transformation matrix reconstituted from the first two singular 

values of each transformation matrix Ai.  The results in this case are summarized in table 

2.2 and shown in figure 2.34.     

 

Table 2.2.  Mean Absolute Errors in estimating the linearized parameters using the 
numerically generated transformation matrix and the reconstituted transformation matrix. 
 

Linearized 
Parameter 

MAE using numerical A 
from §2.3.4 

MAE using reconstituted A 
from figure 2.22 

B 0.16% 0.31% 
ln(S) 3.3% 3.2% 
1/t 2.0% 1.1% 

1/(t-d) 6.3% 2.3% 
L 32 % 58 % 
t 1.9 % 1.9 % 
d 11.7 % 6.3 % 

 

In general, the errors are comparable.  The large error in L is due to the estimated linear 

parameter values forming a narrow cloud around the central estimated value resulting in 

the small slope of figure 2.34a.  Therefore, although the absolute errors in the linear 

parameter are low, the true estimation error is much higher.  This indicates that singular 

values beyond the first two help estimate the tissue modulus effectively.  These 

subsequent singular values, omitted in the reconstructions used here, would provide more 

detail about the actual parameter, resulting in a more accurate estimation. 
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Figure 2.34.  Estimating the parameters of interest using transformation matrix A 
reconstituted from the first two singular values and vectors of the numerical 
transformation matrix.   

 



Chapter 2.  Fixed Lesion Parameter Estimation  Galea 

   80

 

2.5.3.  Results from the Synthetic Transformation Matrix 

 

The parameters of 32 finite element models with a constant background thickness were 

estimated using the synthetic transformation matrices shown in figure 2.26.  The results 

are tabulated below.  The relationship between the actual and estimated parameters 

exhibits a larger offset for the estimations using the synthetic transformation matrices 

than for the numerically generated matrix.  In practice this is acceptable, as long as one 

knows the function of the line relating the estimate to the actual value.  The mean 

absolute error of estimation to this line is shown in table 2.3, along with the mean 

absolute error for the estimation using the numerical transformation matrix. 

 

Table 2.3.  Mean Absolute Errors in estimating the linearized parameters using 
transformation matrices that are numerically or synthetically generated. 
 

Linearized 
Parameter 

MAE using numerical A 
from §2.3.4 

MAE using synthetic A 
from §2.3.6 

B 0.16% 0.32% 
ln(S) 3.3% 4.5% 
1/t 2.0% 2.9% 

1/(t-d) 6.3% 20.3% 
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Figure 2.33.  Comparison of estimation using the numerical transformation matrix of 
§2.3.4 and the synthetic transformation matrix of §2.3.6. 
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From table 2.3 and figure 2.33, we see that the errors from the synthetic transformation 

matrix are somewhat larger, but on the same order as those from the numerical generated 

matrix.  This suggests that, to the degree that the idealized transformation matrix was 

based on the analytical reasoning, the reasoning in §2.3.5 is correct.  Our results are 

consistently worse, however.  The actual mechanics of our system are beyond the scope 

of the simple models discussed.  The synthetic transformation matrix does not capture the 

details evident in the numerical transformation matrices.  Given the comparable results, 

however, it is clear that the areas which the synthetic transformation matrix does not 

address are not vital to the estimation of the tissue parameters. 

 

 

2.6.  Towards Physical Data 

 
2.6.1.  Noise Analysis 

 

The finite element model data has intrinsic noise from the discrete element formulation.  

This noise is well modeled as a uniform noise with a mean that is 3% of the signal 

magnitude.  Real systems, however, are expected to have noise up to 10% of the signal 

level as discussed in chapter 1.  To examine noise effects on the estimation process, this 

increased noise was modeled by incorporating a uniform random noise in the pressure 

profiles – both the data sets used to find the transformation matrix as well as the files we 

tested the estimation on.  The results of estimating the parameters of interest with noisy 

pressure data are shown in figure 2.35. 
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Figure 2.35.  Robustness to uniform noise for estimation of tissue thickness (top) and 
lesion modulus (bottom).  The R2 value remains fairly constant until the noise reaches 
10% of the signal value, then falls off as noise increases. 
 
 

The parameter estimation method is robust to noise since the transformation matrix that is 

found is a least-squares fit through the space of the transformation matrices that provide 

the perfect fit for each set [P,G]  Collecting multiple overlapping frames also aids in 

filtering out random noise.  This process automatically filters out random noise provided 

the signal to noise ratio is sufficiently high.  From the plot above, we see that the highest 

levels of estimation accuracy are maintained for signal to noise ratios greater than 10.  

This level of noise is greater than that expected in real systems.   

 

 

2.6.2.  Tactile System Calibration 

 

The finite element data used in the previous sections was used to both calculate the 

transformation matrix and test the inversion.  In practice, we can employ the same 

method on physical data.  A few Composite Tactile Images should be obtained on lesions 
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embedded in tissue where the geometry and moduli are known.  This parameter and 

tactile information can be used to find the initial transformation matrix A that can then be 

used to estimate unknown parameters from tactile information.  The values of the 

parameters in the a priori data sets provide the bounds on the ranges of parameter 

estimation.  Barring drift in the tactile imaging system, system calibration occurs 

automatically in creating the transformation matrix. 

   

 

2.7.  Experimental Validation 

 

In order to test our algorithm on a real system, physical models of spherical lumps 

embedded in soft material were constructed as described below.  The pressure frames for 

the centerline of the lump were assembled into CTIs as for the finite element model data.  

For each of the 32 models constructed, a transformation matrix was created from the 

other 31 models and tested on the data of interest.  The parameters for each model are 

shown in Appendix A.3. 

  

 

2.7.1.  Physical Model Construction 

 

The spherical lesions were made of RTV6166 Silicone (GE).  The modulus was 

controlled by the ratios of the two polymerization chemicals, so that the sphere moduli 

were between 125 kPa and 500 kPa.  The silicone was injected into a mold made of RTV 
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Mold Rubber (Alumilite Corp., Kalamazoo, MI) so that seven spherical lesion sizes were 

achieved, ranging from 9.5 to 25 mm in diameter.  A thin layer of 500311 Dry Film 

P.T.F.E. (Sprayon, Cleveland, OH) was sprayed into the mold before pouring the 

silicone.  The soft rubber mold was clamped between rigid ends to assure no flexion in 

the mold as the spheres hardened.  The batches of silicone spheres with different moduli 

were colorcoded using urethane dyes (Alumilite Corp.) and a cylindrical sample created 

by allowing at least 30mL of silicone to harden inside the syringe used to inject the 

silicone into the sphere mold, resulting a cylindrical sample for uniaxial stiffness testing.  

This allowed for accurate measurement of the actual modulus of each batch of spheres 

created. 

 

In order to keep the physical models required to a manageable number, the background 

tissue was simulated with the same RTV6166 Silicone as the spheres, mixed to a 

modulus of 15kPa, to approximate the modulus of breast fat [Wellman 99], and constant 

across all models.  With the spheres anchored at least 80 mm apart on the bottom of clear 

rectangular containers with flat bottoms [figure 2.36], the background silicone was 

poured at different thicknesses, corresponding to the parameter ranges in section 2.1.5.  

Before imaging, a 0.8mm layer of latex rubber was laid on the surface of the silicone, to 

simulate skin and to maintain the integrity of the silicone during tactile imaging. 
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Figure 2.36.  Physical model of spherical lesions embedded in soft tissue.  The two 
spheres (dark blue silicone) are attached to the bottom of the container, and embedded in 
a thick layer of soft silicone.  The spheres can be imaged separately using a tactile 
imager. 
 

 
2.7.2.  Data Collection 
 
At first pass, 8 models were constructed with 2 different spheres each.  The laboratory 

tactile imager introduced in §1.4.1 was mounted on a linear driver and used to scan the 

surface of the models at 10Hz, moving at 25 mm/s.  Weights totaling 1.5 kg were placed 

on the sensor, resulting in an average sensor pressure of 6.6 kPa.  The latex skin was 

removed from the models and a second layer of silicone added to the models to create 

models with thicker background tissue.  In all, therefore, 32 combinations of lesion 

modulus and geometry were imaged.     

 

An example tactile map is shown in figure 2.37.  This map is constructed from the 

overlapping pressure frames recorded.  The centerline of the frames was found as the row 

of frames that contained the highest peak (averaged over five frames to eliminate the 

effect of noise).  These centerline pressure frames were assembled into a CTI for each 

model so that the inversion algorithm discussed above could be applied. 
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Figure 2.37.  Tactile map of a silicone sphere embedded in softer silicone, representing a 
stiff lesion in soft breast tissue.  The parameters of the model are background modulus 
B = 15 kPa, lesion modulus L = 430 kPa, tissue thickness t = 25.5 mm, and lesion 
diameter d = 14.1 mm.  The marks along the bottom of the map are at 10 mm spacing.  
The frames that make up this map were recorded individually and the centerline 
assembled into a CTI, in order to estimate the model parameters. 
 

 
2.7.3.  Experimental Parameter Estimation Results 

 
The results of estimating the parameters from physical model data are shown in figure 

2.38.  The errors are summarized in table 2.4.  The errors in estimating the geometry are 

higher than the errors in estimating the lesion modulus.  Errors in estimating these 

parameters may be due to errors in the actual values used for generating the 

transformation matrix.  The model thickness measurement may have errors up to half a 

millimeter, inherent in the difficulties in measuring the thickness of a soft material.  As 

well, since the second layer was mixed and poured a few weeks after the first layer, there 

may be a modulus mismatch in the thicker half of our models.  This would manifest as an 

error in the observed tissue thickness.  The sphere diameter was calculated based on 

careful measurements of the rigid spheres used to cast the mold.  The silicone spheres, 

however, did not always fill the mold completely when poured, and the registration of the 

two halves of the mold was not always perfect (errors of up to 1 mm were observed).  

Lack of proper mold filling affected the larger spheres to a greater degree, while 

misregistration of the mold halves had a larger impact on the actual diameter of the 
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smaller spheres.  The modulus of the spheres, on the other hand, was measured 

repeatedly on samples from the same mixture as the spheres were made of, and so the 

only errors this was prone to were an improperly mixed silicone mixture and degradation 

of the silicone over time.  Mixing of the silicone was done as carefully as possible, and 

since these models were cast after much experience had been gathered, it was not 

observed to be an issue.  The silicone itself is also not prone to degradation in the time 

frame of the model data collection, and so the actual values used for sphere modulus are 

considered reliable. 
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Figure 2.38.  Estimating the parameters of physical models using the inversion algorithm 
developed in this chapter. 
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Table 2.4.  Errors in estimating the parameters of silicone models of a spherical lesion 
attached to the substrate of a soft tissue. 
 

Parameter Mean Absolute 
Error [%] 

Lesion Modulus L 5.4% 
Lesion Diameter d 16.5% 
Tissue Thickness t 13.7% 

 

 

 

2.8.  Discussion and Future Work 

 

2.8.1.  Summary 

 

This chapter presented an algorithm for the estimation of tissue parameters from tactile 

information.  We focused on determining the parameters that define the problem of a 

round lesion attached to the hard substrate of soft tissue.  The parameter estimation 

algorithm that we proposed relies on a linear relationship between the tactile pressure 

data and a set of linearized tissue parameters.  The transformation matrix at the heart of 

the inversion algorithm is calculated from sparse data, however since the data follows 

predictable patterns, the transformation matrix can be modeled by only a few areas of 

distinct information.  This was shown by comparing the estimation results from the 

transformation matrix to the results of a matrix generated from mechanical reasoning, and 

to the results of reconstituting the transformation matrix using only its first two singular 

values and vectors.  Since the results were comparable, the transformation matrix must in 
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large part contain information that is spanned by a few dimensions and thus a linear 

system, such as the one developed in this chapter, is appropriate for the estimation 

required. 

 

The parameter estimation algorithm was applied to surface pressure data calculated from 

finite element models.  The estimation of the background modulus was accurate to within 

2.3% mean absolute error.  If we assume that this is an accurate representation of the 

background modulus, and use this value in subsequent calculations, the mean absolute 

errors for the other parameters are 1.9% and 11.7% for the geometry parameters of the 

tissue and lesion, respectively, and 32.1% for the lesion modulus.  These errors are 

incurred for a background modulus analogous to human breast fat, and can be different 

for different values of the background modulus.  It is reasonable to expect, for example, 

that with a stiffer background tissue the lesion will have less of an effect on the surface 

pressure profiles, and so estimating the lesion parameters in these cases may result in 

larger errors.  Previous work by Wellman [99, 01] and Sarvazyan [98c] has shown that 

even in these cases, however, tactile imaging is more sensitive than human palpation.  

Any higher error that is incurred, therefore, should still provide for clinically relevant 

results. 

 

The errors incurred in estimating the parameters of interest from finite element models 

were low enough to encourage applying the algorithm to data collected on physical 

models.  The errors in estimating the geometry parameters from the 32 physical models 
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constructed were 13.7% for the tissue thickness and 16.5% for the lesion diameter, while 

the error in estimating the lesion modulus was 5.4%. 

 

 

2.8.2.  Discussion of Estimation Results 

 

Tactile imaging is inherently a nonlinear process.  The linear algorithm developed in this 

chapter proved successful in estimating the salient parameters of imaged models within 

the errors noted above.  Previous attempts [Wellman 99, Weber 00] at determining tissue 

parameters from tactile information were unable to estimate modulus information, and 

instead assumed a model of a rigid lesion.  These methods studied tactile information 

after it had been assembled into a tactile map.  The loss of information inherent in the 

spatial averaging required to generate a tactile map was most likely the greatest 

contribution to the inability to extract the lesion modulus.  The spatial averaging, 

however, may have aided in the estimation of the lesion size.  In Wellman [99], an error 

of 4% was noted for the estimation of lesion diameter from data obtained on physical 

models similar to those constructed here.  This was for rigid lesions, however.  In 

comparison, when we estimate lesion diameter for the physical models with L/B = 29, we 

obtain a MAE of 10.6%.  The increased error is to be expected due to the increased 

difficulty in estimating parameters of a soft inclusion, as well as possible errors in the 

physical model data collected, discussed below. 
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The main key for the success of our linear algorithm is the linearization of the estimated 

parameters.  The linearization functions used were based on basic mechanical analogies 

and examination of the relationship between the parameters and the resulting pressure 

information.  The linearized parameters were such that the resulting relationship between 

them and the tactile data features such as the pressure frame peak were approximately 

linear.  The linear algorithm will yield better parameter estimates if the relationship 

between the parameters of interest and the tactile data was closer to perfectly linear.  

Possible improvements to the results obtained in this chapter may thus be seen by 

determining more effective linearization functions.  This may stem from a more thorough 

understanding of the underlying mechanics or from functions fit empirically to the 

pressure data.   

 

In the case of the finite element model data, the estimation of the background modulus 

and geometry parameters had smaller errors (MAE for tissue thickness t = 1.9%, lesion 

diameter d = 11.7%) than the estimation of the lesion modulus (32.1%).  The background 

tissue is in direct contact with the scanhead, and so the pressure profiles collected far 

from the lesion parameters are directly affected by the background parameters.  Similarly, 

since the lesion is much stiffer than the background, the lesion compresses far less than 

the background tissue, and so the lesion diameter affects the surface pressure through the 

effective reduction of background tissue thickness above the lesion.  The lesion modulus, 

however, has the smallest effect on the tactile information collected on the surface of the 

tissue.  This manifested itself in the difficulty in ascertaining an appropriate linearization 

function, and resulted in the largest error being found for this parameter. 
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The errors incurred in estimating the parameters from physical model data are in general 

higher than those incurred in estimating the parameters from finite element data.  This is 

to be expected since the tactile scanning data from the real models has greater noise, as 

well as additional sources of error such as uneven model thickness and tilt of the model 

with respect to the scanning direction.  The error in estimating the lesion modulus from 

the physical model data (5.4%), however, was lower than that for the finite element data 

(32.1%).  This is due to the fact that the lesions themselves were larger in the physical 

models (minimums were 12.7 mm in the physical models and 5 mm in the FE models), 

due to difficulties in casting small spheres accurately.  Although the smaller range for the 

lesion diameter did not decrease the errors in estimating the lesion diameter, it aided in 

the estimation of the lesion modulus, as the larger lesions resulted in a stronger signature 

from the lesion in the pressure data. 

 

The finite element models were constructed with a plane strain assumption, in which a 

round lesion models an infinitely long cylinder.  This would result in a stronger 

contribution from the cylinder than that expected from a spherical lesion and thus we may 

expect smaller errors in the estimation of the lesion modulus from the plane strain finite 

element models.  The results obtained from the physical model results, however, showed 

a decrease in the errors of estimating the lesion modulus, as discussed above.  Therefore, 

we can conclude that the plane strain approximation used in the finite element models in 

order to simplify analysis did not diminish the development of an inversion algorithm for 

tactile information. 
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2.8.3.  Towards Clinical Data 

 

The finite element models used for the above analysis modeled the nonlinear contact 

problem and the nonlinear geometric deformations, but did not model the nonlinear 

material properties of real tissues.  The physical models studied, although more realistic 

in several ways, were constructed from homogenous materials with a linear elastic 

modulus.  The physical models were three-dimensional, and imaged with a physical 

sensor that is similar to that expected to be used clinically.  The edges of the constant 

thickness background tissue in the physical models, however, were constrained by the 

rigid sides of the model container.  Clinical cases will not have such well-defined 

boundary conditions, and instead will involve tissues of varying thickness, in which are 

embedded lesions that are not perfectly spherical.  In addition, biological tissue is 

inhomogeneous even at the macroscopic level, and exhibits a greater elastic modulus 

with increasing strain.  Although our linear algorithm showed low errors in estimating the 

required parameters from the model data collected, the estimation errors will most likely 

increase in a clinical setting with less constrained boundary conditions and nonlinear 

tissues.   

 

The effect of the rigid sides of the physical model, which required the background tissue 

to bulge up, is unknown.  The models were constructed such that the lesions were far 

from the sides as compared to both their diameter and the distance from the surface, so 

the effect of the rigid sides is expected to be minimal.  The varying tissue thickness of 
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physical tissue will affect the estimation of this background parameter, since the 

estimation algorithm was developed to estimate a single constant related to the tissue 

thickness.  Given the symmetric data collected in the CTI as presented here, an average 

tissue thickness should be the parameter of interest.  This condition will be explored in 

detail in the next chapter. 

 

Nonspherical lesions will also affect the performance of the estimation algorithm.  

Barring extreme cases where the lesion is very thin in the depth dimension, distortions in 

this dimension are expected to have a minimal effect on estimating a representative lesion 

diameter, as evidenced by the minimal effect the plane strain assumption had on the 

estimation results.  Considering the areas of the CTI involved in estimating the lesion 

diameter, we expect that the maximum diameter through the vertical dimension will be 

the representative size estimated by the algorithm. 

 

A nonspherical lesion shape will also affect estimation of the lesion modulus.  

