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Abstract
Computational biomechanical models have become integral components in many

areas of modern medical care, including diagnostic applications, image-guided pro-
cedures, robot-assisted procedures, and surgical simulators. The development of ap-
propriate models for the mechanical behavior of soft tissues is challenging due to the
inherent complexities of the material response, and the limitations on testing proto-
cols associated with in vivo settings. Current in vivo soft tissue testing is dominated
by indentation due to the simplicity of the instrumentation and low risk of injury asso-
ciated with the procedure. Much of the information related to the interplay between
shear and bulk compliance in the complex deformation field beneath the indenter is
lost when capturing the single (time-displacement-force) output of the tool. Supple-
mental experimental methods are necessary for well-conditioned characterization of
the tissue response. Image-based methods are a promising solution, as they provide
the means for noninvasive in vivo measurement of the tissue response with improved
sensitivity and uniqueness of the recovered material parameters.

A constitutive inverse modeling framework is presented, relying on conventional
indentation testing along with real-time three dimensional ultrasound imaging of the
internal tissue deformation. The internal organ deformation field is estimated with a
novel, mechanically regularized nonrigid image registration algorithm. A physically-
based visco-elastic constitutive model of the liver response is developed and its mate-
rial parameters are estimated within the proposed inverse modeling framework. Three
perfused porcine livers were characterized using tests representative of surgical manip-
ulation, including cyclic loading tests spanning applied strain rates between 0.01 s−1

and 1.0 s−1 and stress relaxation tests. The proposed model and the identified mate-
rial parameters offer good fit to the experimental response and show good predictive
capability for alternative loading histories. The proposed material testing methods
are independent of imaging modality and constitutive law, suggesting potential ap-
plications for other tissues and scales (i.e. nanoindentation, confocal microscopy,
etc.).
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Chapter 1

Introduction

The rapid development of computer-assisted medical technologies over the past
two decades has created a strong demand for accurate biomechanical models of tissues
and whole organs. Computational biomechanical models have become integral com-
ponents in many areas, including diagnostic applications, image-guided procedures,
robot-assisted procedures, and surgical simulators. The development of appropriate
models involves two general challenges. The first difficulty lies in the formulation of a
suitable constitutive law capable of capturing the large-strain, nonlinear, viscoelastic
response of tissues. The second challenge involves the development of experimental
testing protocols appropriate for unique identification of the material parameters.
The aim of this thesis is to develop a framework for constitutive modeling of the liver
mechanical response, including methods for rapid model prototyping, material param-
eter estimation, and image-based inverse modeling. The contributions of this work
rely on the fusion of methods from computational biomechanics, computer vision,
and medical image processing.

Image-Guided Procedures

Mechanical models of soft tissues are an important component of emerging image-
guided procedures, especially in applications where mechanically accurate registration
of image data is necessary for intra-operative guidance. Image-guided tasks, such
as tumor localization during brain shift [6, 29, 87, 131, 127], liver resection [26],
needle biopsy and prostate brachytherapy [2, 46, 4, 5, 38, 37, 36, 98, 130], require a
close interplay of computational biomechanical models with preoperative and intra-
operative imaging. Soft tissue procedures often involve large strains, instrument-
tissue contact, and fracture (i.e. cutting) of tissues. This necessitates the use of
sophisticated mechanical modeling techniques and complex constitutive laws that
accurately capture the large-strain, viscoelastic, and highly nonlinear response of
soft tissue. The materials models must then be validated and parameterized by
experimental testing protocols appropriate for unique identification of the material
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Chapter 1: Introduction 2

constants. Additionally, the observed patient-to-patient mechanical variability of soft
tissues often requires patient-specific (personalized) models, which must be generated
and parameterized with clinically feasible testing protocols.

Surgical Simulation

Medical training simulators and virtual surgical environments aim at improving
the quality of medical personnel training [34], reducing training cost, and eliminating
the need for animal subjects. In general, surgical simulators fall in the categories of
simulators for minimally invasive surgery (MIS) [121, 74, 123], catheter and needle-
based procedures [124, 81], and open surgery [20, 15]. Simulation of MIS procedures,
including arthroscopic, laparoscopic, and catheter procedures, has seen a vast amount
of work over the recent years, as it requires the surgeons to develop specific technical
skills to work with the contra-intuitive mapping between the motions of the surgeon’s
hand and the motion of the instrument. The patient benefits of minimally invasive
surgery over open surgical procedures are well documented [86, 107, 123] and include:
shorter recovery time, lower risk of complications, smaller incisions, and less local
tissue damage. MIS procedures, however, are intrinsically more difficult due to the
associated decrease in dexterity, loss of visual information, and limited or nonexistent
haptic feedback. Gallagher and Cates [49] have presented compelling evidence that
virtual reality based simulators can be effective in skill assessment and training.

The role of computational soft tissue models in surgical simulation is to improve
the realism and accuracy of the visual and haptic feedback. Additionally, the models
must predict the tissue behavior during common tasks, such as cutting, suturing,
clamping, etc. The large deformation response of heterogeneous soft biological tissues
is nonlinear, time and rate-dependent, making the formulation of fast and accurate
models challenging.

Other Applications

Other clinical applications of soft tissue models include, but are not limited to,
image segmentation [19], robot-assisted surgical procedures [92], and applications
in disease detection and diagnosis. For example, mechanical properties of breast
tissue, have been shown to correlate with histopathologic changes [73, 129, 70], the
mechanical properties of cervical tissue have been linked to cervical incompetency
[95], and Carter et al. [24] have shown changes in mechanical properties associated
with liver disease.

1.1 Tissue Modeling and Characterization

Much of the soft tissue experimental data reported in the literature has been
acquired ex vivo. This data, however, is often inappropriate for accurate modeling
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and characterization, as the material properties of soft tissues vary significantly be-
tween in vivo and in vitro settings [48, 91, 93, 53, 90, 71]. The liver is a frequently
manipulated organ during abdominal procedures, therefore mechanical modeling and
characterization of its response is a crucial step towards improving surgical simulation
and image-guided procedures. The liver is a complex organ composed of vascular,
structural, and cellular elements (blood, bile, lymph, collagen, hepatocytes, endothe-
lial cells), which requires a constitutive model capable of capturing its nonlinear,
viscous, and rate-dependent response. Because the liver is a highly perfused organ,
its observed mechanical properties are strongly dependent on the physiological con-
ditions (i.e. temperature, arterial pressure, venous pressure, orientation, etc.). A
recent study by Nava et al. [96] and a study by Carter et al. [24] report on the mea-
surements of intra-operative in vivo mechanical properties of human liver. Numerous
other studies [23, 100, 112, 125, 97] have performed in vivo mechanical tests in porcine
and bovine animal models. Kerdok et al. [71] have demonstrated that near in vivo
mechanical behavior may be achieved by using physiologic perfusion conditions in an
ex vivo setting.