Considering the areas of the CTI involved in calculating this parameter, an asymmetry in 

the lesion shape will most likely result in an average depth-averaged modulus being 

calculated.  The extent of dependence of the estimation on the actual lesion shape should 

be explored in detail.  In chapter 4 we will explore the problem of estimating the 

parameters of a lesion of varying height. 

 

The effective elastic modulus of biological tissue increases with increasing strain. The 

algorithm developed here estimates only one parameter for modulus for each of the two 
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tissues modeled.  This is not sufficient to capture the entire stress-strain relationship of 

the materials, however in the case of physical data will result in one salient feature of the 

curve being calculated.  Since we collect our tactile data at a constant force, tissue with a 

lower average modulus will be subjected to greater average strain and is thus imaged at a 

representatively higher modulus and vice versa.  Although this will reduce the effective 

extent of the range of tissue moduli, this effect is small compared to the difference in 

moduli between tissues in the breast, and so should not greatly affect the ability to discern 

the difference between imaged tissues.  Small differences in the modulus within the bulk 

of each tissue will at worst manifest as noise in the data, whose effect on the success of 

the estimation algorithm is minimal. 

 

The data studied in this chapter was collected with a constant input force.  In a clinical 

setting, a human operator will perform the data collection, and so the total input force is 

expected to vary.  Although we can limit the data collection to pressure frames collected 

within a small range of input force, this range cannot be infinitely narrow, due to human 

variability.  Due to the nonlinear stress-strain relationship of biological materials, we 

cannot fully account for the varying total force by simply normalizing the collected 

pressures.  Indenting the tactile scanhead by different forces into the same tissue, 

however, probes the tissue at different strains and depths, and thus provides an even more 

complete picture of the tactile extent of the tissue than probing at one force.  We can then 

use the tendency towards a varying input force to our advantage, and, for example, 

require users to scan the surface of the tissue a few times at different forces.  By keeping 

frames collected within a few narrow ranges, we can estimate the parameters of interest 
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for each pressure range and obtain a more complete picture of the underlying tissue.  

Although estimates of the geometry should not change, this method may enable us to 

obtain a more detailed stress-strain curve for the constituent tissues. 

 

 
2.8.4.  Future Work 

 

The ultimate goal of developing the estimation algorithm is to take this work to a clinical 

setting.  The expected difficulties discussed above in dealing with clinical data may result 

in increased estimation errors.  The possible sources of error can be explored more fully 

by obtaining data from physical tissue such as excised biological tissue before a final 

move to in vivo data. 

 

The estimation technique outlined here may be improved upon by the addition of further 

information.  For example, ultrasound information can be used in conjunction with our 

algorithm to generate a more accurate estimate of the tissue geometry.  An ultrasound 

transducer can easily be incorporated into the tactile imager scanhead.  The merits of 

such an approach will have to be weighed against the resulting increase in cost of the 

combined device.  Obtaining multiple scans at different levels of input force may help 

also reduce these errors and provide more detailed information on the imaged lesion.  The 

value of either technique should be studied on models in work similar to in this chapter 

before being applied to clinical data, so that we may understand its contribution in a 

controlled setting. 
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The ideal test bed for this work is tactile data obtained on women with a known lesion 

that is about to be excised, similar to the clinical trial of the work performed by Wellman 

[99].  Upon excision, the parameters of interest can be measured directly and compared to 

the estimates generated from application of our algorithm.  With proper accounting for 

the errors inherent in imaging physical tissue, the accuracy of parameter estimation from 

tactile imaging can be established.  Low errors may make this technique useful in 

applications such as breast cancer screening, or for long term tracking of benign lesions. 
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Chapter 3 

Round Lesion in Soft Tissue 

 

 

3.1.  Introduction 

 

The analysis outlined in chapter 2, for the case of a lesion resting on a rigid substrate, 

models many cases of breast pathology.  There are several cases of interest, however, 

where a more appropriate model would allow for the lesion not to be attached to the 

substrate.  This includes not only cases of breast pathology in women with large breasts, 

but also conditions in other organs. 

 

Most solid organs, such as the liver and prostate, do not have a rigid substrate like the 

chest wall provides for the breast.  Lesions that develop in these organs, however, are 

subject to the same mechanical constraints as those that develop in the breast, and 

therefore tend to be round.  Pathologies in these organs, then, can be modeled by a round 

lesion embedded in soft tissue.  A rigid substrate can be considered on one side of the 

model to represent the skeletal structure near the organ.  This model is illustrated in 

figure 3.1.  Nonpathological features, such as the large blood vessels of the liver, are also 

well modeled by this figure, where the inclusion is a cylinder of pressurized liquid 
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instead of a solid lesion.  We would like to develop a method of estimating background, 

lesion and vessel parameters from these organs based on tactile information obtained on 

their surface.  Practically, this will eventually need to work with a smaller tactile imager 

that can be employed in minimally invasive surgical settings, however as a first pass, we 

will work with the tactile imagers at hand and determine a method for estimating 

parameters of interest on these organs. 

 

t BL
d

z

 
 
Figure 3.1.  Model for parameter estimation from tactile information.  The lesion is 
allowed to ‘float’ in the tissue, and is no longer attached to the rigid substrate.  The other 
parameters and assumptions remain the same as in figure 2.2. 
 
 
In this chapter we will study the applicability of the algorithm developed in chapter 2 to 

the case of a round lesion wholly encased in soft background tissue.  To the parameters 

for estimation B, L, t, and d (Background and lesion modulus, tissue thickness, and 

inclusion diameter, respectively) we therefore introduce a fifth parameter, z, the depth of 

the lesion, which must also be estimated from the tactile information.  We will study the 

estimation method on results obtained from finite element models constructed with the 

same assumptions of chapter 2.  We will divide the study into two sections:  the first for 

studying solid lesions, such as breast pathology in large breasts or liver, and the second 

for hollow lesions, such as large veins in liver. 
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3.2.  Mechanical Modeling 

 

A plain strain finite element was constructed with the same finite element mesh geometry 

for the upper portion of the model as in figure 2.8.  The model was extended under the 

lesion so that the lesion was now completely enclosed by the background tissue and 

‘floating’ above the substrate at various heights.  The model is composed of 

incompressible, isotropic, linearly elastic tissue.  The interaction between the indentor 

and the tissue surface is frictionless. 

 

In the modeling of solid lesions stiffer than the background in which they are embedded, 

we are interested in modeling within the physiological range of the human breast.  To that 

end, the parameter ranges as outlined in §2.1.5 were used, with the addition of the height 

h of the bottom of the lesion above the substrate.  The height h, which varied from 5 mm 

to 40 mm, is related to the depth z shown in figure 3.1 as z = t - d - h.  This range 

encompasses the expected geometry of breasts with a high fat composition and the 

maximum expected thickness of the human liver beneath a lesion.  The parameters for the 

models created are listed in appendix A.4.  In the modeling of blood vessels, we are 

interested in modeling the large vessels in human livers, with an eye towards testing our 

algorithm on porcine liver.  This requires different parameter ranges than the breast 

models.  The background modulus B of the soft inclusion models was therefore varied in 

the range of 10 kPa to 15 kPa, in order to encompass average moduli ranging from 

human to porcine livers [Carter 01, Ottensmeyer 01].  Based on the anatomy observed 
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during the dissection presented in §1.4.4. and expected human anatomy [Gray 02] the 

thickness t of the model tissue varied in the range of 40 mm to 60 mm.  Also, the vessels, 

whose diameter d varied in the range from 5 to 10 mm, were set in the middle of the 

tissue.  This reduced the liver models to 4 parameters: 

 

B = background modulus 

t = tissue thickness 

z = depth  

 = (t-d)/2,  where d is the vessel diameter 

V = vessel pressure 

where the vessel pressure V is considered instead of the lesion modulus L of the earlier 

models. 

 

Finite element models of liver with a central vessel were studied for vessel pressure in the 

range of 0Pa to 5Pa, corresponding to the pressure ranges expected for the hepatic vein.  

It was found that the tactile information that results from modeling tactile scanning of 

these models varied by less than 5% over the entire pressure range.  Therefore, it was 

decided to eliminate the vessel pressure and model the liver as a slab of tissue with a 

hollow cylindrical area in the center.  The parameters for the liver models created are 

listed in appendix A.5. 
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3.2.1.  Linearized Parameters 

 

In the case under study here, we have a new parameter, z, the depth of the lesion, to 

account for in our estimation algorithm.  For a lesion stiffer than the background, we 

surmise that due to the relative incompressibility of the lesion, the pressure recorded 

above the lesion will be related to z in a similar manner that the background pressure is 

related to the tissue thickness.  Therefore we take the inverse of the depth of the lesion, 

1/z, as the linearized parameter for our algorithm.  A plot of the linearized parameter 1/z 

versus the maximum pressure seen over the lesion confirms that this linearized parameter 

is a positive increasing value [figure 3.2]. 

 

The addition of the new parameter also changes the parameter used for the lesion size d.  

Earlier we had taken the parameter 1/(t-d) as the linearized parameter in our algorithm.  

In this case, since the models of interest are much thicker, and we know that the surface 

material affects the tactile frames more than the deeper material, we take d/z as the 

linearized parameter from which to estimate the lesion diameter d.  Figure 3.2 shows that 

indeed, the parameter d/z is more directly related to the pressure calculated over the 

lesion than the parameter 1/(t-d). 
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Figure 3.2.  Linearized geometry parameters for solid lesion embedded in soft tissue.  
The values on the x-axis have been linearly scaled in order to plot the values on the same 
axis. 
 

For the case of the embedded vessel, the maximum pressure calculated over the vessel 

shows a wide spread for the depth parameter z, however a slightly improved linear fit can 

be seen to the parameter 1/z (R2 = 0.04) than for the plain parameter z (R2 = 0.03).  

Although both values do not seem well related to the maximum pressure calculated over 

the vessel, the slight improvement for 1/z prompts us to use this in the estimation 

algorithm.   

 

Finite element analysis was performed on the 95 models created, and tactile scanning 

data was calculated every 2.5 mm for an 80 mm extent centered on the lump.  The data 

was compiled into Composite Tactile Images, and used to find the transformation matrix 

A as outlined in §2.2.6.  The all-but-one algorithm was used to test our linear inversion 

algorithm on the finite element data. 
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3.3.  Solid Lesion Results 
 

The results of estimating the parameters of interest for the finite element models created 

with a single floating solid lesion are summarized in table 3.1. 

 
Table 3.1.  Error in estimating the underlying parameters for models with a floating 
lesion. 

Parameter Mean Absolute Error in Estimation 
Background Thickness t 2.9% 

Lesion Diameter d 14.1% 
Lesion Depth z 7.9% 

Stiffness Parameter S = [Ld + B(t-d)]/t 35% 
Lesion Modulus L 94% 

 

The errors shown in table 3.1 were incurred in estimating lesion modulus when the 

transformation matrix A was created from files spanning the entire range of interest.  The 

errors in estimating the geometry parameters are on par with those for a fixed lesion.  The 

errors in estimating the lesion modulus, however, are too large to be of clinical use, so a 

different approach must be taken for these models. 

 

Closer examination of the composite tactile images generated from these models shows 

an interesting trend in a simple value called the Composite Tactile Image Amplitude 

(CTIa).  The CTIa is a measure of the strength of the signal contained in the CTI.  It is a 

ratio of the highest values contained in the frames, specifically the highest value of the 

CTI, max
peakCTI , to the lowest highest value in a frame, min

peakCTI , normalized to yield zero in 

the absence of a lesion: 
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In cases such as the ones under consideration, that of a CTI taken of a single lesion 

embedded in the middle of the region of data collection, the highest value occurs 

centrally, while the lowest high value occurs in the center of a background frame.  Since 

the data contains some noise, the actual values used for the CTIa are averages of a 3 x 3 

region in the CTI, corresponding to 3 values along a frame by three adjacent frames. 

 

The CTIa is fairly stable across lesion modulus for models of the same geometry, and a 

plot of CTIa versus lesion modulus shows the CTIa values clustering for similar 

geometries modeled [figure 3.3a].  Plotting CTIa versus a dimensionless geometry ratio 

d/z for all models confirms this separation of the data [figure 3.3b].  We see a distinction 

around CTIa = 0.125.  The tissue parameters within the ranges of interest result in CTIa 

clusters that do not cross this line.  If the ranges of interest were much larger, the trends 

evidenced in figure 3.3a are expected to continue, and the division at CTIa = 0.125 will 

disappear.  This division may also blur in the presence of noise larger than that present in 

the finite element data.  With a random noise, however, simple averaging should be able 

to account for the majority of it and this should only contribute to errors in a small 

percentage of the cases studied. 
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Figure 3.3.  The CTIa for cases of a solid lesion in soft tissue shows a separation for 
values greater or less than 0.125, indicated by the dashed line.  (a) CTIa versus lesion 
modulus.  The CTIa aggregates according to the underlying geometry.  (b) CTIa versus 
model geometry.   
 
 

This result provides a new way of approaching the parameter estimation for floating 

lesions.  Namely, breaking up the data set into two parts, one with high CTIa values and 

one with low CTIa values.  This necessitates the generation of two transformation 

matrices.  Since each transformation matrix will be created with less data, this is 

computationally more expedient than keeping one large data set.  Practically, once the 

tactile information is collected, the CTIa is calculated in order to ascertain which 
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transformation matrix to apply to the data.  Using this approach on our finite element 

data, the errors incurred are those shown in table 3.2 and figure 3.4. 

 
 
Table 3.2. Error in estimating the underlying parameters for models with a floating lesion 
using different transformation matrices based on the CTIa   
 Mean Absolute Error 
Parameter CTIa < 0.125 CTIa > 0.125 
Background Thickness t 2.2% 3.6% 
Lesion Diameter d 6.3% 7.5% 
Lesion Depth z 2.2% 3.6% 
Stiffness Parameter S 13.6% 7.5% 
Lesion Modulus L 33.1% 11.8% 
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Figure 3.4.  Results of estimating underlying parameters for finite element models of a 
solid lesion embedded in soft tissue. 
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3.4.  Vessel Parameter Estimation 

 

As a preliminary test of our algorithm, finite element models of liver segments with 

hollow vessels were used to obtain the required tactile information.  Thirty-six models 

were analyzed that spanned the range of parameters outlined in §3.2.  Tactile scanning 

data was recorded every 2.5 mm, and the pressure frames recorded in CTIs.  In this case, 

since the inclusion is softer than the background, the CTI centerline is the inverse of that 

from the previous sections.  As shown in figure 3.5, the hollow vessel manifests as a 

region of lower pressure in the middle of the CTI. 
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Figure 3.5.  Contour plot of a Composite Tactile Image obtained from a model of liver 
tissue with embedded hollow vein.  The axes indicate distance along the sensor (x-axis) 
and distance from vessel (y-axis).  The CTI values are slightly lower in the middle, 
indicating the presence of a soft area. 
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In this case, the CTIa is the ratio of the maximum of a background frame to the maximum 

of a frame collected over the vessel.  The CTIa increases with decreasing vessel diameter, 

and is equal to zero in the absence of a vessel.  Although this trend was indeed seen 

[figure 3.6], there was no clear-cut point at which we can separate the models to yield 

two distinct accumulation matrices.  For the range of parameters used, the CTIa varied 

between 0.025 and 0.095.  Because of this lack of separation, all the results were lumped 

together to generate one transformation matrix.   

 

As in the previous sections, for each of the model data sets, the other 35 models were 

used to generate a transformation matrix to estimate the parameters from the pressure 

frame data.  The results of estimating the model tissue and vessel parameters are shown 

in figure 3.8 and summarized in table 3.3. 
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Figure 3.6.  CTIa for finite element model data of liver with hollow vessel. 
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Table 3.3.  Mean Absolute Error in estimating the underlying parameters of liver finite 
element models. 

Parameter Mean Absolute 
Error in Estimation 

Liver Modulus B 0.81% 
Liver Thickness t 9.3% 
Vessel Depth z 7.2% 
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Figure 3.8.  Estimating underlying parameters from finite element models of livers with 
embedded vessels. 
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3.5.  Experimental Results 

 

In order to test our parameter estimation algorithm on real tissue, two porcine livers were 

obtained.  The livers were from healthy 40kg pigs and were harvested within one hour of 

sacrifice.  They were immediately flushed with heparin to eliminate blood clots.  

Perfusion with physiological saline solution at 36°C was started approximately one hour 

later.  Each lobe was imaged with the laboratory tactile imager discussed in §1.4.1 and 

tracked in three-dimensions.  Vessels were found in tactile images as shown in figure 3.8. 

 

   
Figure 3.8.  Tactile maps of sections of porcine liver lobe, showing decreased pressure 
over vessels.  The left and center images show one vessel each spanning the width of the 
image, indicating the presence of a large vessel beneath the surface.  The image at right 
shows two vessels running from left to right, with the upper one leaving a smaller 
impression in the tactile image (due to smaller size or greater depth).  The images shown 
are approximately 80 mm x 40 mm. 
 

Eight vessels were found in the two porcine livers, and multiple tactile images were made 

of many of the vessels, to result in 14 usable maps for testing our inversion algorithm.  

For each set of tactile image data, tactile frames were extracted every 2.0 mm for a 40 

mm linear region centered on the vessel.  This tighter spacing was prescribed by the fact 
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that the thin porcine liver lobes vary considerably in thickness, and even over a 40 mm 

section the thickness varied up to 15 mm.  Since the images were obtained using a hand-

held sensor the pressure applied varied for each frame.  The average pressure across all 

the frames of interest was 18.2 ± 10.3 Pa.   

 

For each set of data in turn, the transformation matrix was found using the other 13 sets 

of data and the parameter estimation tested on the set in question.  The actual parameters 

were recorded after tactile imaging was complete by dissecting the liver lobes and 

measuring the vessel diameter, depth from surface, and total tissue thickness.  The 

background modulus was assumed to be the same across all samples, since the subjects 

were both healthy pigs of the same age raised together.  The results of estimating the 

actual parameters using our inversion algorithm are summarized in table 3.4 and shown 

in figure 3.9.  The vessel depth and diameter were calculated independently since in the 

thin livers available for our study, an assumption of a perfectly centralized vessel would 

have resulted in a nontrivial error source. 

 

 

Table 3.4.  Results of estimating the underlying parameters of porcine livers with large 
embedded veins. 

Parameter Mean Absolute 
Error in Estimation 

Liver Thickness t 20.0% 
Vessel Diameter d 25.6% 

Vessel Depth z 13.6% 
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Figure 3.9.  Estimating underlying parameters of a vein embedded in porcine liver tissue. 
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3.6.  Discussion and Future Work 

 

This chapter has detailed the estimation of parameters from models and physical 

structures with a lesion embedded in tissue but not attached to the substrate.  We broke 

the problem into two parts, the former dealing with lesions stiffer than the background, as 

in cases of breast or liver pathology, and the latter dealing with inclusions softer than the 

background, such as estimating the geometric parameters of a large vein in the 

parenchyma of a liver.   

 

In the case of a solid lesion embedded in soft tissue, we found that estimating the model 

parameters was improved by breaking up the data into two sets, depending on the value 

of the Composite Tactile Image Amplitude (CTIa).  Estimations of the background and 

geometry parameters showed comparable errors between the low and high CTIa values, 

however the estimation of the lesion modulus had notably lower errors for models with a 

high CTIa.  This is to be expected since a high CTIa implies that a stronger signal from 

the lesion is contained within the tactile frames. 

 

Estimation of parameters for the case of a solid lesion was facilitated by a separation 

found in the data sets, depending on the CTIa.  Such a division was not found for the case 

of a hollow vessel, most likely due to the range of the parameters of interest.  Figure 3.3 

shows the spread of the CTIa for the cases of a solid lesion studied above.  If the lesion 

modulus was allowed to continue to increase, the trend of the lower data clusters will 
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continue, and eventually overlap the values of the data in the upper trend.  The lesion 

modulus required for this, however, is outside the physiological range of interest.  In the 

case of the hollow vessels, the range of interest does not allow for a clear delineation of 

the data. 

 

For the case of a hollow vessel embedded in tissue, the results obtained on the finite 

element models showed promisingly low errors.  The estimation on physical livers tested 

resulted in errors approximately twice those of the finite element models.  This is not 

surprising, given the unconstrained data collection in the laboratory setup and the 

nonlinearities inherent in the tissue properties not modeled in our finite element analysis.  

A prime difference between finite element analysis and physical data collection is the 

large range of input pressures observed during physical data collection.  This variable is 

controlled to better than 1% in the finite element analysis, but was observed to vary up to 

30% in the physical data collection, due to human operation of the tactile system.   

 

This non-zero input pressure range affects the data in two ways.  The first is that due to 

the nonlinearity of the tissue modulus, we inadvertently probe the tissue at different 

effective moduli.  Because of this, we cannot simply normalize the frame information by 

the difference in the total applied force.  However, this change in the effective 

background modulus will result in an incorrect measure of the tissue thickness, since we 

had assumed a constant background modulus.  The wide range of input pressures also 

affects the way the tissue is probed in that as the tactile imager is indented further into the 

tissue, the surface pressure is informed from deeper tissues [Sarvazyan 98], which results 
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in information that our simple parameter system cannot handle.  This problem of a wide 

range of applied forces can be improved by implementing software control on the tactile 

data, only allowing data to be obtained in a fixed range of total force, and providing 

positive feedback to the user when they are operating in the acceptable range. 

 

The sensor used was not ideal for the porcine livers tested, as their stiffer parenchyma 

and thin cross-section requires a flatter sensor to allow all of the pressure sensors on the 

tactile imager to contact the tissue.  With the sensor used, in almost 10% of tactile frames 

only 14 of the 16 centerline sensors recorded any contact pressure.  Rather than present 

the inversion algorithm with artificial zeros at the end of frames, all of the frames were 

truncated to 14 pressure points in width.  This did not adversely affect the mathematics of 

the algorithm, as it has been shown to work for a sensor of finite width smaller than the 

contact area.  The smaller number of data points, however, decreases the oversampling 

buffer than aids tactile scanning in performing parameter estimation accurately. 

 

With only eight vessels found in the two livers studied, the parameter range was sampled 

only sparsely.  Obtaining extra maps on some vessels allowed for estimation of all map 

parameters, since we were not extrapolating for any one variable.  Maps taken on the 

same vessel were not identical, and so represented different maps taken on vessels with 

similar parameters.  Since these double maps were not identical, however, they may have 

negatively affected the parameter estimation, by providing a different pressure signature 

for the same parameters.  As seen by the distribution along the x-axes in figure 3.9, the 

duplicate maps were well spaced over the tissue thickness and vessel diameter, but were 
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biased towards larger diameter vessels since the smaller vessels were difficult to image 

repeatedly, most likely due to temporary collapse.  Therefore, although the total 

parameter range was spanned, the estimation of the vessel diameter was most likely 

adversely affected since the range spanned by the majority of the data was narrow, with 

more than one pressure profile representing the same diameters. 

 

The liver parameters were only recorded after all maps were taken, by cutting the lobe 

perpendicular to the vessel along the line of data recording.  Recording the parameters 

this way is the most direct and readily available method, however may have contributed 

incorrect vessel parameter information.  Since the cutting and data recording were done 

by hand, the planes of tactile data and dissection may be offset by a few millimeters.  In 

this range, the vessel diameter and tissue thickness may vary as well.  The vessel 

diameter may vary by up to a millimeter and the tissue thickness by twice that.  The liver 

parenchyma also was prone to swelling in the cut plane.  This is due to the natural tension 

that is present in the liver, maintained partly by the perfusion under which the data was 

recorded.  Perfusion was necessary, however, in order to maintain mechanical viability of 

the liver, so that despite the above sources of error, subsequent maps recorded on the 

same vessel record approximately the same conditions.  These sources of errors 

contribute mainly to the input parameters, and may adversely affect the apparent 

estimation by presenting incorrect information for the creation of the transformation 

matrix.  These errors can contribute a relatively large error to the parameters in question, 

and so the above work should only be considered a proof of concept for the use of tactile 
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scanning to record liver vessel parameters.  Within these constraints, the algorithm 

performed remarkably well in estimating the underlying parameters. 

 

With the data separated according to the CTIa, the results obtained from the finite 

element data for floating lesions are comparable to those obtained in the previous chapter 

for fixed lesions.  Therefore, the next step in the study of estimating the geometry and 

modulus of an inclusion embedded in tissue should be on data obtained from physical 

models.  Once the estimation algorithm is shown to work well for physical models, actual 

tissue with embedded inclusions can be studied.  Much like the work described above for 

analyzing actual liver vessels, tactile data should be obtained immediately before 

dissecting the tissue for measuring the actual parameters.  Reasonable results from this 

will be a required step to moving on to estimation of lesion parameters in vivo. 

 

In the case of liver vessel parameter estimation, further work should be conducted on 

physical livers, after the main causes of error noted above are addressed.  Specifically, a 

flatter indentor should be employed for porcine livers so that the tactile frames involve all 

of the available pressure sensors.  Also, a method for applying a near-constant force 

should be utilized.  This can be as simple as generating a specific sound for when the data 

collected is in a narrow range around the ideal input pressure [Wellman 01].  Obtaining 

larger porcine or bovine livers may also help since they would be closer in thickness to 

human livers.  Ideally, human ex vivo livers will be tested before moving ahead to an in 

vivo setting using a smaller tactile imager in minimally invasive data recording. 
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Continuous Estimation 

 

 

4.1.  Introduction 

 

The parameter estimation problems outlined in the previous two chapters are based on 

ideal models that are most realistic when compared to organs composed of a homogenous 

tissue with an isolated inclusion.  There are important cases, however, that include a more 

diffuse region of stiff tissue.  This includes the cases of young premenopausal women 

and women with fibrocystic change.  Both of these cases involve glandular tissue and 

possibly lesions which have palpable features under a layer of surface fat.  This is 

depicted schematically in figure 4.1.  These cases are difficult to record in most imaging 

modalities, including mammography and manual palpation [Pennypacker 99].  However, 

especially in the latter case of fibrocystic change, since these women are at a higher risk 

for developing breast cancer [Thomas 97], monitoring of their underlying fibrous tissue is 

extremely important.  Such monitoring is invaluable in determining when a lesion has 

developed. 
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Figure 4.1.  Model that represents the case of fibrocystic disease and young women with 
stiff glandular tissue.  The total thickness is assumed to be uniform regionally, but the 
thickness of the glandular tissue layer varies continuously. 
 

In this chapter we develop a method for estimating the shape of the underlying layer of 

glandular tissue in cases such as that in figure 4.1 from the tactile information obtained in 

tactile scanning.  The general problem of estimating a substrate with continuously 

varying thickness and modulus is ill conditioned, so we will simplify the system and gain 

as much insight as possible from the simplified problem.  Since a linear algorithm with 

linearized parameters showed success in discrete parameter estimation in chapters 2 and 

3, we will seek a linear algorithm for this inversion. 

 

 

4.2.  Estimation Approach 

 

A stylized example of the case under consideration is shown in figure 4.1.  The uneven 

base layer is glandular tissue, while the overlying fat allows for a smooth surface.  

Assuming the fat and glandular tissue layers are each composed of tissue with uniform 

modulus, which we denote by B and L respectively, we can describe this case by the total 

tissue thickness, t, and a function that describes the thickness of the base layer, d(x).  We 

seek an inversion algorithm that allows us to estimate d(x) from the surface pressure data 

collected from tactile scanning.   
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Tactile Scanning results in a pressure signal, P, that varies over space, x, and depends on 

the underlying geometry and tissue moduli (t,d,B,L).  In the case under discussion, each 

layer will be assumed homogenous, and the geometry can be summarized as a function of 

the base layer thickness d(x) and the constant total thickness t.  With this in mind, the 

pressure signal, P(x,t,d,B,L), can be written as P(x), with d(x) the only variable input 

quantity.  The ideal estimation method would allow for immediate estimation of d(x) as 

P(x) is collected.  Figure 4.2 shows the estimation scheme, with a filter estimating d(x) 

from P(x).  An ideal estimation would yield an error e(x) = 0. 

 

Tactile
Scanning Filter

d(x) P(x) d(x)
+

-

e(x)^

 
Figure 4.2.  Filter representation.  An ideal filter based on the impulse-response of a 
noise-free system would extract the input function such that the error e(x) would be zero 
everywhere. 
 

 

We propose an estimator based on the impulse response HP(x) that results from an 

impulse base thickness δd(x).  The input d(x) would then be related to the output P(x) by 

 ( ) )()( xdxHxP P ∗=  (4.1) 

where * denotes convolution.  This is the basis of the linear system, where the output 

P(dT(x)) that results from dT(x) = d1(x) + d2(x) is P(dT(x)) = P(d1(x)) + P(d2(x)).  Based 

on our work documented in previous chapters, we expect a linear relationship between 
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the pressure P and a combination of base layer thickness d(x) and total thickness t.  In 

previous sections the parameter 1/(t-d) was used to provide the linear relationship 

between lesion diameter and peak pressure.  In this case, however, we want a null signal 

when the input parameter is zero, whereas 1/(t-d) only approaches zero as the tissue 

thickness t becomes infinite.  As found in Chapter 2, a linear fit between maximum 

pressure and d/(t-d) is almost as good as the fit to 1/(t-d) (R2 difference of less than 0.02).  

Thus, we take the nondimensional function d/(t-d) as our input parameter, and look for an 

algorithm to estimate the function D(x) = d(x)/(t-d(x)) from the pressure frames collected 

in tactile scanning.   

 

As in previous chapters, we turn to finite element models of the system to model tactile 

scanning.  From the model data, we can gain an understanding of the relationship 

between the input parameters and the output pressure in order to generate our algorithm.  

In developing our estimation algorithm we will establish the linearity and practical limits 

of the system to help establish an understanding of the full range of the utility of using 

tactile imaging for the cases under consideration. 

 

4.2.1.  Pressure Output 

 

In the proposed system, we vary only one input parameter, namely the thickness of the 

glandular layer, d.  Changes in this one input parameter should be sufficiently captured 

by the variation in one output parameter, and so we consider the peaks of the pressure 

frames as the response to this input.  The peak of the pressure profile is selected based on 



Chapter 4.  Continuous Estimation  Galea 

   125

the work of the previous chapters, which indicated that for a pressure profile collected 

over a lesion with diameter d, the peak of the profile was most directly related to d.    

Thus, we look at the maximum pressure P(x) to try to estimate D(x) = d(x)/(t-d(x)). 

 

 

4.3.  Mechanical Modeling 

 

The case under scrutiny here, as shown in figure 4.1 can be discretized as shown in figure 

4.4, such that the function d(x) becomes a discrete function of the indicial position n, 

d(n).  Discretizing the image in this way allows us to directly model this case with finite 

elements, where the elements at the base levels are the same size as the discretization 

sampling size.  In keeping with the assumptions of the previous sections, we construct 

this case with a plain strain model.  The materials are modeled as linear isotropic 

materials, representing fat and glandular tissue, with Young’s moduli of 15kPa and 

150kPa respectively, and Poisson’s ratio of v = 0.499 for each.  Figure 4.5 shows a 

typical finite element model created for this purpose. 
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Figure 4.4.  Discretizing the case of a base layer of varying thickness leads to a discrete 
function d(n).  Top:  a base layer of glandular tissue with variable thickness underneath a 
layer of fat, with constant total thickness.  This figure represents an extreme case of base 
layer variability.  Middle:  modeling the top case with discrete elements.  Bottom:  
discrete input signal d(n). 
 
 

 

Region of Interest  
Figure 4.5.  Finite element model showing a slab of tissue of uniform thickness.  The 
tissue is made of fat, with a base layer of glandular tissue of varying thickness in the 
region of interest.  The fat and glandular tissues are both modeled as linear elastic 
isotropic materials.  The elements along the bottom are 0.5 x 0.5 cm. 
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The tactile imager was modeled as a cylindrical indentor as in the models of the previous 

sections.  It was indented with a force of 80 N/m at one end of the tissue slab and slid 

across the surface of the tissue.  Pressure frames were collected every 0.25 cm. 

 

 

4.4.  Linearity 

 

We propose to develop an inversion scheme based on the impulse response HP(x) to an 

impulse base thickness δd(x).  The use of an impulse response is based on the assumption 

that the system can be modeled linearly.  In order to test the linearity principle, five 

models (one master and four sub-models) were constructed as shown in figure 4.6.  In 

these models, the total tissue thickness, t, is 3 cm, while the glandular layer varies from 0 

to 1 cm thick.  The models were constructed so that various combinations of the sub-

models should result in a pressure profile like that of the master model if linearity holds 

for our system.  We model a flat area of constant D(x), a gap between two lumps, and a 

lump with a step difference in D(x).  From figure 4.6 we expect the following 

relationships for the pressure profiles: 

 

 PT = Pa + Pb 
(4.2) 

 PT = Pa + Pc + Pd  

 

This assumes a zero pressure frame when there is no glandular tissue beneath the fat, 

which is not the case.  This can be accounted for, however, by subtracting a standard 
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background pressure distribution from each pressure frame.  This background value is the 

pressure frame that would be recorded on tissue of the same thickness as the sample but 

composed entirely of fat, i.e. D = 0.   

 

Testing linearity on these models will not provide an exhaustive proof of the linearity of 

our system.  However, it will allow us to study the limits of linearity at superposition with 

a gap and without.  We expect this to be representative of the most extreme case 

encountered clinically, that of a perimenopausal breast undergoing discrete glandular 

involution. 

 

With the background value subtracted, the superposition of the relationships in equation 

4.2 above is shown in figure 4.7.  Figure 4.7 shows the peaks of the pressure frames 

collected every 0.25 cm for the 8 cm of the models shown in figure 4.6.  A plot of the 

peaks is essentially a plot along the curve that follows the highest contour of the 

composite tactile image for each model.  As expected, the peaks of the pressure frames 

indeed show the greatest relative signal amplitude, compared with other quantities that 

we can extract from the pressure frames, such as the width or edge slope of the frames. 
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Figure 4.6.  Five models were created such that the principle of superposition can be 
tested.  Neglecting the background modulus, various combinations of the lower four 
models can be superposed to create the same glandular tissue layer as the top model.  
Specifically, T = a + b = a + c + d. 
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The superposed pressure functions exhibit a similar shape to that resulting from the total 

input in both cases.  The case of Pa + Pb = PT is accurate to within 5% mean absolute 

difference.  The second case, of Pa + Pc + Pd = PT has mean absolute difference of 36%.  

This is partly due to the noise at the tails of the profile, which introduces a higher relative 

error.  Aside from the noisy tails, the maximum difference is 48% of the signal and 

occurs at the maximum value of the superposition. 

 
 
 

 
Figure 4.7.  Result of superposing the peak pressure (less the background) for the tactile 
information from the models shown in figure 4.6.  Solid (red) = PT, Circles (black) = Pa + 
Pb, Stars (blue) = Pa + Pc + Pd. 
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The errors in the superposition of the second case are mainly due to the overshoot in the 

pressure profile for the larger section of glandular tissue on the right.  In this case this 

section was superposed by two adjacent pieces, so the smearing of the underlying 

information inherent in tactile imaging due to the overlying layer of soft tissue cause 

overlapping pressure information at the edges of stiff lumps.  The general shape of the 

pressure profiles, however, is correct.  This indicates that superposition of the underlying 

glandular layer does not create spurious data, such as a singular peak in the pressure 

profile that would otherwise result only from a spike in D(x).  This, then, shows a limit to 

the estimation of D(x) from P(x), in that P(x) may overestimate D(x) in the presence of 

dense superposition.  Since the underlying shape of the pressure profile is correct, 

however, we move ahead to developing the appropriate impulse response. 

 
 
 
 
4.5.  Algorithm Development 

 

The first step in developing the inversion technique is establishing the impulse response 

which is the basis of signal superposition of the system.  With the impulse response 

established, we surmise that the relationship between the input and output is a 

convolution of the input with the impulse response.  Thus, to estimate the input signal 

using the output, we must deconvolve the output pressure signal with the impulse 

response. 
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Given the discretization shown in figure 4.4, the basic impulse input is shown in figure 

4.8.  In discrete systems such as this, the proper impulse is one sampling interval long 

and one unit high.  We model this as a singular element of glandular tissue at the base of 

a model composed entirely of fat.  This results in a rectangular impulse input of glandular 

tissue 0.5 cm wide and 0.5 cm high. 

 

0 n
1

d(n)

 
Figure 4.8.  Impulse input δd(n) for the discretization scheme shown in figure 4.4. 

 

 

The ideal discrete impulse input, however, is too small to create a distinctive pressure 

signal in most models of physiological thickness, so we turn to modeling the impulse 

input by a glandular impulse one element wide and two elements high (0.5 cm wide and 

1.0 cm high).  The response to this modified impulse input for tissue thickness t = 3 cm is 

shown in figure 4.9 (leftmost plot).  The response to this 1cm high impulse is well-

modeled by a gaussian function with a peak of 195 Pa and a standard deviation of 0.92 

cm (standard deviation in the indicial value n = 3.7).  In order to test whether our 

modification of the unit impulse, based on the principle of superposition, was acceptable, 
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we also model impulses three and four times as high as the true impulse (1.5 and 2.0 cm 

respectively).  The resulting pressure responses and gaussian fits are shown in figure 4.9. 

 

 

 
Figure 4.9.  Peak Pressure Profile for impulses of different heights in background tissue 
3cm thick.  The actual data is shown in solid blue, with a gaussian fit superposed in a 
dashed red line.  From left to right, the impulse height was 1cm, 1.5cm, and 2cm.  The 
standard deviations for the three gaussians are 1.18, 0.95, and 0.82 cm respectively.  The 
standard deviation for the first case is higher due to the contribution of the tails in the 
data, whose absolute magnitude does not change for each of the impulse responses. 
 
 

The pressure responses to the impulse inputs of varying heights are shown in figure 4.9.  