Current in vivo soft tissue testing is dominated by indentation due to the lim-
ited access requirements, simplicity of the instrumentation, and low risk of injury
associated with the procedure [11]. The single force-displacement history obtained
during conventional indentation experiments is governed by the mechanical response
of the whole material domain, combining near-field (large strain) and far-field (low
strain) contributions. Much of the information related to the interplay between shear
and bulk compliance in the complex deformation field beneath the indenter is lost
when capturing this single output. Therefore, supplemental experimental methods,
such as secondary indentation sensors [11], tissue surface tracking [41, 42], or inde-
pendent tests of bulk compliance (i.e. confined tissue compression) are necessary for
well-conditioned parameter identification. Image-based characterization methods are
a promising solution, as they provide the means for noninvasive, in vivo estimation
of material parameters and offer improved sensitivity and uniqueness of recovered
parameters. This thesis proposes an image-based approach to estimation of constitu-
tive model parameters, which combines conventional indentation tests with real-time
volumetric imaging using three-dimensional ultrasound. The parameter estimation
process relies on a nonlinear inverse finite-element modeling approach, which iter-
atively adjusts material properties to obtain good agreement between experimental
and modeled response of the tissue (Figure 1.1).

Elastography

Elastographic imaging is an area of research related to the methods proposed
in this thesis. Elastography [99], a technique for noninvasive imaging of soft tissue
elasticity, has witnessed an immense growth over the past decade due to its vast
diagnostic potential in breast cancer [51, 50, 59], prostate cancer [67, 3], liver fibrosis
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Figure 1.1: Image-based approach to material property estimation using iterative
finite-element modeling.

[77], and congenital heart disease [35, 12]. The key concept behind elastography
is estimation of strain fields resulting from uniaxial tissue compression (usually less
than 1% nominal strain). Traditional elastography [99] uses a 2D ultrasound probe to
compress a tissue sample and estimates the resulting 2D strain field (elastogram) from
radio-frequency (RF) echo lines in the region of interest. As changes in mechanical
properties of soft tissues have been demonstrated to correlate with pathophysiology
[73, 129], an elastogram can localize stiff nodules with sensitivities superior to manual
palpation. Other techniques, such as sonoelastography and magnetic resonance (MR)
elastography, rely on propagation of slow acoustic waves (100-1000 Hz) to estimate
local elastic moduli. In general, elastographic techniques assume that soft tissues
behave as isotropic linear elastic materials and aim to detect local variations of elastic
moduli. In contrast, the tissue characterization methods in this thesis neglect relative
fluctuations in material properties and place the focus on accurate prediction of the
large-displacement viscous behavior of the whole organ.

1.2 Thesis Overview

This thesis expands on the work of Kerdok [69], which developed an extensive
testing and characterization protocol and proposed a nonlinear, visco-poro-elastic
constitutive model to capture the response of perfused porcine liver. The main con-
tributions are:

1. Introduction of a simplified constitutive modeling framework, using generalized
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nominal response of tissues to identify the simplest constitutive form capable
of capturing the salient features of their time-dependent response;

2. Formulation of a revised and simplified constitutive law, while maintaining ex-
cellent model-experiment agreement and reducing the number of material pa-
rameters;

3. Development of a mechanically constrained non-rigid image registration algo-
rithm for estimation of the three-dimensional internal tissue strain field;

4. Incorporation of image-based volumetric imaging into the inverse finite-element
tissue modeling;

5. Complete visco-elastic characterization and validation of the proposed model
using three perfused porcine liver specimens.

Chapter 2 addresses the challenge of formulating an appropriate soft tissue consti-
tutive law by presenting a general approach to constitutive modeling of the generalized
stress-strain time-dependent behavior. This chapter proposes a general rheological
framework, consisting of elastic and viscous elements, which may be altered in a
modular fashion to rapidly prototype various constitutive laws and their ability to
capture various aspects of the tissues time-dependent response. The conclusions of
this chapter and the identified constitutive formulation serve as the basis for the final
constitutive liver model presented in Chapter 5.

Chapter 3 proposes a novel nonrigid image registration algorithm, which uses
mechanical finite-element models to regularize sparsely estimated local displacements
to obtain global deformation fields that are consistent with the mechanical response of
the involved tissues. The algorithm is not only suitable for classical image registration
problems, such as intra-operative guidance in neurosurgery, liver surgery, or prostate
radiotherapy, but is also an appealing technique for estimation of organ deformation
during mechanical testing.

Chapter 4 addresses the use of the nonrigid image registration algorithm in consti-
tutive model development and material parameter identification using conventional
visco-elastic and poro-elastic constitutive laws. The parameter identification process
is also validated on synthetic data and shown to provide good accuracy and consistent
convergence to correct material parameter values.

Chapter 5 introduces a revised nonlinear visco-elastic constitutive model, which
captures the response of liver across a wide range of frequencies (DC-2 Hz), as well as
accurately predicts the organ’s stress relaxation response. The model is validated by
demonstrating good agreement with experimental response obtained from alternative
loading histories.

Chapter 6 provides a discussion of the contributions of this work, both in the
areas of constitutive liver modeling as well as nonrigid image registration. While this
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work proposes a soft tissue modeling and characterization framework using perfused
porcine liver and 3D ultrasound imaging, it is suitable for in vivo organ testing and
some future work considerations are discussed. Additionally, the methods are directly
applicable to other imaging modalities, tissue, as well as to other scales (i.e. nano-
indentation and cellular mechanics).



Chapter 2

Modeling the Generalized Nominal
Response of Soft Tissues

2.1 Introduction

Accurate characterization of the mechanical behavior of biological soft tissues is
a necessary step for advancing many medical technologies including surgical simu-
lation, image-guided procedures, robot-assisted surgery, and diagnostic procedures.
The complex structure and nonlinear elastic and dissipative behavior of tissues make
modeling their mechanical response challenging. Soft biological tissues have been
likened to cross-linked polymers since their structural components consist of protein
fibers (collagen and elastin). Soft tissues often display limited volumetric compli-
ance, as they are filled with fluids (blood, lymph, ground substance, etc.) and can
often undergo large strains before failure [45, 48]. Furthermore, they exhibit stresses
that vary nonlinearly with finite strains, have loading rate and time dependencies,
are anisotropic, achieve an equilibrium compliance under relaxation, and are sensi-
tive to the conditions (e.g. temperature and hydration) under which they are tested
[126]. Since medical manipulations typically involve large deformations with complex
geometries and boundary conditions, realistic modeling of soft tissues requires char-
acterization of the large strain response of the tissues often across a range of time
scales.