The standard deviations of the best fit gaussian curves were 0.95 ± 0.1 cm (0.1 cm 

standard deviation).  Although this shows a 10% variation, we will consider the central 

value as representative of the cases we expect in patients.  This allows us to extrapolate 

the height of the gaussian to the theoretical response of the true impulse input.  Figure 

4.10 shows the heights of the impulse responses to impulse inputs of varying heights in 

tissue 3 cm thick, versus the function D = d/(t-d).  As expected, the relationship between 

D and the peak of the pressure response to an impulse input is well modeled as linear (R2 

= 0.98).  Combining the result from this gaussian peak fitting with the average variance 
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of 0.975cm found for the responses to the impulses of varying height yields an impulse 

response of 
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Figure 4.10.  Thickness of glandular layer, d, and linearized thickness D = d/(t-d) versus 
the magnitude of a gaussian fit to the pressure frame peaks for tissue thickness t = 3 cm.  
The linear fit to the d/(t-d) data is shown, and as expected it fits the data well. 
 

Similar analysis for models of varying thickness yields similar impulse responses, a 

sampling of which is shown in figure 4.11.  The variance for gaussians fit to these 

impulse responses does not change appreciably over the range of tissue thickness of 

interest, giving a standard deviation of 0.94 ± 0.2 cm for 7 models with total tissue 

thickness t increasing 0.5 cm in the range of {2.0 cm, 5.0 cm}.  The lower variation in 

these standard deviations is partly due to testing impulses greater than 1.0 cm high, such 

that the errors introduced by the noisy tails is minimized.   

 

Figure 4.12 shows the height of all impulse responses studied for 14 models in this range 

of tissue thickness and impulse heights between 1 cm and 3.5 cm.  The data can be fit to a 

linear relationship to d/(t-d) with moderate errors (R2 = 0.77).  Combining this result with 
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the variance data above, we can generate a generic impulse response valid for all tissue 

thicknesses of interest and with background modulus at the physiological human breast 

fat modulus of 15kPa.  This impulse response is 

 )8.1( 2

398)( x
P exH −= . (4.4) 

 
 

 
Figure 4.11.  Impulse responses for tissues of varying thickness.  The impulses had height 
d that was 1.5cm less than the model thickness.  The standard deviations of the impulse 
responses for models of increasing thickness are 0.95, 0.92, 0.97, 0.94, 0.94, 0.92 cm 
respectively. 
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Figure 4.12.  Impulse response height versus linearized base thickness.  The data can be 
fit to a straight line with moderate error. 
 
 
The impulse response generated (equation 4.4) is valid across the range of tissue 

thickness 2.0 cm ≤ t ≤ 5.0 cm and impulse height 0.5 cm ≤ d ≤ 3.5 cm, though for each 

specific combination of d and t the ideal impulse response is slightly different from that 

of equation 4.4.  This will be the cause of error in parameter estimation, however the 

errors are minimized as much as possible in the range of interest.  Practically, if one had 

an independent means of calculating the total tissue thickness t (for example, from a 

compatible device such as an ultrasound transducer), a more accurate impulse response 

can be applied, tailored to the specific tissue under study. 

 

4.5.1.  Estimating the Glandular Tissue Thickness 

 

With the impulse response HP(x) and the output signal P(x), the input D(x) = d(x)/(t-d(x)) 

can be calculated by deconvolving HP(x) and P(x).  There are several established methods 

for performing a deconvolution.  In our case we choose a matrix deconvolution method, 
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as it is more robust than time-domain (polynomial division) deconvolution and frequency 

domain (spectral division) deconvolution, given the noise in our signal P(x) [Hansen 98]. 

 

Matrix deconvolution requires that a matrix Γ be constructed such that its rows are the 

convolution of the rows of an identity matrix I with the impulse response HP, such that 

for each row i of Γ, 

Γi = Ii*HP
T 

where the transpose of the impulse response is taken since it is assumed to be contained 

in a row vector. 

 

Once the matrix Γ has been established, the deconvolution of the signal P and the 

impulse response H becomes 

Dest = [ ΓT Γ + λ I ]-1 ΓT P 

where I is the identity matrix and λ is a regularization parameter. 

 

If the signal P(x) was free of noise, the regularization parameter λ should be set to zero.  

In our case, the system is not noise-free, so λ was nonzero.  In order to determine an 

appropriate value for λ, we created 12 finite element models with varying D(x) and 

obtained their attendant P(x).  The λ for each of these models is that which minimizes the 

error  

e(Dest) = Σn(Dest-D)2. 

The λ thus found was 1.5x104 ± 8.6x103 across the test models.  For a few models, the 

error did not minimize for increasing λ, however a plateau was reached by λ = 104 
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beyond which the error did not decrease by more than 10%.  For these models, λ was 

assumed to be equal to 104.  In light of the average regularization parameter, λ = 1.5x104 

was used for all the models tested.  A smaller λ will allow noise in the pressure signal to 

have a larger contribution to the reconstructed signal, however a larger λ should be 

avoided, as that would result in increased smearing of the data. 

 

 
 
4.6.  Effect of the Background Modulus 

 

In the previous section we found that the impulse response width does not vary greatly 

over the tissue thickness range of interest.  The only other background parameter than can 

affect the width of the impulse response is the background modulus.  The background 

modulus range is not very large, since fat modulus is fairly consistent among subjects 

[Wellman 99].  Nonetheless, for an impulse composed of glandular tissue at the 

physiologic value of 150kPa, varying the background modulus yielded the changes in 

standard deviation shown in figure 4.13 (lower curve).  Due to the low modulus of the 

impulse, it is not possible to run models beyond the small range of the curve shown in 

figure 4.13:  higher background modulus would be indiscernible from the underlying 

glandular layer, while the finite element models do not converge for lower values of 

background modulus.  To avoid this problem, we increased the modulus of the impulse 

tenfold to 1.5 MPa and analyzed models with this higher Young’s Modulus for the base 

layer in order to study the effect on the width of the impulse response.  This is shown in 

the upper curve of figure 4.13.  The shape of the dependency between the width of the 
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impulse response and the underlying background modulus remains approximately the 

same for the two cases studied.   
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Figure 4.13.  Change in width of impulse response with changing tissue modulus.  B is 
the modulus of the background (fat) tissue, while L is the modulus of the glandular tissue 
layer. 
 

 

The approximate mean physiological ratio of background fat modulus to glandular tissue 

modulus is between 1:3 and 1:10.  The width of the impulse response increases for 

increasing background modulus around this physiological value.  Once again, therefore, 

we see that the impulse response needed should be tailored to the specific parameters of 

the tissue under study.  The actual modulus of human breast fat, however, is more 

predictable than that of other breast tissues [Wellman 99] and so a varying background 

modulus B should not be a large source of error.  
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4.7.  System Resolution 

 

 

Since the pressure response is discretely sampled from signals that are not noise-free, we 

expect that our system will be unable to distinguish features smaller than a particular 

resolution limit.  In order to study the actual resolution of the system, we created models 

with two underlying impulses of glandular tissue.  A schematic of the result from these 

models is shown in figure 4.14.  The trough in the deconvolved signal between the two 

impulses increases as the impulses get closer together.  Plots of the height of this trough 

normalized to the average height of the peaks are shown in figure 4.15.  The 

reconstructed signal shows almost no trough for an impulse separation of less than 1cm.  

At maximum separation a plateau is reached where the trough does not reduce further.  

This trough is reached by the time the separation equals 2 cm, or 2 standard deviations of 

the impulse response with overlying fat modulus in the physiological range, and gives us 

a quantitative measure of the expected resolution of the system. 
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Input Signal

Distance
between
impulses

trough peak

Reconstructed Signal

 
Figure 4.14.  Model with two impulses created and reconstructed signal.  The 
reconstructed signal is from a model with tissue thickness t = 4.0 cm and distance 
between impulses of 3.5 cm. 
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Figure 4.15.  System resolution.  The peaks become clearly discernable as resulting from 
two distinct regions at a distance greater than 1.5cm, and the trough settles into its 
minimum value at 2cm, which is twice the standard deviation of the gaussian impulse 
response. 
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4.8.  Results and Discussion 

 

The impulse response of equation 4.4 developed in the previous section was used to 

estimate the underlying base layer thickness from the resulting peak pressure profiles 

collected from tactile scanning on various finite element models.  After subtracting the 

background pressure, matrix deconvolution was employed to deconvolve the actual 

signal from the impulse response.  This method is fast enough to be applied to real time 

data collection.   

 

A typical result is shown in figure 4.16.  In general, for input signals that contained 

features greater than 1cm wide, the reconstructed signal showed a mean absolute error of 

less than 20% in estimating the input parameter d/(t-d).  The reconstruction of input 

signals with features smaller than this is far poorer, with errors greater than 30% of the 

signal.  A typical example is shown in figure 4.17, and as expected, a great part of the 

error stems from the narrow gap in the glandular tissue.  The reconstructed signal not 

only smoothes the two lumps, it also estimates that the first lump does not start for almost 

a centimeter after its actual rise.  This may be due to the proximity of the large lump to 

the small lump – since the tactile imager scanhead is wider than the distance between the 

lumps, the larger lump can be ‘supporting’ the scanhead as it approaches and moves over 

the smaller lump, and essentially shielding the smaller lump from the stresses that would 

result in a distinctive pressure signature.  Since the lumps are only 1 cm apart, the result 

shown in figure 4.17 fits well with the expected signal loss of the resolution study shown 

in figure 4.15. 
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Figure 4.16.  Reconstruction (purple) of the original signal (blue) shows good tracking.  
The small plateau on the right in the original signal manifests as a shallower slope on the 
right than on the left.  The index n corresponds to tactile scanning intervals of x = 0.5cm. 
 
 

 
Figure 4.17.  Reconstruction (purple) of the original signal (blue) using the impulse 
response of equation 4.4.  Lumps with a 1cm separation are not distinguishable as 
discrete.  The index n corresponds to tactile scanning intervals of x = 0.5cm. 
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4.9.  Discussion and Future Work  

 

Tactile imaging is inherently a nonlinear process, with a resultant pressure profile that 

depends in a complex way on the underlying tissue parameters.  In this chapter we have 

modeled the relationship between the maximum frame pressure and a linearized 

glandular tissue thickness as linear, and applied a deconvolution algorithm to estimate the 

tissue thickness from the pressure data.  Limits to the estimation of the tissue thickness 

are reached for features narrower than 1 cm that cannot be detected with this method.  

Limits to the quality of estimation are seen if the imaged tissue parameters do not fall into 

the range of study.  For example, if the background modulus was much higher than 15 

kPa, the resolution would be even worse.  Although the impulse response developed 

minimizes the error of applying a linear system to the physiological range of interest, 

tissue with parameters at the extremes of this range will show a larger error than tissue 

with parameters at the median of the range. 

 

The analysis presented in this chapter was all for two-dimensional plain strain models 

with linear elastic materials.  Further analysis would explore three-dimensional models, 

both finite element and physical.  The problem of nonlinear material properties and the 

effect of the scanhead shape on the resolution should also be explored.   

 

Physical tissue is nonlinear [Wellman 99] and strain hardening.  Applying our linear 

algorithm to real tissue will introduce errors based on the tissue moduli increasing with 

applied pressure.  Specifically, as the tissue is compressed, the effective modulus 
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increases, and based on the analysis of chapter 2, we expect that this will result in an 

underestimation of the tissue layer thickness. 

 

Since a scanhead with a smaller radius of curvature can be indented further into tissue, 

and record pressures at greater angles due to its curvature, one may surmise that the 

resolution along the depth of the scanhead, the direction not studied here, would be worse 

than that found in this study.  The relationship between scanhead radius and resolution, 

along with other tradeoffs associated with the scanhead shape, may prove to be an 

interesting result that can make this system more valuable for clinical use. 
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Chapter 5 

Mammography Registered Tactile Imaging 

 

 

5.1.  Introduction 

 

Mammography is the gold standard in screening for breast pathologies.  It records the 

radioopacity of breast tissue, and results in a complicated image which radiologists learn 

to interpret mainly by experience [Jatoi 97] to detect suspicious areas.  Manual palpation, 

in the form of the Clinical Breast Exam (CBE), is an established adjunct to the screening 

process [Kopans 00, ACS 03], since many diseases of the breast, including cancer, 

manifest as a change in tissue stiffness [Ronnov-Jessen 96].  The complete picture of 

breast cancer screening includes both palpation and mammography, and doctors are 

advised that “screening for breast cancer is best done by including both mammography 

and clinical breast examination in the screening process” [US 94].   

 

Tactile information, such as position of a localized stiffness, is useful in mammographic 

evaluation, as the area of the stiffness is even more carefully scrutinized.  However, since 

CBEs rely on a qualitative assessment of the palpable extent of breast tissue and are 
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performed by a clinician different than the radiologist, the information from the CBE is 

often not used in conjunction with the mammogram. 

 

Mammography and tactile imaging, in their basic physics, are based on two different 

phenomena (radiological density vs. mechanical stiffness).  Because of this underlying 

difference, lesions may show up well only in one modality rather than both:  a palpable 

lump might not have a radiographic signature different than the background tissue, and 

similarly, a radiographically opaque lump can be nonpalpable.  In most cases, however, 

pathologies are at least marginally visible in both modalities, and so when one imaging 

modality picks up the signal of an underlying pathology, one may find evidence of the 

pathology present in the other modality with greater scrutiny.  These two imaging 

modalities, mammography and palpation, therefore, can serve to reinforce one another.  

This is the basic premise of the current breast cancer screening protocol, which calls for 

both mammographic and tactile information. 

 

5.1.1.  Motivation 

 

Tactile imaging quantifies palpation [Wellman 01], and is an imaging modality that can 

be performed at the same time and in the same plane as a mammogram.  It is our 

supposition that tactile imaging can be seamlessly incorporated into the breast cancer 

screening protocol and improve the success of breast cancer screening. 
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Establishing tactile imaging as a valuable adjunct to screening mammography will 

require an increase in the positive predictive value (PPV = 
esAllPositiv
vesTruePositi ) for regular 

screening visits.  This rests on the hypothesis that the information on lesions and other 

irregularities in breast stiffness that is contained in a tactile image will enhance 

radiologists’ ability to detect malignancies in mammograms. While mammography and 

tactile imaging are based on distinct physical phenomena, many masses are at least 

marginally visible in both modalities.  Features in the tactile image will thus indicate 

areas for heightened scrutiny by the radiologist reading the film. This promises to 

increase the sensitivity of mammography, and because tactile imaging is a non-invasive 

imaging technique that can be quickly and easily performed by mammography 

technicians, patient compliance will be high and incremental costs will be small.  

 

5.1.2.  Chapter Layout 

 

It is our supposition that the information from the tactile imager can add value to breast 

cancer screening as it is performed today.  An important first step in establishing and 

realizing this utility is spatially registering the tactile images to mammograms, so that the 

information in the tactile image is displayed in parallel to that in the mammogram.  

Tactile images of the breast are generally collected with the woman laying supine [figure 

5.1], while mammograms are obtained with the woman standing and her breast resting on 

a mammography plate [figure 5.2].  Even if the tactile image was obtained in the same 

plane as a mammogram, however, the breast tissue is compressed differently in the two 

modalities, and so registration is not readily performed.   
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Figure 5.1.  Obtaining a tactile image.  With tactile imaging technology currently in 
clinical use, the woman lays supine while the tactile imager is gently pressed into the 
breast tissue.  A tactile map is collected by moving the tactile imager across the breast 
tissue in multiple strokes.  Ultrasound images of the breast are also collected in this 
manner. 
 

 
Figure 5.2.  Obtaining a cranio-caudal mammogram.  The breast is rested on the rigid 
bottom plate and compressed by the top plate in the direction of the small arrow.  X-rays 
pass through the breast in the direction of the large arrow and expose film stored in the 
bottom plate.  In this way, a vertical projection of the radioopacity of breast tissue is 
obtained. 
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Registration of the tactile image and the mammogram requires an understanding of the 

relative motion of the breast incurred in each imaging modality.  The mammogram is 

obtained with the breast compressed between two parallel plates for the greatest 

compression and spreading the patient can tolerate.  In contrast, the tactile image is 

obtained by indenting the breast with a small scanhead stroked over the surface of the 

breast.  The breast is stretched as the tactile image is obtained, but due to the lower 

compression and the small area of contact the total deformation under tactile imaging is 

different from and less than that under mammography.  The difference in the deformation 

of the breast tissue as the tissue is imaged under each modality must be accounted for in 

order for registration to occur. 

 

In this chapter we develop an algorithm to account for the difference in deformation 

inherent between cranio-caudal mammography and tactile imaging performed with the 

woman standing, and apply it to preliminary clinical data.  We first discuss mechanical 

modeling of the deformation fields of the two imaging modalities.  Three dimensional 

finite element models of breasts of various sizes are built and compressed under the two 

modalities in order to obtain representative deformation fields under each type of 

compression.  A transformation algorithm is developed to register the modeled tactile 

imaging deformation to the mammographic deformation.  A physical breast model is 

constructed which can be subjected to tactile imaging and mammographic compression.  

Results of applying the transformation algorithm to the physical model data are 

presented.  Finally, we present a preliminary evaluation of the registration applied to 

clinically collected mammograms and tactile images.   
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5.1.3.  Further Clinical Application 

 

The work presented in this chapter can be applied to imaging modalities beyond tactile 

imaging and mammography.  Specifically, other imaging modalities that are currently 

being tested for their utility to breast cancer screening and diagnosis include 

ultrasonography [ACS 03], magnetic resonance (MR) imaging [Maier 98], and diffuse 

optical tomography [Durduran 02].  Ultrasound images are obtained in a manner similar 

to tactile images, with a small scanhead stroked on the surface of the breast.  Although 

the data obtained is in slices perpendicular to the surface of the breast, the data can be 

localized on the surface of the breast in the same way as tactile data, and so can be 

registered to mammograms using the algorithm developed in this work.  Both MR 

imaging and diffuse optical tomography are obtained with the breast in compression 

between parallel plates [figure 5.3], and so this work allows for images such as tactile 

maps and ultrasonograms to be registered to them. 

 

 
Figure 5.3.  Modality of imaging for MRI and optical tomography of the breast.  In both 
modalities, the breast is compressed by moving the plate above the breast in the direction 
indicated.   
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5.1.4.  Previous Work 

 

The general problem of organ image registration has been studied by various researchers 

[Meyer 99, Reuckert 99, Krucker 00].  Most of these studies dealt with the registration of 

images from the same image modality, where large relative deformations were not 

expected.  A few studies have focused on the registration of images between different 

modalities [Wells 96], however these multi-modal approaches relied on registering 

images based on their content.  In our case, since we seek to show that tactile images and 

mammograms can be correlated, using the information contained in each image to 

register it to the other would require assuming the outcome we wish to prove.  Since we 

seek a registration algorithm that can show the relationship between tactile imaging and 

mammography we turn to understanding the differences in the tissue deformation under 

the two modalities in order to develop our registration algorithm. 

 

The motion of specific areas of the breast under parallel plate compression has been 

studied most notably by Azar et al [01].  In their study, coarse finite element models were 

created and deformed between parallel plates in order to track the relative motion of a 

lesion for biopsy.  Their method had to be applied while the patient’s breast was in 

compression, and so a fast algorithm was of the essence.  The coarse meshing they used 

was solvable in about 10 minutes. 
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We will follow their example and use finite element models to develop an understanding 

of the deformations incurred under tactile imaging and mammography.  Since our finite 

element models will be used only to develop a library of deformation fields which we can 

study in order to develop a registration algorithm, we do not have the solving time 

constraints as in this earlier study.  We can therefore afford smaller elements to obtain a 

more detailed deformation field, which we can use to devise a registration algorithm 

applicable to a range of breast shapes and sizes. 

 

 

5.2.  Mechanical Modeling 

 

5.2.1.  Model-based Approach 

 

The first step in registering tactile images to mammograms is to develop an 

understanding of the deformation of breast tissue under mammographic and tactile 

imaging compression.  As detailed in the previous section, finite element models have 

been used in previous studies for tracking the deformation of small volumes in a breast 

under compression [Azar 01] with satisfactory clinical validation, even for models with 

only a few large elements.  We therefore follow this example to generate finite element 

models that will provide insight into a range of clinical cases.  These models will be 

compressed with modeled mammographic and tactile imaging compressions, and the 

resulting deformations studied as a basis to developing a registration algorithm. 
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The following sections detail the finite element model development and deformation 

results.  From the model results, we develop a registration algorithm that is in turn 

applied to the deformation data from each model to register points in the breast deformed 

under tactile imaging compression to their corresponding points under mammographic 

compression.  The results of this model registration are presented, and some merits and 

limitations of this algorithm are discussed. 

 

5.2.2.  Finite Element Model Development 

 

The shape of the natural human breast varies considerably from woman to woman, but 

some generalities may be drawn based on the volume of breast tissue.  Breast contours 

are in general defined by the mass and composition of the glandular and fatty tissue, the 

amount and elasticity of the enveloping skin, and the elasticity of the interlaced fibrous 

tissue.  Despite these many variables, the underlying biology varies within limited ranges, 

and so generalities may be drawn about breast shapes for breasts of various masses.  For 

example, in a natural human breast (of a non-pregnant woman) the proportion of fat to 

glandular tissue increases as breast mass increases.  The amount and elasticity of the 

fibrous tissues, however, does not increase proportionally with mass, and the supporting 

area of the chest wall is relatively fixed from the 3rd to the 6th or 7th rib [Gray 01].  These 

conditions taken together make it so that a large breast placed on a horizontal surface 

(such as the bottom plate of a mammography machine) tends to extend further 

horizontally than it does vertically compared with a smaller breast. 
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In light of the above discussion that breast volume is the greatest determinant of breast 

shape, three representative subjects (healthy female volunteers) were analyzed that 

spanned the range of breast size and thus shape in order to characterize realistic shapes 

for breast models for this study.  The size and shape are indicated in table 5.1.  Breast 

contours of each subject’s breasts were measured with each breast resting on a horizontal 

plate.  Curves of the front and side profiles of the left and right breast were generated by 

tracing the outline of the breast as viewed through a vertical plexiglass sheet positioned at 

the edge of the breast.  Figure 5.4 shows the three models created by fitting splines to the 

contour information from the three subjects.  The average contours of the left and right 

breast were used, generating models symmetric about the vertical center plane.  The chest 

wall is assumed to be 1cm beyond the skin surface of the chest. 

 

Table 5.1.  Size and shape of the models used to span the range of interest. 
Subject Breast 

Size Label 
Extent of Breast From 

Skin of Chest Wall 
Width of Breast 
Along chest Wall 

US Brassiere 
Cup Size 

Small 5.8 cm 12.3 cm A 
Medium 9.6 cm 15.8 cm C 

Large 11.9 cm 18.7 cm DD 
 

The breasts were modeled as fat-replaced postmenopausal breasts, since most cases of 

breast cancer occur post menopause.  The fat was modeled as a linear elastic isotropic 

material of 15kPa modulus, congruent with tissue property measurements found in 

literature [Wellman 99, Krouskop 02].  Finite element models were created and meshed 

in Femap v8.0 (EDS Inc.) and solved using Abaqus Standard 6.2-5 (HKS Inc.) with 

nonlinear geometry formulation.  The models were composed of between 1000 and 1500 

tetrahedral elements (the greater number for the larger model) with the largest element 
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extent less than 8mm.  The mammography plate was modeled as a rigid horizontal plate 

with a 1.5cm radius of curvature along the bottom edge closest to the chest wall, 

corresponding to the plates seen clinically.  The tactile imager was modeled as a long 

cylinder of 3.8cm radius spanning the width of the breast.  It was indented into the breast 

at five positions away from the chest wall.  The full compression field from the tactile 

imager was interpolated between the results for each position.  The contact boundaries 

between the breast and the plates and tactile imager were non-slip.   The breast tissue was 

fixed to the chest wall, and the boundary through the nipple was defined as symmetric. 

 
 

Figure 5.4.  Finite element models of the small, medium and large breasts created for 
this study.  Only one half of each breast is modeled, and symmetry is assumed around 
the vertical midline.  In this way, each model is an average of both sides of both the left 
and right breast of one subject.  From the top down are shown the front, top, and side 
views.  The position of the nipple is indicated in each view by a black dot.  The arrows 
indicate a 1cm extent in the x and y directions 
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Figure 5.5.  Cartesian coordinates used for model and data analysis, shown on the 
medium model.  The flat back of each model, corresponding to the rigid chest wall, is at 
y = -1 cm, so that the back edge of the mammography plate used clinically is at y = 0.  
The midline, which connects the chest wall to the nipple along the y axis, is shown as a 
dashed line 
 

In order to test the algorithm on cases that span a range of breast stiffnesses, we created a 

fourth model, of a medium-sized pre-menopausal breast.  The glandular tissue was 

modeled as a cone with its base at the chest wall and its tip at the nipple [figure 5.6].  The 

three-dimensional elements of the cone were composed of a linear elastic material with a 

modulus of elasticity three times greater than the surrounding fat [Wellman 99, Krouskop 

00].  This model was subjected to mammographic and tactile imaging compressions in 

the same manner as the postmenopausal models described above.   

 
Figure 5.6.  Medium pre-menopausal breast model showing outline of glandular tissue 
cone with base on the chest wall and apex at the nipple 
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5.2.3.  Finite Element Model Data 

 

Mammographic and tactile image compressions were applied to the finite element 

models, and the deformations at each finite element node were recorded.  Total 

compression of up to 50% were achieved on the postmenopausal breast models under 

mammographic compression, while the tactile imaging compression was limited to the 

clinical tactile imaging pressure maximum of 100 Pa which resulted in compressions of 

less than 30%.  The full mammographic compression and one sample compression of the 

tactile imager on the medium sized breast are shown in figure 5.7. 

 

Figure 5.7.  Medium-sized, postmenopausal breast model under mammographic and 
tactile compression, showing areas of increased von Mises stress at the base plate.  The 
contact boundaries were non-slip and the breast tissue was fixed to the chest wall.  The 
tactile imager scanhead was modeled at five locations and the total tactile compression 
was interpolated between the results.  The midline of the model is shown as a dark line in 
each picture.  In the background the outline of the uncompressed breast is seen in dark 
blue. 

 
 
In general, the mammographic displacements were in the same direction as, but greater 

than, the tactile imaging displacements.  The displacements for each modality on the 
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midplane of the medium postmenopausal breast are shown in figure 5.8.  We define the 

midplane as the 4mm thick horizontal slice centered vertically on the nipple.  Note that 

there is considerable sideways (x-direction) displacement, and the difference between the 

absolute displacements in the x-direction is greater than the absolute difference in the y-

direction (away from the chest wall). 
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Figure 5.8.  Mammographic and tactile imaging displacement field on the midplane of the 
modeled medium breast.  The solid lines indicate the translation of the original point due 
to mammographic compression 
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5.2.4.  Algorithm Development 

 

Tactile and mammographic images are two-dimensional projections of three-dimensional 

information.  A mammogram is a vertical projection through the compressed tissue onto a 

horizontal plate by near-parallel beams of x-rays.  A tactile image is a projection of three-

dimensional pressure information onto a flat plane that best fits the approximately 

horizontal surface of the top of the breast as it is compressed by the tactile imager.  For 

each case, we need to collapse the three-dimensional deformation field information of the 

models into a two-dimensional field for analysis. 

 

In order to determine a two-dimensional displacement field that is representative of the 

complete field, we first visualize the displacement of each point in the volume.  Figure 

5.9 shows the displacements of the mammographic compression for the medium breast 

model.  The y and x displacements for points greater than 1cm above the baseplate and 

1cm below the top of the uncompressed breast are shown.  With reference to the anatomy 

of a premenopausal breast shown in figure 1.4, points beyond this range are almost 

certainly original fatty tissue, and are unlikely to contribute an abnormality to the image.  

As expected, the plot of y-displacements indicates that the further the initial position was 

from the chest wall, the greater the displacement.  The x-displacements are slightly more 

complicated, since in this direction, some points are closer to the chest wall and therefore 

are expected to move less.  There is an obvious trend, however, for points further away 

from the line of symmetry (x=0) to have a greater x-displacement, which is expected.  
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For displacements in each direction, the displacement of points that initially were within 

2mm of the horizontal plane that contains the nipple approximate the displacements of 

points through the rest of the volume under mammographic compression.  Thus the 

deformations encountered at the midplane are representative of the mammographic 

deformations. 
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Figure 5.9.  Mammographic component displacements.  a) Displacement along the y 
direction, away from the chest wall, and b) displacement along the x direction, parallel to 
the chest wall.  In both cases, the displacement of the points in the midplane (4mm thick 
plane with the nipple at midheight) approximate the displacements of the points in the 
rest of the volume 
 

Figure 5.10 shows the component displacements under tactile imaging compression.  The 

tactile imager records the palpable extent of tissues, and so points below the midline form 

a small contribution to the tactile image [Wellman 99].  From figure 5.10 we see that the 

displacement of the points on the midplane of the breast model approximate the 

displacements of the points in the rest of the volume as they did for the mammographic 

compression.  This is especially true for the points above the midline, which provide a 

greater contribution to the tactile map. 
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Figure 5.10.  Tactile Imaging component displacements.  a) Displacement along the y 
direction, away from the chest wall, and b) displacement along the x direction, parallel to 
the chest wall.  In both cases, the displacement of the points on the midplane are 
representative of the displacements for the points in the rest of the volume, especially 
points in the upper half of the breast, which are stronger contributors to a tactile map 
 
 

We can now focus our study on the deformation field of the points on the horizontal 

midplane of the breast in order to determine an algorithm to register the tactile image 

points to their corresponding points on the mammogram.  We seek an algorithm that can 

register tactile images to mammograms, namely a mapping (x,y)→(x’,y’) such that 

 

Mammogram(x,y) = TactileImage(x’,y’) 

 

We begin by examining the data in figure 5.8 and looking for patterns in the difference 

between the displacements under the two compressions.  We can collapse the difference 

in y-displacements onto one axis [figure 5.11a] and look for an appropriate function to fit 

the data.  Fitting a function  

Required_y_Displacement = f(Original_Tactile_Imaging_y_Position) 
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shows that there is little difference in the R2 value whether we allow the fit to have a non-

zero intercept or force the fit to go through the point Zero_Position = 

Zero_Displacement.  We therefore require the fit to have a zero intercept, since this is 

more physically reasonable.  We find that a linear fit has an R2 value of 0.71, while a 

second-order polynomial fits the data to R2 = 0.83.  If we only look at points 1cm beyond 

the chest wall, (which are the points of interest, as they are in the mammographic field) 

then the fit for both the first-order and second-order polynomials increases to R2 = 0.85.  

Given this parity, we keep the simpler linear fit and require the registration algorithm that 

takes the point at y in the tactile image to y’ in the mammogram to have the form 

 

y’ = y ( 1 + Kyy y ) 

 

where Kyy is a constant that will be determined from parameters associated with each 

tactile image and mammogram pair. 

 

Performing a similar analysis for the difference in the x-displacements (along the chest 

wall, away from the center) yields figure 5.11b, showing a much larger spread of the 

data.  Separating the data into bins along the y-axis shows a clear dependence on the y-

position of the point in the tactile image.  The slopes for the four bins shown in figure 

5.11b fit a linear trend with an R2 value of 0.97.  With this in mind, we require the 

registration algorithm in the x direction (from x in the tactile image to x’ in the 

mammogram) to take the form 
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x' = x ( 1 + Kxx x ) ( 1 + Kxy y ) 

 

where the Kx are constants that will be determined from parameters associated with each 

tactile image and mammogram pair. 
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Figure 5.11.  Difference in translation in y (a) and x (b) between the tactile imaging and 
the mammographic midplane compressions for the medium breast model.  The difference 
in y shows a linear growth with the tactile imaging y-position, while the difference in x 
shows a linear relationship to both x and y. 

 

The parameters available for registration from clinical data are parameters associated 

with the edges of the breast in the mammogram and the tactile image, i.e. the size of the 

non-background areas of the images.  The parameters Kyy, Kxx, and Kxy must therefore be 

allowed to depend only on the size of the images and the total required deformation.  We 

denote the maximum excursion of the mammogram and the tactile image in the x 
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direction as XMm and XMt respectively and in the y-direction as YMm and YMt and use these 

values in determining the constants Kyy, Kxx, and Kxy.  

 

The parameter Kyy needed to stretch the tactile image in the y-direction is dependent on 

the difference between the values of the maximum extent in the y-direction for the 

mammogram and the tactile image.  We therefore propose the following transformation 

in the y-direction: 

 
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Similarly, in the x-direction we expect Kxx to depend on the difference XMm – XMt.  The 

parameter Kxy should, much like Kyy, depend on YMm-YMt.  Examination of the various 

sized models shows a dependence on XMm-XMt as well, in that the larger the difference in 

the x direction between the mammogram and the tactile image, the smaller the relative 

effect of the y-difference.  We therefore propose the following transformation in the x-

direction: 
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The third power is an empirical constant based on the cubic relationship between the 

volume of tissue to be compressed and the linear difference between the amount of 

deformation in the two modalities. 

 

Letting ∆xstretch = 2(XMm-XMt) and ∆ystretch = YMm-YMt the transformation becomes  
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5.2.5.  Finite Element Model Registration 

 

The registration algorithm in equations 5.1 and 5.2 was applied to the deformation fields 

of the midplane of the modeled tactile images.  Values for the constants of the 

registration are given in table 5.2.  The location of points in the tactile image using these 

values match the mammographic deformation well for all four models [table 5.3].  The 

algorithm shows the least error for the medium sized models, which is ideal as this is 

expected to be closest to the median clinical case.  The registration worked best for the 

premenopausal model.  The vertical strains and resulting lateral deformations were 

smaller on this model than the softer postmenopausal models, due to the stiffer glandular 

tissue.  The smaller absolute deformations incurred in this model most likely account for 

the smaller error in registration.  The largest errors were incurred in the areas of the 

breast furthest from the origin.  This is to be expected, as these areas experience the 

accumulated errors of registration in both the x and the y directions.  When the 

registration algorithm is applied to planes away from the midplane, the errors also 
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decrease, probably also due to the lower total deformations in the planes away from the 

nipple. 

 
Table 5.2.  Values of the registration constants for the various finite element models 

 
Model XMm XMt YMm YMt 

Small postmenopausal 7.5cm 6.6cm 6.0cm 5.5cm 
Medium postmenopausal 9.4cm 8.7cm 8.9cm 8.5cm 

Large postmenopausal 11.4cm 10.6cm 12.6cm 12.2cm 
Medium premenopausal 8.2cm 7.5cm 8.8cm 8.2cm 

 
 
Table 5.3.  Error between the registered tactile image and the corresponding points on the 
mammogram for the midplane of the finite element models.   
 

 
Model 

Mean Absolute 
Registration 

Error [% of total 
displacement] 

Average 
Absolute 

Registration 
Error 

Maximum 
Absolute 

Registration 
Error 

Small postmenopausal 5.7 % 2.06 mm 6.47 mm 
Medium postmenopausal 3.3 % 1.56 mm 5.03 mm 

Large postmenopausal 5.0 % 2.91 mm 7.34 mm 
Medium premenopausal 2.2 % 0.37 mm 2.59 mm 
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Figure 5.12.  Mammogram and registered tactile image points in the midplane of the 
medium sized models.  Left:  Postmenopausal model.  Right: Premenopausal model 
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5.3.  Physical Modeling 

 

5.3.1.  Physical Model Construction 

 

In the previous section an algorithm was developed to register points in a tactile map to 

the corresponding points on a mammogram based on the size of the two images.  The 

algorithm was based on the displacements of the midplane of three breast models, which 

were shown to be representative of the displacements through the rest of the volume.  In 

order to test the algorithm experimentally, we constructed a physical model of a human 

breast on which tactile imaging and mammography can be simulated. 

 

The model breast was made in a mold taken of the left breast of a volunteer test subject.  

The subject was different from the subjects studied for the development of the finite 

element models, and the resulting model is slightly larger than the medium finite element 

model constructed in the previous section.  The initial cast [figure 5.13a] was constructed 

of plaster bandages.  The subject was vertical with the breast resting on a flat plate as it 

would before mammography or tactile imaging in our study.  When the cast was dry, it 

was trimmed to a plane parallel to the flat chest wall supporting the breast, and reinforced 

with thick model plaster [figure 5.13b].  The inside was coated with a thin layer of 

enamel paint to fill the plaster pores, and lined with petroleum jelly so that the model 

material did not adhere to the mold. 
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The inside of the mold was coated with a 1.5mm layer of silicone (GE RTV 108) to 

simulate skin [figure 5.14].  This silicone has tensile strength similar to that of natural 

skin, but is transparent, allowing us to image the spheres under mammographic 

compression.  The bulk of the model breast was formed from two-part silicone rubber 

(GE RTV 6166) mixed to a ratio to provide a young’s modulus of 15kPa, corresponding 

to a postmenopausal breast.  The model bulk required approximately 900mL of silicone.  

In order to have simulated lesions to image and confirm registration, 15mm rubber 

spheres with a young’s modulus of 500kPa were incorporated into the model at various 

locations [figure 5.14].  Once cured, the final model was removed from the mold and 

attached to a thin (3mm) sheet of plexiglass to simulate the chest wall. 

 
 

 
a b 

 
Figure 5.13.  Mold for breast model.  (a) An initial layer of plaster is cast on the subject’s 
left breast and trimmed to a plane parallel to the chest wall.  (b) The thin base layer is 
reinforced with plaster, and the hollow sealed with enamel spray and coated with a thin 
layer of petroleum gel before the model is cast. 
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Figure 5.14.  Side and top views of 3-dimensional breast model construction.  Silicone 
(GE RTV108) was spread on the inside of the mold and allowed to cure to become the 
skin of the model.  Soft RTV 6166 silicone was then poured in layers so that rubber 
spheres were placed where they can be imaged under both mammography and tactile 
imaging.  The final model was attached to a plexiglass ‘chest wall’.  In the side view, the 
layer interfaces and midline are indicated, though they are not physical boundaries in the 
actual model.  The top view shows the relative arrangement of the rubber spheres, with 
their depth from the top surface indicated on each sphere in millimeters. 
 