Researchers have modeled soft tissues using an array of simple elastic [27, 66, 100]
as well as complex constitutive models that include nonlinear elastic, viscous, and
porous elements [16, 22, 23, 24, 33, 68, 72, 88, 96, 109, 118, 119]. Viscoelastic material
characterization is accomplished by varying loading histories over different modes of
deformation since volume changes (bulk) and shape changes (shear) relate to different
mechanisms of deformation [126]. Common modes of deformation used on soft tissues
include: uniaxial compression/extension [43, 62, 88, 89, 95], shear [39, 82], indentation
[22, 24, 71, 69, 72, 100], torsion [66, 125], grasping [23], and aspiration [97]. To

7



Chapter 2: Modeling the Generalized Nominal Response of Soft Tissues 8

characterize the time-dependent large strain response of soft tissues a few loading
histories are commonly used: creep response to a constant step load [71], stress
relaxation to a constant step displacement [23, 95, 109, 69], and constant strain
rate ramp loading and unloading [23, 72, 95, 69]. Though not applicable to large
deformations, the dynamic stress response to sinusoidally oscillating small strains is
also commonly measured to provide insight into the balance between energy storage
and dissipation in the material [45, 48, 69, 100, 126]. Each of these tests captures
different aspects of the viscoelastic behavior of the material at different time scales
and thus more than one is necessary for complete material characterization.

The utility of a model lies in its ability to accurately and efficiently predict the
desired mechanical responses of the material. Three-dimensional constitutive models
of soft biological tissues are required to reflect both the complexity of the time de-
pendent response, and the dependence of the response on the mode of deformation.
The process of formulating a predictive 3D model can be both time-consuming and
challenging, as the path to success is not well defined and often an iterative approach
of “trial and error” is utilized. Typically, the material model parameters are esti-
mated by fitting the experimental response through finite-element implementation of
the full constitutive formulation and iteratively solving the inverse problem. Consid-
ering an experimental response of a given tissue (for example, see Fig. 2.3 for the
time-dependent response of liver in indentation), it is a challenging task to determine
which constitutive law is appropriate for the specific application and tissue type. Fur-
thermore, the new applications of biomechanical models, especially in image-guided
procedures, require characterization of a wide array of tissues with distinct mechanical
response characteristics. Following the “trial and error” procedure before ascertain-
ing that the assumed form of the model is able to reproduce the main features of the
observed tissue behavior can be unnecessarily time intensive and inefficient.

When modeling the mechanical response of the whole organ, it can be argued that
the salient features of its time-dependent, dissipative response can be separated from
the contributions due to the geometry and the boundary conditions of the organ.
Within the first order of approximation, therefore, the characteristic features of the
tissue response may be initially modeled with a simplified one-dimensional model.
We propose the use of a one-dimensional computational testbed for the determina-
tion of the simplest and most appropriate rheological configuration, which efficiently
captures the necessary features of the response (e.g. nonlinear force-displacement,
hysteresis with full recovery, non-exponential stress relaxation) with the fewest ma-
terial parameters. We have developed an analytical tool that allows users to explore
the form and the response of common visco-elastic rheological configurations and al-
lows for any linear or nonlinear constitutive relations to govern the response of the
individual elastic and dissipative elements. The tool also incorporates a nonlinear op-
timization scheme that identifies material parameter values by minimizing the error
between experimental data and predicted model response. A MATLAB (Mathworks
Inc., Natick, MA, USA) implementation of the tool is made freely available on the au-
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Experimental
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Appropriate Material

Constitutive Law

Modify Material

Parameters

Initial Material

 Parameters
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NO
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Tissue

Response
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Features of Experimental

Data?
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NO

Modify Material

Constitutive Law

Nonlinear Model Fitting

σexp (t)
ǫexp (t)

σexp (t)

Figure 2.1: A schematic view of the constitutive model selection process, comprising
an “inner loop” for material parameter fitting and an “outer loop” for constitutive
law adjustments.

thor’s website and is easily extensible with user-defined constitutive elements. Using
this initial constitutive modeling paradigm illustrated in Figures 2.1, the proposed
tool facilitates the fitting of a wide array of constitutive laws to experimental data
and aids in the determination of the simplest and most appropriate configuration
before proceeding with full three-dimensional modeling. To demonstrate the utility
of the tool, we subjected perfused porcine liver to complete viscoelastic testing in
indentation and determined the form of the minimal rheological model necessary to
reproduce the observed behavior. The same approach was then followed to determine
forms of the model that could reproduce the characteristic tissue responses of brain
tissue in indentation and cervical tissue in compression.

2.2 Methodology

2.2.1 Generalized Stress-Strain Response

In the following sections, we describe a modeling methodology intended for initial
development of constitutive material laws. Considering various single input-output
relationships obtained from experimental material tests, we introduce the concept
of generalized one-dimensional nominal response. Intuitive examples of single input-
output relationships include test measurements with loading conditions, such as in-
dentation, uniaxial compression or tension, confined compression, applied torsion, or
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1A

2A

2B 2C 3C

3B

3D 3E

Network 1 Network 2 Network 3

3A

Figure 2.2: General rheological arrangement comprising three parallel networks of
increasing complexity.

surface aspiration [85, 96]. All of these loading conditions can be examined in terms
of their generalized time-dependent nominal stress-strain behavior. In indentation,
for example, nominal stress can be obtained by dividing the load of the indenter
by its cross-section area and the nominal strain can be defined as the indenter dis-
placement divided by the sample thickness. Similarly, in surface aspiration tests,
the generalized stress can be defined as the applied pressure, while the resulting sur-
face deflection divided by the diameter of the suction device may be considered as
an appropriate measure of nominal strain. The generalized one-dimensional nominal
stress-strain response serves as a basis for the proposed modeling approach, in which
we aim to identify the necessary viscous and elastic components and their rheological
arrangement, which is consistent with the observed time-dependent response.

2.2.2 System Equations and Solution Approach

In Figure 2.2 we propose a general rheological arrangement, which we find to be
sufficiently broad to capture the response of most soft tissues. It comprises three
branches of increasing complexity with individual constitutive elements (springs and
viscous dashpots), which may be defined (and deactivated) in a modular way to
accommodate for a large number of rheological configurations. The first branch com-
prises only an elastic element (1A). The second branch is in the configuration of the
standard linear solid (SLS) element with an instantaneous response through the elas-
tic element (2A) and viscous dissipative response (2C) with a corresponding back
stress provided by an elastic element 2B. The third network increases the complexity
of the second network by introducing a time-dependent back stress to capture the
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response of materials with dissipative mechanism with distinctly different relaxation
times. The time-dependent back stress is incorporated through an SLS arrangement
comprised of the two elastic elements (3B and 3D) and a viscous element (3E).