 

 
Figure 5.15.  Model breast constructed to test our registration algorithm.  The model is 
made of GE RTV 6166 two-part silicone, with modulus of elasticity if 15kPa.  Rubber 
spheres are incorporated into the model to provide registration points.  The model is 
coated with GE RTV 108 silicone to simulate skin and glued to a plexiglass sheet to 
simulate the chest wall. 
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5.3.2.  Obtaining Model Mammogram and Tactile Image 

 

In order to test the registration algorithm, we obtained a tactile image and simulated 

mammogram of the model built in the previous section.  Both images were obtained with 

the model breast supported on a rigid horizontal surface.  A tactile image was taken using 

the laboratory imager detailed in §1.4.1, with the tactile frame positions located in three 

dimensions using the magnetic tracker.  Metal objects were eliminated as much as 

possible from the field of interest to minimize disturbance of the recorded positions.  The 

imager was covered in Parafilm (M) and the surface of the breast model lubricated as in 

clinical tactile imaging.   

 

The mammogram was obtained by compressing the model manually under a clear 

plexiglass plate (3/4” thick to eliminate bending of the plate).  The plate was positioned 

with one edge parallel to the chest wall, at a distance of approximately 1cm, similar to a 

clinical mammography machine.  The plate was held compressed in a horizontal position 

while a digital picture was taken from above, resulting in an image of the compressed 

outline of the model as well as the positions of the spheres within the model in a 

simulated mammogram [figure 5.16].  The 9.5cm thick model was compressed 26% to 

7cm thick.  The camera had a focal length of 5 cm and was positioned 100 cm above the 

base plate, so distortion through the breast model bulk is minimal.  The pixel size in the 

mammograms was 0.018 mm, corresponding to a block 11 pixels square in the tactile 

image (pixel size 2mm). 
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Simulated Mammogram Tactile Image 
 

 
Registered Images 

 
Figure 5.16.  Mammogram, tactile image, and overlaid registration of the breast model.  
The spheres in the mammogram are marked with black dots.  The bottom image shows 
the registered tactile image (thresholded and with edge effects eliminated), with the 
sphere positions from the mammograms overlaid as red dots. 
 

 

5.3.3.  Experimental Results  

 

A simple threshold was used to eliminate the background of the mammogram and tactile 

image.  For the tactile image, sharp edge effects were eliminated manually.  The 

centroids of the 5 spheres were calculated as the center of mass of an area at least 8 mm 
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square around the image of each sphere.  The centroids of the spheres in the simulated 

mammogram were identified manually, since the sphere image edges were very faint and 

blurry in the simulated mammogram.  The tactile image was registered to the 

mammogram as outlined in § 5.2.4.   

 

Figure 5.16 shows the results of the calibration, namely the registered tactile image of the 

embedded spheres overlaid with the positions of the spheres in the mammogram.  The 

registration of the two images has an average error of 1.3 mm between the centroids of 

the spheres in the mammogram and the tactile image.  This is considerably improved 

over the error to the calibrated but not registered tactile image of 2.4 mm.  The largest 

error after registration is 1.9 mm for the central sphere, most likely because it was the 

deepest sphere and thus the most difficult to image. 

 

5.3.4.  Discussion 

 

As seen in figure 5.16, the registration of the tactile image to the mammogram of the 

model breast is quite good.  This is to be expected since the silicone model is composed 

mainly of a homogenous, linear elastic material, as were the finite element models used 

to devise the registration algorithm.  Errors in the registration of the two images may 

stem not only from the registration itself, but also from magnetic warping in the tactile 

image and errors in identifying the exact centroids of the spheres.  Registration of the two 

images was computationally expedient, since only one calculation has to be performed 

for each pixel in the tactile image.  In the process employed here for registration, the 
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longest time was taken in identifying the points of interest in the mammograms.  This is 

expected to be the case for actual clinical data as well.  The success the registration 

algorithm incurred for the model data is sufficient to move on to testing on clinical data. 

 

 

5.4.  Preliminary Clinical Testing 

 

The registration algorithm developed in the previous sections resulted in low errors in the 

registration of finite element and physical model data.  The algorithm was developed with 

an eye to applying the registration to tactile images taken alongside clinical 

mammograms.  The next step in moving towards this goal, therefore, is to develop a 

protocol for obtaining tactile images in a clinical setting with synchronized 

mammograms, and testing the registration on a limited set of clinical data.  Successful 

completion of this stage will require not only support of the registration algorithm, but 

also implementation of a relatively efficient and subject-friendly data collection that can 

be seamlessly integrated into existing clinical practice. 

 

5.4.1  Clinical Data Acquisition 

 

As a preliminary study of the clinical application of our registration algorithm, we tested 

the registration on mammograms and tactile images from subjects undergoing breast 

cancer screening in order to establish a protocol for obtaining and registering tactile 

images in a clinical setting.  Eleven subjects were recruited who were scheduled to 
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undergo a routine mammogram.  The subjects were all female, with ages from 35 to 70 

(average age 54), and were representative of the relative risk of breast cancer.  They 

spanned the range from premenopausal to postmenopausal (2 premenopausal, 2 

perimenopausal, and 7 postmenopausal), from small breasts to large breasts (brassiere 

sizes A to DD, with C as the median), and included women with previous positive and 

negative biopsies (7 of the 11 have had previous biopsies, 5 of which were positive).  

Tactile images were recorded on each breast directly after the cranio-caudal 

mammogram, before the subject moved relative to the bottom plate of the mammogram 

[figure 5.17].  The tactile images were obtained starting from near the chest wall at the 

center of the breast and moving in parallel stripes away from the chest wall to the left and 

right of the center of the breast [figure 5.18]. 

 
 

Subject

Mammography machine

Investigator

Tactile Data
Processing

Center

Magnetic tracker

Mammography plate

Obtaining the
Tactile Image

 
Figure 5.17.  Experimental setup, top view.  After the cranio-caudal mammogram was 
obtained the tactile image was obtained on the same breast before the subject moved.   
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Figure 5.18.  Top views showing imaging setup and expected maximum contours of a 
mammogram and tactile image.  Without the compression of the top mammography 
plate, the breast relaxes into a smaller horizontal contour.  The tactile image (right) was 
obtained in swipes moving away from the chest wall, starting with the center and moving 
outwards first to one side then the other. 
 

The tactile imager used in the clinical data acquisition is the clinical imager described in 

§1.4.1, which uses magnetic positioning in order to locate the pressure frames.  

Unfortunately, the mammography machine and other metal objects in the room distort the 

positioning field.  Due to this magnetic distortion, we expect errors in the positioning of 

the information in the tactile image [LaScalzaa 03, Milne 96, Poulin 02].  The relative 

error from one pixel to the next is incremental, however, resulting in an overall warping 

of the tactile image, which we can account for by obtaining global background calibration 

information. 

 

A cartesian coordinate system is employed due to the rectangular shape of the 

mammography plate.  The x axis, y = 0, is the top edge, along the chest wall, with y 

increasing towards the nipple.  The y axis, x = 0, is to the left of the breast as viewed 

from the investigator, with x increasing towards the woman’s left, for either breast [figure 

5.18]. 
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The tactile images were 30 x 30 cm in extent, which was sufficient to record the entire 

area of the largest mammographic plate.  The tactile image resolution was 0.5mm by 

0.5mm per pixel achieved by sub-sampling the pressure sensels [Wellman 99].  The 

mammograms were digitized per a standard digitizing technique [Health 02].  The 

resolution of the digitized mammograms was set at 0.5mm/pixel to correspond to the 

resolution of the tactile images.  The top left corner of the mammographic film is 

assigned to (x,y) = (1,1)cm, since the film is 1 cm smaller than the mammography plate 

on each side.  The mammograms were digitized on a three-colour scale and converted to 

a single channel intensity scale using a standard intensity algorithm of I = 0.30R + 0.59G 

+ 0.11B [Marginal 02].   

 

5.4.2.  Calibration 

 

Since the warping due to the magnetic field distortion and the registration required due to 

the mammographic compression are independent, we treat them separately, calibrating 

for the effects of the magnetic field before registering the tactile images to the 

mammogram.   

 

Calibration method 

 

Our goal is to establish a two-dimensional field of the displacements required to map 

each point in the collected tactile image to the corresponding point calibrated to the 
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mammography plate.  This field will take the form [U(x,y),V(x,y)] for the required 

displacements in the x and y directions, respectively, such that  

( xcal , ycal ) = ( x + U(x,y) , y + V(x,y) ). 

The calibration field will be established based on two pieces of information:  calibration 

to the edge of the mammography plate, which is approximately constant for all subjects, 

and calibration to mammographic fiducials, which is different for each tactile image 

collected. 

 

Available Calibration Information 

 

Background calibration information was obtained from the mammography plate and the 

mammography markers used to label each mammogram.  Plate information was acquired 

by taking a tactile image of the centerline of the plate, the edge closest to the patient 

(along y = 0) and the edge furthest from the magnetic tracking device (x = 0) [figure 

5.19].  Since the tactile imager should not be used to image hard edges, the plate edges of 

interest were covered with a layer of soft foam approximately 2.5cm wide and 1cm thick.  

A half-cylinder of rubber with approximately 2cm diameter was placed on the centerline, 

and covered with the same foam.  The mammography markers used to identify the 

mammographic view were also modified with foam dots which could be imaged in the 

tactile image without altering the radioopacity of the markers for mammographic use 

[figure 5.20].  This provided another set of registration points, two fiducials 

approximately 1.5cm apart, specific to each mammogram/tactile image combination. 

 



Chapter 5.  Mammography Registered Tactile Imaging Galea 

   179

 

2
1

3

patient sidex

y

 
 
Figure 5.19.  Mammography plate with foam along two edges and centerline used to 
record the plate position in the tactile image. 
 
 
 

 
a b c 

Figure 5.20.  (a) Left (Lcc) and right (Rcc) cranio-caudal mammography markers.  Black 
foam dots were glued onto the second ‘c’, the corner of the ‘L’ and the head of the ‘R’ for 
registration to the tactile image as fiducials for calibrating the tactile images.  (b) and (c) 
show a mammographic and tactile image of the same marker. 
 

The calibration lines corresponding to the centerline and two edges of the mammography 

plate are shown in figure 5.21.  Since the lines were obtained by tactile imaging, they 

have finite width.  The line of interest is taken through the maximum along each line’s 

tactile image.  The fiducial in the mammogram is taken to be the center of the second ‘c’, 

the inner corner of the ‘L’, and the center of mass of the head of the ‘R’, as applicable.  

For the tactile image, the general area of the fiducial is identified, and the center of mass 

of the pixel intensity corresponding to the foam is taken as the fiducial center. 
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Figure 5.21.  Tactile image of left edge, center swipe, and top edge of the mammography 
plate for the second day of clinical data acquisition.  Superimposed in white are the lines 
fit to these warped edge calibration lines, and arrows indicating the required 
displacements of these lines for calibration with the mammography plate.  The field is 
30x30cm. 
 
 

Calibrating with the Edge Information 

 

The required x-displacements of the uncalibrated plate edge and plate center are well fit 

by a 1st order polynomial (figure 5.21), and so from this we get two equations: 

 

 f1(y) = au1y + bu1 (5.3) 

 

which is the required displacement of the line x = au1y + bu1 so that it maps onto the plate 

edge at x = 0; and  

 

 f2(y) = au2y + bu2 (5.4) 
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for x = au2y + bu2 + X/2 to map to the centerline x = X/2, where X is the maximum extent 

in the x direction, namely 30cm. 

 

The mapping of the plate top is neither linear nor symmetrical and so is fit with a 3rd 

degree polynomial, resulting in  

 

 g(x) = avx3 + bvx2 + cvx + dv  (5.5) 

 

for the line y = avx3 + bvx2 + cvx + dv to map onto the line y = 0. 

 

In the absence of further information the calibration field is complete.  In the x-direction 

we have calibration information along two distinct lines, so we can interpolate the results 

to construct the final field.  In the y-direction we only have calibration information along 

one line, so we assume this is valid through the entire map.  With plate calibration 

information only, then, the calibrated Tactile Image becomes 

 

( ) ( )2 1
1 1

2 1
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/ 2 ( ) ( )

f y f yCalibratedTI x y OriginalTI x x f y f y y g x
X f y f y
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The above transformation accounts for a great deal of the raw calibration, and is common 

to all of the tactile images collected. 
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Calibrating with Fiducial Information 

 

The calibration field created using the plate edge information was modified for each 

tactile image based on the fiducial information.  With fiducials located at x positions 

xfidmin and xfidmax and y positions yfidmin and yfidmax in the tactile image, we calculate the 

required horizontal and vertical displacement of each of the two fiducial points to map to 

the corresponding fiducials on the mammogram.  The straight line between the two 

fiducials is mapped by a linear interpolation of these displacements (i.e. the point exactly 

halfway between the two fiducial points in the tactile image is mapped to the point 

exactly halfway between the two fiducial points in the mammogram).  The resultant 

information is contained in the 1st order polynomials ufid(x,y) and vfid(x,y), valid for 

( )min
max min min

max min

fid
fid fid fid

fid fid

y y
x x x x

y y
 −

= − +  − 
 

with xfidmin < x < xfidmax and yfidmin < y < yfidmax.  This information is combined with the 

information from the plate edge calibration in equations 5.3 to 5.5 to create smooth 

horizontal and vertical calibration fields U(x,y) and V(x,y) as explained below.   

 

For the x and y ranges for which we have the fiducial information, namely xfidmin < x < 

xfidmax and yfidmin < y < yfidmax, we once again fit a polynomial through the data afforded by 

the fiducials and the plate edge matching.  The polynomial is second degree in the x-

direction and first degree in the y-direction, so that no information is artificially created. 

Namely, for calibrating in the horizontal direction: 
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For yfidmin < y < yfidmax we have three pieces of information: f1, f2 and ufid.  

Therefore, we can find a unique polynomial field U(x,y) = Au(y)x2 + 

Bu(y)x + Cu(y) where the coefficients Au, Bu and Cu are the least-squares 

solution Mu to 

u = X Mu 
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 (5.6) 
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. 

 

Similarly, in the vertical direction, for xfidmin < x < xfidmax, we know g and 

vfid, and so we can find V(x,y) = Av(x)y + Bv(x) where Av and Bv are the 

solution Mv to 

vv YM=  

 
( ) ( ) 1
( ) 1

v

fid v

g x Ag x
v x By
    

=    
    

 (5.7) 
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For calibrating in the vertical direction the equations for Av and Bv can be written directly 

as 
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 (5.8) 

 

Incorporating equation 5.8 into our calibration algorithm we get 

CalibratedTI(x,y) = OriginalTI( x + U(x,y) , y + V(x,y) ) 
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valid for xfidmin < x < xfidmax and yfidmin < y < yfidmax. 

 

We extend the range of validity of these fields U(x,y) and V(x,y) to the rest of the rows 

and columns for which we do not have fiducial information by adjusting the parameters 

Mu and Mv from the adjacent rows and columns for which we have information such that 

the errors to the information at each row or column are minimized.  The parameters M 

were varied across the entire range 98% Mold ≤ Mnew ≤ 102% Mold and the combination of 

parameters that resulted in the smallest error was taken.  This narrow range was sufficient 

to minimize computation time and keep the final displacements field smooth, while 

allowing for a minimum to be found in 96% of the rows and columns.  In 4% of the 

cases, the parameter combination required was outside or on the edge of this range.  In 

these cases, the combination of parameters at the edge of this range that gave the smallest 
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error was kept in order to keep the final calibration fields smooth in keeping with the 

laws of magnetism.  For each row we minimize the error of fitting to the required 

calibrating displacement of the side edge and center swipe 

 

( ) ( )2
22

2
11u ),2/)(()()),(()( yXyfUyfyyfUyf −−+−=ε  

 

and for each column we minimize the error of fitting to the required calibrating 

displacement of the top edge 

 

))(,()( xgxVxgv −=ε . 

 

With the calibration field [U(x,y),V(x,y)] completed [Figure 5.22], the final calibrated 

Tactile Image becomes 

 

FullCalibratedTI ( x , y ) = OriginalTI ( x + U(x,y) , y + V(x,y) ). 
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x displacement y displacement 

 
Full displacement field 

 
Figure 5.22.  Sample calibration field for one tactile image using both plate and fiducial 
information.  The axes indicate position (in # pixels) and the colorbar indicates the 
required displacement of each point, also in pixels.  Top left: horizontal displacement 
required of the tactile image for calibration (positive is to the right). Top right: vertical 
displacement calibration (positive is downwards).  Bottom:  Sparse quiver plot of full 
displacement field (arrow sizes are relative to each other) 
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Calibration Errors 

 

The calibration field calculated above is necessary due to the distortion of the position 

recording.  This is due to the warping of the magnetic field used to calculate the position 

of our tactile frame data, caused by the presence of objects in the field of the magnetic 

position tracker.  The main culprit for the magnetic warping is the large mammography 

machine itself.  The relative position of the magnetic tracker to the mammography 

machine was maintained approximately constant, so its effects can be accounted for by 

the plate edge calibration.  Another source of magnetic distortion is the presence of 

humans in the magnetic field.  The positions of the subject and investigator were different 

between the collection of the tactile image and that of the plate edge data.  Therefore the 

fiducials, which are collected at the same time as the tactile image, must account for the 

effect of the human presence.   

 

The plate edge calibration was only collected once per clinical day (approximately once 

every four subjects), and although the location of the magnetic tracker was marked on the 

floor, any shift between patients can result in errors in the calibration.  The fit of the plate 

information to the functions chosen to represent them was quite good, with a mean 

absolute error of less than 1.5mm for the straight lines, and 2.1mm for the curved top 

edge.  The largest errors occur at the ends of the lines, and so are not expected to result in 

large errors in the actual images. 
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The calibration adjustment based on the fiducial information is also a source of error due 

to the proximity of the two fiducials.  Even a small error in the relative position of the 

fiducials can be amplified upon extrapolation, and was the main reason why we 

employed an error minimization algorithm rather than a simple extrapolation for the 

generation of the entire displacement field.  The effect of the mammography fiducials 

themselves on the magnetic field of the tactile imager tracker is unknown.  Errors caused 

by the fiducial calibration, however, are tempered by the fact that the overall effect of the 

fiducial calibration is small, typically accounting for a 1.5cm displacement at the edges of 

the 30cm field of view. 

 

 

5.4.3.  Clinical Registration 

 

The calibration algorithm developed in the previous section was applied to all 22 tactile 

images collected.  In order for the registration algorithm of equations 5.1 and 5.2 to be 

applied, the parameters XMm, XMt, YMm and YMt, corresponding to the maximum excursion 

in the x (XM-) and y (YM-) directions of the mammograms (--m) and tactile images (--t) must 

be determined.  These parameters were determined from the edge contours of the images. 