Out of this complex rheological arrangement, it is possible to construct simpler
models by deactivating individual elements. To eliminate the contributions of an elas-
tic element, it is defined as either completely rigid or infinitely compliant, depending
on its serial or parallel arrangement with the neighboring elements. Analogously,
viscous elements are deactivated by specifying their viscous flow resistance to zero.
For example, isolated network 3 may be reduced to network 2 by deactivating the
elastic element 3D (making it fully rigid) and viscous element 3E. Similarly, we can
deactivate networks 2 and/or 3 by making elements 2A and 3A infinitely compliant.
We may also construct a rheological arrangement for viscoelastic fluid by deactivating
3D, 2B, and 1A.

To compute the response of a given rheological arrangement, we use standard nu-
merical techniques for solving systems of ordinary differential equations [114]. The
model is given a prescribed strain history, while the stress and accumulated strain
histories in each component of the network are computed by integration of the corre-
sponding differential equations. The system of equations that describes the response
of the whole system consists of the constitutive equations of each element and the
compatibility equations and equilibrium equations for the system.
The compatibility equations for the proposed general system may be written as

ǫexp = ǫA1 = ǫA2 + ǫB2 = ǫA3 + ǫB3 + ǫD3 (2.1)

ǫB2 = ǫC2 (2.2)

ǫD3 = ǫE3 (2.3)

ǫC3 = ǫB3 + ǫD3 , (2.4)

where the subscript denotes the network and the superscript denotes the element
within the network (i.e. ǫA3 is the strain in element 3A). The equilibrium equations
for the proposed system are

σtotal = σA
1 + σA

2 + σA
3 (2.5)

σA
2 = σB

2 + σC
2 (2.6)

σA
3 = σB

3 + σC
3 (2.7)

σB
3 = σD

3 + σE
3 (2.8)

The constitutive equations describe the characteristic response of individual el-
ements. The elastic elements are described in terms of a constitutive relationship
between the elastic strain (ǫe) in the element and the corresponding stress (σe):



Chapter 2: Modeling the Generalized Nominal Response of Soft Tissues 12

σe = f (ǫe) . (2.9)

The response of viscous elements may be explicitly prescribed through a constitutive
relationship determining the rate of viscous deformation (ǫ̇v) in terms of the driving
stress (σv):

ǫ̇v = f (σv, χ) . (2.10)

For certain constitutive formulations the rate of viscous deformation may also depend
on the state variables (χ = {ǫv, ǫ̇v, ...}) of the viscous element. We consider one
relationship in this class in the reptation-limited nonlinear power law, where the rate
of viscous deformation depends on the accumulated viscous flow in the element.

2.2.3 Elastic Constitutive Elements

The elastic elements discussed in this chapter comprise the linear elastic law, ex-
ponential law, and the freely jointed chain (FJC) model. These formulations are
discussed because they have full three-dimensional embodiments (FEM) proposed in
the literature (see e.g. Gasser et al. (2006) [52] and Bischoff et al. (2004) [17]). While
both the exponential law and the FJC model are capable of capturing highly nonlin-
ear stress-strain relationships, their features are significantly different to warrant the
discussion of both. The proposed elastic constitutive elements are summarized in Ta-
ble 2.1, including their constitutive equations, material parameters, and characteristic
stress-strain response curves.

In a simple linear elastic element, the stress is directly proportional to the applied
strain (σe = Eǫe) through the stiffness modulus E. In our implementation of the
elastic exponential element, the nonlinearity of the stress-strain response is controlled
through an initial slope parameter A and an exponential parameter b:

σe =
A

b

(

ebǫe − 1
)

. (2.11)

In the FJC model, we introduce a one-dimensional equivalent of the full three-
dimensional formulation [7, 118]. In the one-dimensional form, the stress-strain rela-
tionship may be expressed as

σe = µ0λL





β
(

λ
λL

)

λ
− β0



 , (2.12)

where

β

(

λ

λL

)

= L−1

(

λ

λL

)

(2.13)
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Table 2.1: List of elastic constitutive elements, including their constitutive equations,
associated parameters, and their characteristic response.

Elastic Element Constitutive Equation Parameters Response

Linear σe = Eǫe E

E

ε

σ

Exponential σe = A
b

(

ebǫe − 1
)

A, b
ε

σ

A

b

Freely Jointed Chain σe = µ0λL

(

β
“

λ
λL

”

λ
− β0

)

µ0, λL

ε

σ

μ

λL

is the inverse of the Langevin function

L (β) = coth(β) − 1

β
. (2.14)

In this formulation, λ is the material stretch (λ = 1 + ǫ) and β0 is the initial inverse
Langevin factor defined through Eq. 2.13 with λ = 1. The material parameters µ0

and λL determine the initial slope and the asymptotic stretch limit, respectively.

2.2.4 Viscous Constitutive Elements

We introduce two types of viscous constitutive elements, which are summarized
in Table 2.2. The first is the standard linear viscous element with a single viscosity
parameter η. In most biological materials, however, processes with a range of en-
ergy barriers accommodate the viscous flow. Consequently, increasing levels of stress
enable additional mechanisms to become active and motivate the need for viscous
constitutive relationships in which the viscous strain rate ǫ̇v increases nonlinearly
with the driving stress, σv. We introduce a nonlinear viscous power law defined as
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ǫ̇v = ǫ̇v0

(

σv

S0

)n

, (2.15)

where ǫ̇v0 = 1 s−1 is a constant introduced for dimensional consistency, while S0 and
n are model parameters. A physical interpretation of the constitutive parameters,
[S0, n], can be obtained by considering the dependence of viscous strain rate on the
driving (viscous) stress. The viscous strength, S0, represents the viscous stress nec-
essary to drive viscous strain at a rate of 100% per second (ǫ̇0). The stress exponent,
n, represents the stress sensitivity of the viscous mechanisms. For n = 1 the model
behaves as a linear Newtonian material (with viscosity S0/ǫ̇v0). For larger values of n,
the model captures the effects of superposing stress-activated mechanisms on viscous
flow, and the viscous rate dramatically increases for stresses exceeding S0.

In our experience, a viscous constitutive relationship defined by the nonlinear
power law may not be sufficient for some biological materials. For example, as viscous
strain in soft tissues accumulates and the collagen network exhausts all possible av-
enues of reorganization to accommodate the imposed deformation, the viscous strain
rate (under constant driving stress) tends to decrease. This is a well-known effect in
macromolecular solids [14], where this effect is ascribed to the physics of reptation of
elastically inactive macromolecules. Following Bergstrom and Boyce (2001) [14], we
express the dependence of strain rate on accumulated viscous deformation through a
single additional model parameter, α:

ǫ̇v = ǫ̇v0
α

|ǫv| + α

(

σv

S0

)n

. (2.16)

Note that for ǫv = 0 the form (Eq. 5.18) of the constitutive relationship is recovered,
and, at constant driving stress, the viscous strain rate diminishes with increasing
levels of accumulated viscous strain. Typical values of the parameter α are in the
range [0.0001 to 0.01], where larger values of α provide the ability to accommodate
larger levels of viscous strain through collagen reptation and realignment, and can
therefore be associated with loosely cross-linked collagen networks.

2.2.5 Data Fitting and Nonlinear Parameter Optimization

The goal of any modeling methodology is to identify a model configuration and
associated model parameters that minimize the difference between the model and
the experimental response. We address the choice of the objective function (Φ),
which quantify the model-experiment agreement and the method for identification of
the models material parameters. In this chapter we follow the intuitive formulation
of the objective function in terms of the mean squared error (MSE) between the
experimental and modeled stress history defined in discrete-time as
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Table 2.2: List of viscous constitutive elements, including their constitutive equations,
associated parameters, and their characteristic response.

Elastic Element Constitutive Equation Parameters Response

Linear σv = ηǫ̇ ǫ̇ = σv

η
η

ε

σ

η

Power law
ǫ̇v = ǫ̇v0

α
|ǫv|+α

(

σv

S0

)n

S0, n, α

ε

σS

1

n

ε

α

v

|ε | + α

α

1v
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Φ (pn) =
1

N

N
∑

i=1

(σexp[i] − σmodel[i])
2 , (2.17)

where σexp is the experimental stress history, σmodel is the modeled reponse, N is the
number of time increments, and pn is the vector of n material parameters. Under this
definition of the objective function, we use the bounded downhill simplex method
[76] to iteratively identify the material parameters that minimize Φ(pn). The user
must be aware that while the downhill simplex method is generally robust, it does not
guarantee convergence to global minima for nonconvex objective functions. Repeat-
able convergence of multiple minimizations initiated from varying initial locations in
the parameter space is suggested to evaluate the global convergence for the given
objective function.

Alternative definitions of the objective function are an important consideration
during the modeling process. For example, it may be beneficial to define Φ(pn) as the
mean absolute error (MAE) in some situations, to minimize the unwanted contribu-
tions from outliers and noise in the experimental data. The formulation of Φ(pn) can
also be modified to increase the significance of certain features of the model response,
by introducing a time-dependent weighting factor. Such modifications of the objec-
tive function affect the optimization process and the resulting material parameters.
Experimenting with the objective function also allows constitutive modeling scenar-
ios in which one can explore the models ability to capture specific features of the
time-dependent response (by increasing its weighting coefficients), while observing
the penalty of reduced fit to other features of the response.

2.3 Results

Using the proposed methodology, we demonstrate the modeling process and in-
crementally identify the simplest rheological configuration that captures the salient
features of the time-dependent nonlinear response of an intact perfused ex vivo porcine
liver undergoing large strain indentation. Whole porcine livers were freshly harvested
and tested under near physiologic conditions (perfusate temperature 33 ◦C, venous
pressure 8 mmHg, arterial pressure 95 mmHg). The experimental boundary condi-
tions include a flat plate beneath the liver with a 12 mm diameter flat cylindrical
indenter on the top surface. The loading history of the indenter consists of a multiple
load/unload ramps up to 40% nominal strain at rates from 1.8 to 360%/sec and a step
response to 30% nominal strain (500%/sec instantaneous load held constant for 1200
seconds). The details regarding the experimental procedure and specimen variability
may found in Kerdok (2006) [69].

The characteristic features of the liver tissue (see Figure 2.3) include a promi-
nent nonlinear elastic component, significant strain rate dependence, and long-scale
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relaxation with a time constant on the order of 10 s. The generalized nominal stress-
strain response was obtained from the experimentally measured force-displacement
indentation response. The nominal strain was computed as a ratio of the indenter dis-
placement (dmax = 11.0mm) and the local thickness of the organ (h = 30.3mm). The
nominal stress was calculated by dividing the indenter reaction force (Fmax = 6.1mN)
by the cross-sectional area of the cylindrical indenter tip (A = 1.131 × 10−4 m2). In
this work we limit our focus on the characteristic features in the generalized time-
dependent response and incrementally construct the required rheological configura-
tion.

By examining the liver response, both in cyclic loading and in stress relaxation
shown in Figure 2.3, we can observe that the tissue exhibits viscoelastic and rate-
dependent behavior and also note the tissues tendency to relax to nonzero equilibrium
stiffness. Considering this requirement of nonzero equilibrium back stress, we begin
the model identification with a standard linear solid arrangement. This is the default
arrangement of network 2. Using the bounded downhill simplex method to minimize
the objective function Φ(pn) (Eq. 5.27), defined as

Φ (pn) = ΦLU (pn) + ΦSR (pn) , (2.18)

where ΦLU (pn) evaluates the model fit to the cyclic load-unload block and ΦSR (pn)
quantifies the model fit to the stress relaxation response. From the best model fit
(shown in Figure 2.4) we can clearly appreciate the limitations of the standard linear
solid model and conclude that a suitable constitutive model must include a non-
linear elastic component to account for the highly nonlinear instantaneous response
commonly observed in collagenous tissues. See Table 2.3 for optimized material pa-
rameters and objective function values.

In the subsequent modeling iteration, we introduce an exponential elastic element
in the 2A position with the intent to capture the instantaneous response of the tissue,
while maintaining a linear viscous element in 2C and a linear elastic element in the 2B
position to account for the long-time relaxation back stress. Such enhancement of the
constitutive model increases the total parameter count to four, but the fitting results
demonstrate significant improvement in the experimental agreement (see Figure 2.5).
However, the model does not fully capture the stress relaxation of the material and
underestimates the resistance to deformation at the lower displacement rates (slower
hysteresis loops).

To further improve the model fit, we extend the viscous element 2C to a nonlinear
power law formulation, to capture the nonlinear relationship between the driving
stress and the viscous strain rate. In our experience, the power law relationship
tends to overestimate the viscous deformation at high stresses. To take into account
the limiting effect of the accumulated total viscous flow, we use a formulation that
accommodates the limiting behavior with the reptation factor [14]. The configuration
consisting of the SLS with exponential elastic element and reptation-limited nonlinear
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360 %/s

180 %/s

18 %/s

360 %/s

Figure 2.3: Indentation response of perfused porcine liver in indentation. A contin-
uous segment of cyclic load/unload ramps is shown on the left. The corresponding
stress-strain response is shown in the middle with individual displacement ramps dis-
tinguished by color. The stress relaxation response is shown on the right. All data
was collected at the same location on the same liver specimen, allowing 30 minutes
of recovery between the the cyclic tests and the stress relaxation.
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viscosity has a total of 6 parameters and offers a good fit to the experimental data (see
Figure 2.6). Considering the good agreement with the experimental data, this form of
the constitutive material law may be considered an appropriate configuration in many
applications. It optimizes the tradeoff between the number of material parameters
and the goodness of fit to experimental data.