 

In order to find the mammogram edge, a threshold was established to separate the 

background noise from the mammogram.  After eliminating the fiducials, the edge of the 

mammogram was found using a collapsing contour which was collapsed to values at a 

threshold set above the background noise (10% of the peak value).  Specifically, for each 
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x location, the furthest extent of the mammographic image signal was recorded, and for 

each y location, the furthest left and right extents of the signal were recorded.  The same 

edge-finding algorithm was used on the tactile images, but a non-zero threshold is not 

needed since there data outside of the region scanned on the breast is absent.  An example 

of the resulting contours is shown in figure 5.23. 

 

The edges thus found are not shaped in the familiar breast silhouette.  The mammograms 

tend to be darker near the base, where there is less glandular tissue.  The tactile images, 

on the other hand, tend to be void near the nipple, since the connective tissue under the 

nipple tended to retract it under tactile imaging, and so this area was not well recorded.  

In seeking an appropriate fit to the rough edge data found by the collapsing contour 

method, we look again at the finite element model data. 

 

The finite element edge data showed a better fit to a fourth order polynomial 

(specifically, y=ax4+bx2+c, since there is perfect symmetry in the finite element models) 

however in the real mammographic data, two cases were seen:  one where the fit 

generated by second order polynomials in x or x2 varied by only a few percent, and the 

other where the fourth order fit (second order in x2) became unstable and provided results 

such as a concave shape near the nipple, which is physically unreasonable.  This occurred 

when the edge of the mammogram near the base of the breast was not easily defined due 

to the lack of glandular tissue.  Since the second order polynomial has a more constrained 

shape (namely, a parabola) the second order fit remains well behaved even in the absence 

of information at the base.  Applying a fourth-order fit to the tactile imaging data showed 
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similar problems due to the lack of information at the tip of the contour.  A second-order 

fit remained stable across all tactile images, and was very similar to the fourth-order fit 

for the cases where the latter remained physically reasonable. 

 

Figure 5.23.   Fitting a parabolic edge to the tactile image (left) and mammogram (right).  
The tactile image has been calibrated but not yet registered.  The field of view in each 
image is 10cm x 25cm.  From the top are shown the original images, the coarse edge 
found by a collapsing contour, the parabolic edge fit to the maximum y excursion of each 
edge, and the edge overlaid on the original image 
 

The parameters that are obtained from a parabolic fit to the edge and thus define each 

breast shape are indicated in figure 5.24.  Note that the roots RL and RR are obtained from 

the parameters of the parabola y = -a(x-b)2 + Ym by 

,
m

L R
YR b
a

= ∓ . 
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Figure 5.24.  Parameters extracted from the edge of the mammograms and tactile images 
used to register the tactile images to the mammograms. 
 
 

Once [a,b,YM] are found for each tactile image and mammogram pair, the central values b 

and size parameters a and YM can be compared.  For each pair, YMm for the mammogram 

was greater than the YMt for the tactile image, as expected from the above discussion.  

The central value b differed by up to 1cm, which can be due to multiple factors, including 

a shift in the subject position, error in calibrating for the effects of the magnetic field, 

incomplete tactile imaging on one side of the breast, and breast asymmetry.  In this 

general case of bm ≠ bt ≠ 0 the registered x coordinates have to be shifted to (x’-bm) and 

(x-bt).  With ∆xstretch = (RmR-RmL)-(RtR-RtL) = 2(RmR-RtR) and ∆ystretch = YMm - YMt the 

registration algorithm thus becomes: 
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This transformation was applied to each of the calibrated tactile images in order to 

register them to their corresponding mammograms.  

 

 

5.4.4.  Clinical Data Results 

 

The above registration algorithm was applied to register the calibrated tactile images to 

the digitized mammograms and the resulting images compared.  Figure 5.25 shows the 

uncalibrated tactile image, and the registered images for a subject (one breast).  The 

registered tactile image shows increased intensity in similar regions as the mammogram.  

This was qualitatively noted across all 22 mammogram-tactile image pairs available.   

 

A true test of registration for these images within the noninvasive framework requires the 

registration of specific points between the two modalities that are known independently 

to correspond.  To that end, the twenty-two mammograms collected were presented to a 

radiologist, who was asked to outline areas of expected stiffness and areas of interest, 

namely areas that may require a radiologist to pause and scrutinize the area in further 

detail.  Areas of expected stiffness included areas of dense glandularity, areas of scarring, 

and areas of large calcifications that may be close to the surface.  The areas of interest 

that the radiologist identified possessed similar criteria, as he identified areas where the 

glandular tissue provided a radiologic signature that was distinct to his trained eyes.  

Because of the criteria used by the radiologist in outlining the areas of interest, if the 
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registration algorithm performs well we expect that the outlined areas will correspond to 

areas of intensity in the tactile images.  Since these mammograms were collected in a 

screening setting, pathologies were not expected.  In fact, only one area was highlighted 

for 15 mammograms, two areas in each of 3 mammograms, three areas in another 3 

mammograms, and four in just one mammogram.   

 
 
 
 

 
 

 

  
Figure 5.25.  Top left shows the uncalibrated tactile image in the full 30cm x 30cm field 
of view.  At bottom left is the tactile image after calibration and registration, shown for 
10cm in y and 20 cm in x.  At bottom right is the corresponding mammogram (also 10cm 
x 20cm).  All images are represented by a single intensity value at each pixel, which is 
represented here with blue as the lowest and red the highest value.  The bottom of the 
tactile image, corresponding to the area close to the nipple, is not as full as the 
mammogram because the tactile imager cannot obtain images at the sloping edge of a 
breast.  The mammogram starts at y=1cm since the edge of the plate is approximately 
1cm behind the edge of the mammographic film.  The top right shows the correlation for 
the two images shown for 30cm x 30cm (an excursion of 15cm in x and y in either 
direction). 
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The areas the radiologist outlined in the mammograms were translated directly from the 

mammograms to the registered tactile maps.  For each mammogram and tactile map, the 

average intensity of each area was calculated, as well as the average in the background 

(the pixels outside the areas of interest and inside the edge of the image).  For the 

mammograms, the areas highlighted, on average, had a mean more than 20 times greater 

than the background [table 5.4].  The same areas in the tactile images had a mean more 

than 14 times the background.  Interestingly, the standard deviation for the areas is more 

than 10 times greater than the background for both mammograms and tactile images.  

This implies that the areas in question encompass a greater range of values than the 

background, which is, as expected, comparatively featureless. 

 
Table 5.4.  Statistics for areas highlighted by radiologist on mammograms, translated to 
tactile images.  The pixels in the areas are significantly different from the remaining 
background. 

  Mammograms Tactile Images 
Mean Areas / Mean Background 23.72 14.16 
St Dev Areas / St Dev Background 13.11 10.39 
Observations 31 31 
t stat 15.41 10.42 
P value <0.0005 < 0.0005 

 

In order to ascertain that the difference in the mean values in the tactile images is truly 

due to absolute peaks in the tactile images, and not because the relatively low values of 

the background are washing out the actual maximum values, we also look at the location 

of the pixels of highest values in the tactile images and how these compare to the areas 

highlighted by the radiologist.  The pixels with the highest 2.5% of values of the tactile 

image are considered.  This number was chosen as it resulted in total tactile image area 

not larger than the areas highlighted in the mammograms.  Figure 5.26 shows the 
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mammographic areas of interest and the areas of peak tactile intensity for a mammogram-

tactile image pair.  The centroids of the areas differ by 4mm between their locations in 

the two images.  Of the 31 areas highlighted by the radiologist, 28 areas had comparable 

tactile image areas identified by this method, with a mean absolute discrepancy of the 

centroids of 8.4mm.  If we discount the 6 mammograms where the radiologist indicated 

an overall lack of features then the discrepancy of the area centroids drops to 4.9mm. 

 
 
 

 
Figure 5.26.  Comparing mammography areas to areas of highest intensity in the tactile image.  
Left:  Areas of interest in the mammogram identified by radiologist.  Right:  Pixels of highest 
2.5% intensity in the tactile image.  Both images have been cropped in the same manner.  The 
images and grid are the same size. 
 
 

The above analysis indicates that in general, we expect an overall correlation between 

areas of increased radioopacity and areas of increased stiffness.  We can therefore explore 

the results of a simple correlation between the two images as a final test of our 

registration.  Figure 5.25 shows the correlation between the tactile image and 

mammogram shown.  In this case, the peak of the correlation is within 3mm of center, 

indicating that the best match between the two images requires a displacement of only 
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3mm from their current positions.  The correlation peak drops to 25% of its value at a 

radius of 9.5mm, but the value of the correlation at the center is greater than 99% of the 

overall correlation peak.  This means that as they are, the images are extremely well 

correlated (99% of peak) and that the correlation of these images is highly position 

dependent (global maximum is the only local maximum, and the correlation radius is 

small).  The overall results of this correlation analysis are shown in table 5.5. 

 

Table 5.5.  Summary of correlation analysis across all mammogram-tactile image pairs. 
Mean Correlation quantity Value 
Distance from peak to center 9.9mm 
Value at center (% of peak) 95.6% 
Radius of correlation peak (at 25% of peak value) 17mm 

 

Figure 5.27 shows another mammogram-tactile image pair.  The correlation between 

these two images is far poorer that that seen in figure 5.25.   The tactile image clearly 

exhibits more extensive stiff regions than the mammogram implies, which result in a poor 

correlation.  Note, however, that near the base of the mammogram there are a few small 

very bright dots.  These are clips left over from a previous surgical biopsy and indicate 

areas of scar, which is stiffer than the surrounding tissue, but does not image well in 

mammography a few years post-surgery.  Cases like the one in figure 5.27 are just as 

valuable as that in figure 5.25, since not all pathologies have a mammographic presence 

[Wellman 01] but may warrant further investigation in a diagnostic setting.  These cases, 

however, help drive down the results in table 5.5. 
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Figure 5.27.  A tactile image (left) and mammogram (center) pair (each shown for 20 x 
25cm) and their correlation for 20 x 20cm (right).  The tactile image shows more bright 
regions than the mammogram, since this subject has had several biopsies which have 
resulted in scarring.  In the mammogram, the only signature of the scarring are the clips 
left behind from the biopsies (arrows).  The correlation between these two images shows 
a wide off-center peak, as the best correlation would occur when the bright spots in the 
tactile image evenly surround the bright spot in the mammogram. 
 

 

5.5.  Discussion 

 

The registration of tactile images to mammograms is inherently dependent on the amount 

of mammographic compression, the uniformity of that compression, and the breast size, 

shape, and stiffness characteristics.  The registration algorithm generated in this study 

works well in registering the midplane deformations of four different finite element 

models, though it is not possible to create an algorithm with constants derived from the 

simple parameters used in this study that would work perfectly for every breast.  The 

parameters used in the registration algorithm depend only on the extent of the 

mammogram and tactile image, and are readily available in a clinical setting. 

 

The registration algorithm was developed based on the displacement of the 4mm thick 

horizontal midplane of the finite element models.  In practice, however, the tactile images 
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obtained on physical breasts (both the silicone models and the images collected 

clinically) are on a plane that best fits the top surface of the breast as compressed in the 

tactile image.  This plane is not perfectly horizontal, though the approximation to 

horizontal improves with larger breasts or as the patient ages.  In practice, the smallest, 

stiffest breasts had planes of best fit at angles no greater than 30°, which would result in a 

maximum error of 13%.  In these small breasts, which have a maximum extent less than 6 

cm, that translates to an absolute error of 7.8 mm.  Although we expect the oblique angle 

of the tactile imaging plane to result in a registration error, these worst-case calculations 

indicate that this error is small.  This error was one of the dominant errors in the 

registration of the physical model data, and the good result of that registration confirms 

that errors due to the angle of the tactile imaging plane are indeed small. 

 

The calibration step required for each clinically collected tactile image was responsible 

for several centimeters of image manipulation.  The displacements required for 

calibration were greater than the maximum required for registration in more than half of 

the tactile images collected.  Therefore, performing the calibration step well is 

imperative.  This calibration could be improved upon by using another set of fiducials, 

and by obtaining the plate edge calibrations more completely and more frequently (for 

example, before and after every subject) since the position of humans in the field of the 

magnetic tracker affected the overall magnetic warping.  A better solution yet would be 

to move away from a magnetic tracker, which was the main source of the image warping 

that required calibration.  An optical tracker, for example, would not suffer the same 

problems, and can alleviate this error. 
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The registration algorithm had lower errors in the premenopausal breast model probably 

due to the lower absolute displacements and smaller required registration steps.  This 

smaller absolute displacement is expected for all smaller, stiffer breasts, and we may 

expect the registration to be particularly good in these cases.  Practically, however, it is 

difficult to image breasts in this end of the spectrum under either mammography or tactile 

imaging.  A small, stiff, breast poses a problem in mammography as it is often difficult to 

obtain sufficient compression of the breast.  In this case of small stiff breasts, the problem 

of a non-horizontal best fit plane is greatest.  The resulting image is also quite bright and 

nonspecific due to the underlying stiffness.  Some registration correlation was found for 

these cases, however the results are difficult to interpret, in that since the extent of the 

images is so small any absolute error will be small, but relative errors will remain high. 

 

Another possible source of error in registering physical tactile maps to mammograms is 

that the tactile imager cannot obtain information about the very edge of the breast, unlike 

mammograms and the finite element model data that was used to generate the registration 

algorithm.  Since the tactile imager requires pressure perpendicular to the tissue, imaging 

near the edges does not allow imaging against the bottom mammography plate.  

However, in order for the registration algorithm to work properly, we need information as 

close to the edge of the breast as possible.  If we assume that this difficulty arises after 

the scanhead has to be tilted to 45°, then the largest error will occur in the thickest 

breasts.  Based on the largest finite element model, this accounts for a discrepancy of up 

to 9 mm.  In practice, since the tactile image is not smooth, by forcing the parabolic 
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tactile image edge to skirt the outside of the tactile image we help account for this 

discrepancy.  Besides this precautionary step, however, in a clinical setting, full 

symmetrical coverage of the breast under tactile imaging should be encouraged. 

 

Overall, the results of this study indicate that registration is possible between tactile 

images and mammograms.  The three metrics employed to check clinical registration all 

had good results well within radiologist tolerance of misregistration.  This shows promise 

in increasing the efficacy of breast cancer screening by adding a new, inexpensive 

imaging modality registered to the current standard.  Due to the passive, noninvasive 

nature of tactile imaging, the clinical study presented here encountered a very high 

patient compliance.  100% of subjects approached agreed to participate in the study and 

all followed through with tactile imaging of both breasts after their mammogram.  Only 

one subject noted discomfort, on one breast which had recently undergone surgery.  Even 

in this case, however, a tactile image was still obtained by imaging in the lowest possible 

pressure range set in the tactile imager.   

 

 

5.6.  Future Work 

 

The results of this study show promise in increasing the efficacy of breast cancer 

screening by adding a new, inexpensive imaging modality registered to the current 

standard.  The driving goal of the registration work was to set the foundation for 

establishing tactile imaging as an adjunct to screening mammography by increasing the 
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positive predictive value (PPV) of screening.  To that end, a means of registering tactile 

images to mammograms was developed, and a protocol for collecting clinical tactile 

images was tested on a preliminary study. 

 

The next stage in this study will involve expanding the clinical work to obtain tactile 

images and mammograms on more subjects beyond the preliminary study presented here.  

A sample protocol that may be used is included in Appendix B.  The resulting 

mammographic and tactile images will be analyzed by radiologists in a random study and 

the PPV rates for mammography alone compared to that of mammograms studied in 

conjunction with tactile images.  The results of such a study are needed to establish an 

increase in the positive predictive value of tactile imaging as an adjunct to screening 

mammography. 
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Chapter 6 

Summary and Future Work 

 

 

The work presented in this thesis concerns tactile imaging as it pertains to medical 

applications.  The main focus was on breast pathology screening applications, 

specifically identifying parameters of imaged tissue and registering tactile images to 

other imaging modalities.  The work presented can be extended to other organs and 

imaging modalities. 

 

A new approach to storing and displaying tactile information was presented, in the form 

of tactile scanning, to obtain the composite tactile image (CTI).  The two-dimensional 

CTI contains all the pressure information from the centerline of a tactile image, stacked 

so that the asymmetry of pressure frames collected near, but not directly over, an 

irregularity in the underlying tissue is clearly seen.  Unlike previous ways of dealing with 

tactile information, the CTI requires no spatial averaging of the data, and thus there is no 

inherent loss of information.  Tactile scanning enabled the successful estimation of 

geometry and stiffness parameters from imaged tissue. 
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A method for estimating the geometric and stiffness parameters of a round lesion 

attached to the substrate of a tissue was developed in chapter 2.  A linear inversion 

algorithm was used to estimate the underlying parameters from finite element data and 

physical model data.  The work presented in this thesis on parameter estimation is the 

first to successfully estimate lesion stiffness from tactile imaging data.  The errors 

incurred are within the separation of the elastic moduli of different pathologies, and so 

the results show promise for clinical application. 

 

The inversion algorithm used was effective despite being linear.  It was shown that, 

although tactile imaging is not inherently linear in the underlying geometry and stiffness 

parameters, approximate linearity can be found between the tactile information and 

simple combinations of the parameters.  Parameter linearization for use in tactile image 

inversion proved to be an important feature in expanding the limits of the parameter 

estimation problem to include the estimation of the tissue and lesion moduli. 

 

In chapter 3, the inversion algorithm developed for a lesion attached to the substrate of a 

soft tissue was applied to the expanded problem of a lesion embedded within the soft 

tissue substrate.  This problem has a larger parameter space due to the addition of the 

parameter related to the depth of the lesion, and so the tactile scanning data was divided 

based on a simple parameter from the CTI.  The results of estimating the underlying 

parameters from finite element models were once again within clinical relevance, and so 

the work can be carried forward to model and clinical testing. 
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The estimation of tissue parameters in the case of a round inclusion wholly embedded in 

tissue is analogous to the estimation of large vessel parameters.  The liver is an ideal 

candidate for this as it is a large, solid organ, with large thin-walled veins traversing its 

bulk.  The inversion algorithm developed for solid lesions was easily applied to finite 

element models of human liver and excised, perfused, porcine livers, with good local 

results.  Estimating the tissue thickness showed greater errors than expected from the 

previous analysis, and is likely due to the thin wedge shape of the porcine liver lobes.  

The thinness of the tissue results in a greater strain in the tissue, and thus accentuates the 

nonlinearity of the tissue elasticity, while the nonuniformity of the tissue thickness 

resulted in errors in recording the actual tissue thickness for estimation.  Despite the 

errors incurred in estimating the specific parameters of the porcine livers studied, tactile 

imaging was clearly able to distinguish embedded vessels and provide information on 

their geometry. 

 

The success of the inversion algorithm developed for specific tissue geometries naturally 

led to the question of where the limits of general inversion lie.  Thus in chapter 4, we 

tackled the problem of a stiff substrate of continually varying thickness under a soft layer 

with complementary thickness (i.e. the total thickness of the two layers was constant).  