If some features of the model response are critical, such as the steady state in slow
hysteresis loops necessary for surgical simulation, we may proceed to further increase
the complexity of the rheological configuration. To capture the intermediate time
scale as well as the long time scale relaxation response demonstrated in the data,
we extend the configuration of network 2 with a time-dependent back stress in the
form of another SLS configuration. This significantly more complex arrangement is
the default configuration of network 3 and allows for incorporation of the long-time
relaxation response through an additional time constant. The improvement comes at
a cost of two additional parameters, however, and needs to be weighted in terms of
its cost-benefit ratio. As we aim to improve the model agreement the experimental
response from slow load/unload cycles, we expand the form of the objective function
in a way that increases the significance of these features in the total objective score.
We introduce an objective function with a time-dependent weighting coefficient vector
w[i] defined as

Φ∗ (pn) = Φ∗
LU (pn) + ΦSR (pn) (2.19)

Φ∗
LU (pn) =

1

N

N
∑

i=1

w[i] (σexp[i] − σmodel[i])
2 (2.20)

where w[i] = 2.0 for all i which include the 0.2 mm/s and 2.0 mm/s load-unload
cycles and w[i] = 1.0 for all other indeces. We may see in Figure 2.7 (middle) that
the stricter enforcement of the model at slower load-unload cycles and the inclusion
of the additional relaxation mechanism improves the model-experiment fit and the
steady state in hysteresis loops at the slower rates. The material parameters of
the discussed constitutive models and the associated objective function values are
summarized in Table 2.3.

2.3.1 Applications to Other Tissues

The proposed modeling paradigm may be easily extended to other materials and
tissues. In this section we demonstrate that the same rheological configuration devel-
oped in the previous section may be successfully applied to generalized response of
brain tissue obtained in uniaxial compression. Upon examination of the brain tissue
response, we may notice that it exhibits nonlinearity, rate-dependence, and long-term
relaxation similar to the porcine liver discussed in previous sections. By fitting the
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8 parameter formulation of network 3 developed for the liver, we obtain an excellent
model-experiment fit, as shown in Figure 2.8.

Similarly, we extend the modeling methodology to an additional tissue type and
mode of deformation. We show that cervical tissue in compression may be modeled
within the proposed framework. In this case, however, the generalized time response
only consists of experimental measurement of the stress relaxation and load/unload
cycles at a single strain rate. Since no load/unload cycles at additional strain rates
are considered, a simplified rheological configuration, comprising the network 2 con-
figuration with reptation-limited power law viscous element, is capable of capturing
the characteristic response and offers an excellent model experiment agreement (see
Figure 2.9). The associated material parameters for the brain tissue and the cervical
tissue in compression are summarized in Table 2.4.

2.4 Discussion and Conclusions

The goal of this chapter was to develop a constitutive modeling framework for
rapid prototyping of constitutive material formulation, which simultaneously maxi-
mizes the agreement with observed experimental response and minimizes the number
of required material parameters.

By discussing the material response within the simplified generalized nominal
stress-strain response, we were able to simplify the complexity of the required models
(removed the requirement of geometrical effects) and were able to focus our atten-
tion on the features of the time-dependent material response. While the material
parameters identified within this study may not be true estimates of the parameters
obtained from more rigorous inverse finite-element modeling, our approach provides
the necessary means for exploration of the proper constitutive forms and the starting
point for inverse FE modeling. Such approach offers an efficient and effective method
for evaluating suitable rheological model configurations and assessing the cost-benefit
ratio associated with introduction of constitutive elements of higher complexity (and
higher parameter count). The desirability of this approach stems mostly from the
ease of implementation of the constitutive laws during the prototyping period and
the speed of execution. Based on our experience during the development of the liver
constitutive model presented, typical ODE solutions of stress-strain history containing
12 consecutive liver indentations generally require less than 1 second of computational
time on a standard personal computer.

In this study we also demonstrated the effect of objective function choice on the
final model fit. By increasing the relative weight of the model response history con-
taining specific features of interest, we demonstrated that the objective function for-
mulation may be used to finely adjust the desirable/important features of the model-
experiment fit. Such experimentation and fine adjustment of the objective function
definition is made feasible by the computational efficiency of the one-dimensional
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numerical simulation and further illustrates the utility of this approach in the early
stages of constitutive modeling of time-dependent tissue response.
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360 %/s

180 %/s

18 %/s

1.8 %/s

Experiment

Model

Experiment

Model

Figure 2.4: . Configuration 1 (3 material parameters): linear elastic element in 2A,
linear back stress elastic element (2B), and a linear dashpot (2C). Material parameters
shown in Table 2.3.
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360 %/s

180 %/s

18 %/s

1.8 %/s

Experiment

Model

Experiment

Model

Figure 2.5: . Configuration 2 (4 material parameters): exponential elastic element
in 2A, linear back stress elastic element (2B), and a linear dashpot (2C). Material
parameters shown in Table 2.3.
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360 %/s

180 %/s

18 %/s

1.8 %/s

Experiment

Model

Experiment

Model

Figure 2.6: . Configuration 3 (6 material parameters): exponential elastic element in
2A, linear back stress elastic element (2B), nonlinear viscous power law dashpot with
reptation-limited flow (2C). Material parameters shown in Table 2.3.
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360 %/s

180 %/s

18 %/s

1.8 %/s

Experiment

Model

Experiment

Model

Figure 2.7: . Configuration 4 (8 material parameters): exponential elastic element in
3A, nonlinear viscous power law dashpot with reptation-limited flow (3C), and time-
dependent back stress in SLS arrangment (3B,3D,3E). Material parameters shown in
Table 2.3.
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Table 2.3: Material parameters and the associated objective function for perfused porcine liver. (∗ denotes the alternative
form of Φ defined in equation 2.19)

Configuration Element A Element B Element C Element D Element E Φ

Network 2 (SLS) E = 91.9Pa E = 13.7Pa η = 91.4Pa.s - - 75.45

Network 2
A = 21.17Pa

E = 14.1Pa η = 150.7Pa.s
- -

29.49
b = 6.85

Network 2

A = 14.81Pa S0 = 53.16Pa

b = 8.23 E = 3.46Pa n = 2.7 - - 22.82

α = 0.45

Network 3

A = 21.12Pa S0 = 12.9Pa

b = 8.0 E = 24.81Pa n = 1.44 E = 3.72Pa η = 3, 505Pa.s 27.98∗

α = 0.0072
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100 %/s

10 %/s

1 %/s

Experiment

Model

Experiment

Model

Figure 2.8: . Brain tissue in compression (8 material parameters): exponential elastic
element in 3A, nonlinear viscous power law dashpot with reptation-limited flow (3C),
and time-dependent back stress in SLS arrangment (3B, 3D, 3E). Material parameters
shown in Table 2.4.
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Experiment

Model

Experiment

Model

Experiment

Model

Figure 2.9: . Cervical tissue in compression 3 (6 material parameters): exponential
elastic element in 2A, linear back stress elastic element (2B), nonlinear viscous power
law dashpot with reptation-limited flow (2C). Material parameters shown in Table
2.4.
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Table 2.4: Model fits to brain tissue and cervical tissue in compression: material parameters and the associated objective
function values.

Tissue Sample Element A Element B Element C Element D Element E Φ

A = 514.53Pa S0 = 29.56kPa

Cervix (Network 2) b = 31.47 E = 6.08kPa n = 1.35 - - 0.0242

α = 0.00033

A = 196.80Pa S0 = 74.76kPa

Brain (Network 3) b = 9.84 E = 5.55kPa n = 2.01 E = 1.91kPa η = 322.91kPa.s 0.0121

α = 0.00029



Chapter 3

Estimating Experimental Tissue
Deformation

3.1 Introduction

Mechanically accurate nonrigid registration of volumetric medical image data is an
increasingly important aspect of guiding surgical procedures involving deformations
of solid organs. Image-guided tasks, such as MRI tumor localization during brain
shift, needle biopsy, prostate brachytherapy and others require a close interplay of
computational biomechanical models with preoperative and intra-operative imaging.
Soft tissue procedures often involve large strains, instrument-tissue contact, and frac-
ture (i.e. cutting) of tissues. This necessitates the use of sophisticated mechanical
modeling techniques that far exceed the capabilities of the custom-written linear fi-
nite element models typically used for these applications. Complex constitutive laws
that accurately capture the large-strain, viscoelastic, and highly nonlinear response
of soft tissue are also required. These materials models must then be validated and
parameterized by experimental testing protocols appropriate for unique identification
of the material constants. Additionally, the observed patient-to-patient mechanical
variability of soft tissues requires patient-specific (personalized) models, which must
be generated and parameterized with clinically feasible testing protocols.

A wide array of methods has been presented for mechanically constrained non-
rigid registration of brain deformations, cardiac motion, breast deformation during
mammography, as well as applications for prostate and other organ systems. In
general, these methods are limited to linear elastic and, in some cases, relatively sim-
ple nonlinear and viscoelastic material constitutive laws. At the moment, the use of
state-of-the-art biomechanical organ models in nonrigid image registration is hindered
by the requirement of custom finite-element solvers, mandated by the inherent cou-
pling between the image-domain components of the algorithm and the biomechanical
computational methods.

30
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In this chapter we present a nonrigid image registration framework for 3D ul-
trasound, and demonstrate its applicability to soft tissue material parameter iden-
tification. The registration algorithm uses a mechanical finite-element model as a
regularizer of the estimated deformation field. By coupling image-based motion es-
timates to a mechanical model through springs connected at the nodal locations,
the image-based deformation estimation process is partitioned from the mechanical
model. This contrasts with most current mechanical regularization schemes, where
the image information is directly incorporated into the mechanical model solver. The
proposed approach thus permits the use of sophisticated off-the-shelf mechanical mod-
eling software that incorporates nonlinearities and complex material properties. This
method therefore promises greatest benefit in applications with large-deformation
tissue interactions and complex constitutive models.

The proposed registration technique is particularly advantageous for image-based
material property estimation. Traditionally, solid nonload-bearing organs (e.g. liver,
spleen, kidney, brain) are characterized using one-dimensional force versus displace-
ment information gathered from a single mode of deformation (e.g. indentation,
rotational shear, grasping, aspiration). Due to simplicity of the tool, low risk of
injury, and the necessity to measure material properties in vivo, as in vitro measure-
ments often differ significantly [48, 91, 93, 53, 90, 71], indentation is the most popular
method for solid organ testing. The single force-displacement history obtained during
an indentation experiment provides only limited information about tissue mechanics.
For example, it combines the mechanical response of the whole material domain, in-
cluding near-field (large strain) and far-field (low strain) contributions, and it fails to
distinguish much of the information related to the interplay between shear and bulk
compliance in the complex deformation field beneath the indenter. Therefore, sup-
plemental experimental methods, such as secondary indentation sensors [11], tissue
surface tracking [41, 42], or independent tests of bulk compliance (i.e. in-vitro con-
fined tissue compression) are necessary for well-conditioned parameter identification.
Image-based methods can address these limitations by measuring the deformation
field throughout an entire volume of the tissue as it is deformed, separating inhomo-
geneous regions, differentiating areas of large and small strain, and permitting direct
measurement of volumetric changes.

3.2 Relation to Existing Work

Relating Linear Elastic Mechanical Regularization to Horn & Schunck
Optical Flow

The traditional differential optical flow techniques, such as Horn and Schunck [61]
and Lucas-Kanade [84] rely on two fundamental assumptions: frame-to-frame inten-
sity constancy and local intensity gradient constancy. Under these assumptions the
motion of each voxel may be expressed by the optical flow constraint equation
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∂I

∂x
ux +

∂I

∂y
uy +

∂I

∂z
uz +

∂I

∂t
= 0, (3.1)

where I (x, y, z, t) is the voxel intensity and {ux, uy, uz} are vector components of the
corresponding voxel motion. Detailed performance and accuracy evaluation of the
commonly used optical flow techniques can be found in Barron et al. [13].

Since enforcement of the optical flow constraint (Eq. 3.1) at each image voxel
results in an under-constrained system of linear equations, further regularization is
required to make the problem well-posed. The available regularization techniques
range from homogeneous first-order smoothing to formulations reflecting true mate-
rial mechanics. Tikhonov-like regularizers, such as the original Horn & Schunck algo-
rithm, are at the core of most image-driven approaches, including recent variational
methods [102]. A thorough summary of image-driven regularization operators is pro-
vided by Weickert and Schnörr [128]. In the following sections, we will demonstrate
that mechanical regularization provides a general, physically realistic, regularization
framework and, under certain conditions, can be related to the common image-driven
regularization operators.

Image-Driven Regularizers The traditional optical flow technique formulated by
Horn and Schunck regularizes the solution by enforcing a first-order smoothness of
the resulting displacement field, minimizing the functional

Ψ(ux,uy,uy) =

∫ ∫ ∫

(Ef + α2Es)dxdydz. (3.2)

While the Ef term is the deviation from the optical flow constraint (Eq. 3.12), Horn
and Schunck propose two different definitions of the smoothness constraint Es. The
more widely used (and the one carried through in the original paper) is

Es =
∑

k

(

∂ux

∂k

)2

+
∑

k

(

∂uy

∂k

)2

+
∑

k

(

∂uz

∂k

)2

, (3.3)

where k = {x, y, z}. The second formulation of the smoothness constraint,

Es =
(

∇2ux

)2
+
(

∇2uy

)2
+
(

∇2uz

)2
, (3.4)

is more interesting because it enforces Laplacian smoothness and can be closely related
to a continuum mechanics interpretation. As ux, uy, and uz are vector components

of displacement field u, minimization of α2 (∇2u)
2
+ Ef is analogous to the solution

of Poisson’s equation (∇2u(x, y, z) − F(x, y, z) = 0) over the image domain.
In contrast, for local optical flow techniques, such as the Lucas-Kanade or the

Singh [115] methods, the smoothness constraint cannot be explicitly related to me-
chanical regularization. Since these methods rely on local assumptions of smoothness
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(either constant or affine transformation within local neighborhood), the only param-
eter that determines the deformation field smoothness is the size of the local neigh-
borhood. In implementations where the local neighborhood is sampled by Gaussian
weighting functions, the standard deviation of the sampling kernel may be considered
as a measure of smoothness.