Using the result that tactile scanning is approximately linear in a simple combination of 

substrate and total thickness, we found the impulse response of our system.  We showed 

that the resolution of the inversion is limited by the width of this impulse response, which 

in turn is dependent on the stiffness of the top layer of tissue.  Further work can be 
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performed in detailing the dependence of this resolution to scanhead design, and applying 

the continuous inversion algorithm developed to physical data. 

 

Chapter 5 detailed the work in developing an algorithm to register tactile images to 

mammograms.  Since tactile imaging essentially quantifies palpation, it is a logical 

adjunct to mammography, which ideally is performed with concurrent palpation 

information of the breasts being imaged.  Our premise was that by changing the way that 

tactile images are obtained (taking the images with the woman standing, rather than 

laying on her back in the traditional palpation posture) we may find a way to register the 

resulting tactile image to mammograms.  We developed the registration algorithm based 

on results from finite element models constructed from breast contour data.  The 

registration algorithm was applied to the tactile image obtained on a realistic physical 

three-dimensional breast model and the resulting image compared to a simulated 

mammogram of the model.  The registration of points within the finite element and 

physical models was successful enough to attempt registration of clinically obtained 

tactile images to their attendant mammograms. 

 

A protocol was established for obtaining clinical tactile images for a preliminary study 

performed in a screening mammography setting.  This study highlighted the importance 

of image calibration, and a robust calibration algorithm was developed.  Calibration and 

registration was performed on each tactile image collected.  The mammograms were 

presented to a radiologist who identified areas of interest in the field of the mammogram.  

Analysis of these areas in both the mammogram and the tactile image showed a strong 
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correlation between these areas and areas of intensity in the tactile image.  Overall 

correlations between tactile images and mammograms also proved to be robust, as poor 

correlations were the result of underlying pathology rather than a poor registration.  This 

work lays the foundation for a larger clinical study that can examine a possible increase 

in the positive predictive value of breast cancer screening if tactile imaging is used as an 

adjunct to screening mammography. 

 

The finite element models developed for the work in this thesis were constructed with 

linear elastic materials, which is not necessarily representative of biological tissue.  

Results from these linear models were used to guide the development of the estimation 

and registration algorithms already discussed.  The algorithms were successful in 

application to physical data, which supports the conclusion that the data they were based 

on is congruent to data obtained on physical systems.  Future work, however, may focus 

on regenerating the finite element data using more realistic nonlinear materials.  In this 

way, the relationship between the nonlinear material properties and the tactile or 

displacement data can be studied.  This may lead to innovations in the algorithms not 

possible with the linear data available for this work, which in turn may yield better results 

when the algorithms are applied to clinical data. 

 

The work on the registration algorithm, combined with the parameter estimation work of 

the previous chapters, is a coherent tactile imaging package that can provide quantitative 

tissue geometry and stiffness information to soft tissue imaging.  The work on continuous 

estimation of tissue parameters has shown us the inherent limits of tactile imaging using 
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the current sensors, yet even within these limits the stiffness maps that can be achieved 

may prove to be an important adjunct to the radioopacity measures of mammography.  

The registration work developed in this thesis can easily be expanded to imaging 

modalities beyond mammography and tactile imaging as long as the inherent tissue 

compression is compatible.  Therefore, other modalities can be included in the 

registration, to provide multiple observations of the same tissue.  The ideal long-term 

application of the work in this thesis would see tactile imaging performed in a screening 

or diagnostic setting in conjunction with other modalities, where tactile imaging provides 

a map of the underlying tissue stiffness to the harmony of registered information.   
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Appendix A 
 
Parameters for finite element models created for parameter estimation work 
 
A.1.   
Parameters for fixed lesion finite element models with varying background modulus B 
 

B [Pa] L [Pa] t [m] d [m] 
15000 15000 0.025 0.015
15000 22500 0.025 0.015
15000 22500 0.03 0.015
15000 30000 0.025 0.015
15000 30000 0.03 0.015
15000 45000 0.03 0.01
15000 45000 0.025 0.015
15000 45000 0.03 0.0175
15000 45000 0.02 0.005
15000 45000 0.03 0.015
15000 75000 0.025 0.015
15000 75000 0.03 0.015
15000 75000 0.03 0.02
15000 75000 0.025 0.01
15000 75000 0.025 0.0075
15000 75000 0.03 0.0175
15000 75000 0.03 0.01
13000 130000 0.025 0.01
13000 130000 0.03 0.0175
13000 130000 0.04 0.02
13000 130000 0.04 0.015
13000 130000 0.02 0.005
15000 150000 0.025 0.015
15000 150000 0.03 0.015
15000 150000 0.04 0.02
15000 150000 0.03 0.02
15000 150000 0.03 0.0175
15000 150000 0.03 0.01
15000 150000 0.025 0.01
15000 150000 0.025 0.0075
15000 150000 0.02 0.005
40000 200000 0.025 0.01
40000 200000 0.025 0.0075
15000 300000 0.025 0.015
15000 300000 0.03 0.015
15000 300000 0.04 0.015
15000 300000 0.04 0.02
40000 400000 0.03 0.0175
40000 400000 0.025 0.01
40000 400000 0.025 0.0075
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15000 450000 0.02 0.005
15000 450000 0.03 0.015
15000 450000 0.025 0.015
15000 450000 0.03 0.01
50000 500000 0.025 0.015
50000 500000 0.03 0.015
50000 500000 0.04 0.015
50000 500000 0.04 0.02
50000 500000 0.03 0.01
50000 500000 0.04 0.015
50000 500000 0.02 0.005
15000 600000 0.03 0.015
15000 600000 0.025 0.015
15000 750000 0.025 0.015
15000 750000 0.03 0.015
15000 1500000 0.025 0.015
15000 1500000 0.03 0.015
15000 1500000 0.03 0.02
15000 1500000 0.025 0.01
15000 1500000 0.025 0.0075
15000 1500000 0.03 0.01
15000 1500000 0.03 0.0175
15000 1500000 0.04 0.015
15000 1500000 0.02 0.005
30000 1500000 0.025 0.015
30000 1500000 0.04 0.02
15000 2500000 0.025 0.015
15000 2500000 0.03 0.02
15000 2500000 0.025 0.01
15000 2500000 0.025 0.0075
50000 2500000 0.025 0.015
50000 2500000 0.03 0.015
50000 2500000 0.04 0.015
50000 2500000 0.04 0.02
18000 3600000 0.03 0.015
15000 5000000 0.025 0.015
50000 5000000 0.025 0.015
50000 5000000 0.03 0.015
50000 5000000 0.04 0.015
50000 5000000 0.04 0.02
50000 5000000 0.03 0.01
50000 5000000 0.02 0.005
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A.2.   
Parameters for fixed lesion finite element models with constant background modulus 
B = 15 kPa 

B [Pa] L [Pa] t [m] d [m] 
15000 30000 0.03 0.015
15000 30000 0.025 0.015
15000 45000 0.03 0.015
15000 45000 0.03 0.0175
15000 45000 0.03 0.01
15000 45000 0.025 0.015
15000 75000 0.03 0.015
15000 75000 0.03 0.01
15000 75000 0.03 0.0175
15000 75000 0.025 0.015
15000 75000 0.025 0.01
15000 75000 0.025 0.0075
15000 150000 0.04 0.02
15000 150000 0.03 0.01
15000 150000 0.03 0.015
15000 150000 0.03 0.02
15000 150000 0.025 0.01
15000 150000 0.025 0.0075
15000 150000 0.025 0.015
15000 150000 0.02 0.005
15000 300000 0.04 0.015
15000 300000 0.04 0.02
15000 300000 0.03 0.015
15000 300000 0.025 0.015
15000 450000 0.03 0.015
15000 450000 0.025 0.015
15000 450000 0.02 0.005
15000 600000 0.03 0.015
15000 600000 0.025 0.015
15000 750000 0.03 0.015
15000 750000 0.025 0.015
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A.3.   
Parameters for fixed lesion physical models with constant background modulus 
B = 15 kPa 
 

L [kPa] t [mm] d [mm] 
137.00 25.77 12.70
137.00 25.77 14.10
137.00 30.47 17.15
137.00 38.04 25.40
137.00 18.53 12.70
137.00 18.53 14.10
137.00 30.47 25.40
231.26 30.28 15.88
231.26 30.28 17.15
231.26 36.23 25.40
231.26 26.8 19.05
231.26 19.25 15.88
231.26 19.25 17.15
231.26 26.8 25.40
430.93 25.5 12.70
430.93 37.19 19.05
430.93 28.79 15.88
430.93 25.5 14.10
430.93 28.79 17.15
482.80 35.76 19.05
430.93 28.39 19.05
430.93 18.06 12.70
430.93 20.73 15.88
430.93 18.06 14.10
482.80 27.16 19.05
482.80 35.76 25.40
430.93 20.73 17.15
430.93 28.39 25.40
482.80 27.16 25.40
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A.4.  Parameters for floating lesion finite element models with constant background 
modulus B = 15 kPa 

High CTIa: 
L [Pa] t [m] d [m] z [m] 

30000 0.095 0.015 0.045 
30000 0.065 0.015 0.030 
30000 0.085 0.015 0.040 
30000 0.045 0.015 0.020 
30000 0.050 0.020 0.020 
30000 0.070 0.020 0.030 
30000 0.090 0.020 0.040 
45000 0.085 0.015 0.040 
45000 0.065 0.015 0.030 
45000 0.095 0.015 0.045 
45000 0.045 0.015 0.020 
45000 0.070 0.020 0.030 
45000 0.090 0.020 0.040 
45000 0.050 0.020 0.020 
75000 0.085 0.015 0.040 
75000 0.095 0.015 0.045 
75000 0.045 0.015 0.020 
75000 0.065 0.015 0.030 
75000 0.090 0.020 0.040 
75000 0.050 0.020 0.020 
75000 0.070 0.020 0.030 

150000 0.065 0.015 0.030 
150000 0.085 0.015 0.040 
150000 0.045 0.015 0.020 
150000 0.095 0.015 0.045 
150000 0.070 0.020 0.030 
150000 0.090 0.020 0.040 
150000 0.050 0.020 0.020 
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Low CTIa: 
L [Pa] t [m] d [m] z [m] 

30000 0.100 0.005 0.055 
30000 0.030 0.005 0.020 
30000 0.080 0.005 0.045 
30000 0.060 0.005 0.035 
30000 0.040 0.005 0.025 
30000 0.070 0.010 0.040 
30000 0.045 0.010 0.025 
30000 0.050 0.010 0.030 
30000 0.095 0.010 0.050 
30000 0.085 0.010 0.045 
30000 0.090 0.010 0.050 
30000 0.065 0.010 0.035 
45000 0.030 0.005 0.020 
45000 0.080 0.005 0.045 
45000 0.060 0.005 0.035 
45000 0.100 0.005 0.055 
45000 0.040 0.005 0.025 
45000 0.050 0.010 0.030 
45000 0.045 0.010 0.025 
45000 0.095 0.010 0.050 
45000 0.090 0.010 0.050 
45000 0.085 0.010 0.045 
45000 0.070 0.010 0.040 
45000 0.065 0.010 0.035 
75000 0.080 0.005 0.045 
75000 0.030 0.005 0.020 
75000 0.060 0.005 0.035 
75000 0.040 0.005 0.025 
75000 0.100 0.005 0.055 
75000 0.090 0.010 0.050 
75000 0.065 0.010 0.035 
75000 0.085 0.010 0.045 
75000 0.095 0.010 0.050 
75000 0.070 0.010 0.040 
75000 0.050 0.010 0.030 
75000 0.045 0.010 0.025 

150000 0.080 0.005 0.045 
150000 0.030 0.005 0.020 
150000 0.100 0.005 0.055 
150000 0.040 0.005 0.025 
150000 0.060 0.005 0.035 
150000 0.070 0.010 0.040 
150000 0.090 0.010 0.050 
150000 0.065 0.010 0.035 
150000 0.095 0.010 0.050 
150000 0.085 0.010 0.045 
150000 0.045 0.010 0.025 
150000 0.050 0.010 0.030 
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A.5.   
Parameters for finite element models of liver with central vessel 
 

B [Pa] t [m] d [m] 
12500 0.06 0.005 
12500 0.06 0.0065 
12500 0.05 0.0065 
12500 0.04 0.005 
15000 0.05 0.005 
12500 0.05 0.008 
12500 0.06 0.008 
12500 0.05 0.005 
15000 0.05 0.0065 
15000 0.06 0.0065 
12500 0.04 0.0065 
15000 0.04 0.005 
15000 0.06 0.005 
15000 0.06 0.008 
15000 0.05 0.008 
12500 0.05 0.01 
12500 0.06 0.01 
10000 0.06 0.005 
15000 0.04 0.0065 
10000 0.05 0.005 
10000 0.05 0.0065 
15000 0.05 0.01 
10000 0.04 0.005 
10000 0.06 0.0065 
15000 0.06 0.01 
10000 0.06 0.008 
10000 0.05 0.008 
15000 0.04 0.008 
12500 0.04 0.008 
10000 0.04 0.0065 
10000 0.06 0.01 
10000 0.05 0.01 
10000 0.04 0.008 
12500 0.04 0.01 
15000 0.04 0.01 
10000 0.04 0.01 

 
 



Appendix B  Galea 

   220

 
 
 
 
Appendix B 
 
 
 
Suggested Protocol for Future Clinical Work  
in Mammography Registered Tactile Imaging 
 

 
 
B.1.  Introduction 

 

The initial clinical study, presented in chapter 5, provided preliminary clinical data on 

which to test our registration algorithm.  Equally important, however, is the knowledge 

gained towards optimizing a larger clinical trial to continue the work started in this thesis.  

In this appendix we include a suggested protocol for collecting and analyzing 

mammograms and tactile images in order to show an increase in the positive predictive 

value (PPV) of screening mammography when tactile imaging is used as an adjunct. 

 

The PPV is the measure of true positive results to all positive results.  True positive 

results account for only a small fraction (approximately 1%) of screening cases, and 

about 10% of diagnostic cases.  Therefore, in order to test for an increase in the PPV of 

mammography with tactile imaging over the PPV of mammography alone on a 

reasonable number of subjects, the clinical trial should be performed on subjects 

undergoing a diagnostic mammogram.  This will still require the number of subjects to be 
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on the order of 100 or more, however is an improvement over the case of pure screening 

mammography. 

 

 

B.2.  Protocol 

 

Subjects will be recruited from patients referred for a diagnostic mammogram.  Informed 

consent will be obtained when the subject is received at the diagnostic unit, and she (or 

he) will undergo all procedures as usual.  The tactile imager will be set up in the 

mammography suite with a reclining bed also available for the supine tactile image.  

Tactile images of one or both breasts (depending on whether one or both breasts are to be 

imaged by mammography) can then be obtained in the cranio-caudal plane with the 

subject standing at the mammography machine, as well as with the subject supine on the 

bed, which images a larger area, but is not directly registered with the mammogram. 

 

Copies of the regular screening mammography views will be made, with regard for 

patient confidentiality.  These are the cranio-caudal and medio-lateral x-rays, henceforth 

referred to as “the mammograms”.  The master database will consist of these 

mammograms, the tactile images, and the final diagnosis.  The mammograms and tactile 

images will be shown to various radiologists for their assessment.  This assessment will 

be compared to the patient’s diagnosis for statistical analysis 
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B.2.1.  Radiologists’ Involvement 

 

This study requires the involvement of several radiologists to read mammograms as well 

as tactile images.  Since the hypothesis of this work is that tactile imaging is an effective 

adjunct to mammography, the images from tactile imaging should be read at the same 

time as the mammography images.  Radiologists are thus the prime candidates for this 

study to target.  Radiologists are also quite used to viewing images taken by different 

imaging techniques, in different planes, and constructing a mental image of the three-

dimensional position of noticeable structures.  They will be trained to read tactile images 

and shown examples of tactile images registered to mammography prior to the study. 

 

B.2.2.  Study Phases 

 

Phase I 

The initial phase is designed to provide immediate validation of the imaging and 

radiologist protocols. Up to 40 subjects will be recruited and tactile images obtained in 

two planes, as described above.  These subjects will be selected such that at least 50% of 

them present with a palpable lump. This biases the initial study in favor of cases which 

can be visualized with tactile imaging, to afford the most immediate assessment of the 

function of tactile imaging in this context. Copies of the subjects’ mammograms and 

diagnostic reports will be obtained and assembled with the tactile maps into the main 

database. A pool of 6 radiologists will then assess each of the following imaging 

modalities, for 10 patients at a time: 
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• The regular screening mammograms 

• The mammograms and the registered cranio-caudal tactile images 

• The mammograms and the supine tactile images 

• The mammograms and both sets of tactile images 

 

Random selection will determine which of the above imaging modalities for any one 

patient each radiologist assesses.  Each radiologist will provide a decision on whether 

there is an abnormality that should be evaluated further, and the location of that 

abnormality.  The experience of each radiologist will also be recorded for use in the 

statistical analysis.   

 

After 40 patients have been assessed, the sensitivity and specificity of each imaging 

modality will be calculated, and an Analysis of Variance (ANOVA) performed, in order 

to isolate the effects of imaging modality, underlying pathology, and radiologist 

variability. 

 

Phase II 

 

Once the best imaging modality is determined, the study will be streamlined accordingly, 

and another 60 patients will be recruited, again with a 50% bias towards patients with a 

palpable abnormality.  After each set of 20 patients the assessing radiologists will be 

asked to review the images and provide a decision about the presence of an abnormality.  
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The positive predictive value will be assessed and ANOVA performed after these initial 

100 patients. 

 

Phase III  

 

The final phase of the study will recruit patients with no bias for palpable lesions. Some 

of these subjects will be therefore be regular screening patients. The images obtained 

from these subjects will be assessed as above, and the results tabulated for presentation. 

 

 

B.3.  Notes 

 

All clinical trials involving human subjects must be approved by an Independent Review 

Board (IRB), which is staffed by people familiar with the proper protocols for human 

subject trials.  The nature of the work suggested here, however, requires the recruitment 

of people (mostly women) who are enduring a very stressful and possibly emotional 

experience – facing the possibility of breast cancer.  This should be kept in mind at all 

times, and the needs of the patient always given the highest priority.    The emphasis on 

women already scheduled for a mammogram was established so that no subject is asked 

to undergo radiation exposure, no matter how minimal, for this study.  Similarly, no 

aspect of the subject’s regular care should ever be hampered for any facet of this study.  

Our experience from the initial study taught us that some women, especially in a more 

relaxed screening environment, and those women who have a personal history of breast 
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cancer, were eager to help in any way they could, particularly for a noninvasive test such 

as tactile imaging.  Recruiting a few subjects from such a group at the initial phase might 

be of great benefit if this is the researchers’ first exposure to clinical trials.  A caring 

breast surgeon with an established practice can be invaluable in helping identify subjects 

that would be ideal for such an initial study. 

 