Linear Elastic Regularizer A general, physically motivated, regularization ap-
proach can be derived from the fundamental field equations formulated by the theory
of continuum mechanics. In general, static problems in three-dimensional linear,
isotropic elasticity require the solution of 15 scalar fields that satisfy 15 field equa-
tions. These field equations consist of 6 strain-displacement equations (Eq. 3.5), 3
equilibrium equations (Eq. 3.6), and 6 constitutive law equations (Eq. 3.7),

ǫ =
1

2
(∇u + (∇u)T ), (3.5)

∇ · σT + f = 0, (3.6)

σ = 2µǫ + λ(tr ǫ)I, (3.7)

where u is the displacement vector field, ǫ is the strain tensor field, σ is the stress
tensor field, µ and λ are the Lamé material constants, and f is the field of body force
per unit volume.

The field equations of linearized elasticity can be combined in various ways to
eliminate unknowns and thus arrive at forms of the field equations, involving a re-
duced number of equations and unknowns. The problem of finding solutions to the
equations of elasticity can be restated in terms of either finding a displacement field
u that satisfies the Lamé-Navier equations or finding a stress field σ that satisfies
the equations of equilibrium and the Beltrami-Michell compatibility equations [117].
The Lamé-Navier equations may be written as

(λ+ µ)∇(∇ · u) + µ∇2u + f = 0. (3.8)

The Lamé constants may be related to a material’s Young’s modulus E and Poisson’s
ratio ν as λ = Eν

(1+ν)(1−2ν)
and µ = E

2(1+ν)
. Rewriting the Lamé-Navier equations in

terms of E and ν results in

E

(1 + ν)(1 − 2ν)
∇(∇ · u) +

E

2(1 + ν)
∇2u + f = 0. (3.9)

It is important to note that boundary conditions may only be stated in terms of
displacements in this formulation and, therefore, the deformation field u is governed
by its boundary values (if specified) and the imposed body force f .
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Under the assumption of an incompressible material (ν = 1
2

and ∇ · u = 0), the
Lamé-Navier equations reduce to the Poisson’s equation

E

3
∇2u + f = 0. (3.10)

Therefore, the Laplacian-smooth regularization suggested by Horn and Schunck (Eq.
3.4) is closely related to mechanical regularization with an assumption of incompress-
ible linear isotropic (independent of direction) material. This observation is of interest
in light of recent publications [105, 18] suggesting the importance of the incompress-
ibility constraints for nonrigid registration of certain tissues, such as the myocardium
and the breast.

3.2.1 Nonrigid Image Registration Algorithms

The success of image-based mechanical characterization methods is dependent on
an accurate and robust estimation of visual motion. Estimation of volumetric tissue
deformation during indentation experiments may be posed as a nonrigid registration
problem. Nonrigid registration methods may be broadly classified by their formu-
lation of the image correspondence constraint as being geometric (feature-based) or
iconic (intensity-based). While geometric techniques rely on locally estimated motion
of sparse features or anatomical landmarks, iconic methods estimate transformations
which maximize image similarity across the full image domain. For this reason iconic
methods are closely related to traditional optical flow methods, such as the Horn and
Schunck (1981) [61] and Lucas and Kanade (1981) [84] algorithms. While there is
an extensive body of prior work on nonrigid registration, including recent methods
specific to 3D ultrasound [78, 47, 80, 83], this chapter addresses the area of regu-
larization and image-mechanics coupling, which will be the focus of the following
literature review. This approach of using physically realistic constraints has demon-
strated the ability to provide accurate deformations in many applications, including
pre-operative to intra-operative brain shift [21, 28, 32, 55, 75, 44, 104, 116, 29], intra-
operative liver deformation [26], anatomical atlas brain registration [9], cardiac cycle
[101, 113], breast deformation during mammography [111, 110, 106], prostate defor-
mation during brachytherapy [40, 5], as well as muscular tissue deformation [134].

The nonrigid registration problem can be posed either as an interpolation or an
approximation problem. When mechanics are used as an interpolator, a sparse set
of volumetric or surface motion estimates (usually processed by an outlier-rejection
scheme) is used as a boundary condition constraint and the dense deformation field
is recovered by solving the mechanical finite-element model. The methods of Miga et
al. (2003) [87] and Audette et al. (2003) [8] rely on mechanical finite-element models
as interpolators of cortical surface motion obtained from laser range scanners in order
to obtain the displacement of deeper cortical structures. Skrinjar et al. (2002) [116]
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and Sun et al. (2003) [120] used a similar approach by tracking the cortical surface
with stereo vision systems.

When the nonrigid registration is posed as an approximation problem, the dense
deformation field is obtained by minimizing an energy functional consisting of an
image-similarity term and a mechanical regularization term. Yeung et al. (1998)
[134] used a deforming 2D mesh constrained by a plane-strain linear elastic model to
regularize motion of sparsely estimated textural speckle features. Hata et al. (1998)
[56] used linear elastic energy as a regularization of locally estimated motion based
on mutual information between preoperative and intra-operative images of the brain.
Papademetris et al. (2002) [101] used a sophisticated nonlinear finite-element model of
the beating heart, which was precomputed offline and subsequently used in a Bayesian
blending framework with sparsely estimated motion vectors from ultrasound to obtain
mechanically regularized motion estimates. Ferrant et al. (2001) [44] and Rexilius et
al. (2001) [104] perform elastic matching of preoperative and intra-operative brain
shift images using a finite-element regularization scheme minimizing the functional

E =

∫

Ω

σ
t
ǫdΩ +

∫

Ω

(I1(x+ u(x)) − I2(x))
2dΩ, (3.11)

where the first term is the elastic strain energy term (ǫ is the strain tensor and σ is
the stress tensor) and the second term is the sum of squared differences between a
warped reference image I1 and subsequent image I2 over the image domain Ω. This
image-mechanics coupling mechanism is an appealing regularization scheme, as it is
analogous to the Tikhonov regularization methods in optical flow [61, 102] and allows
the final solution to be computed through the finite-element method. The relation-
ship between mechanical regularization methods and optical flow regularization was
addressed in further detail in the previous sections. One of the shortcomings of this
method is the fact that the mechanical model is deformed by an image force (de-
pendent on the chosen regularization parameter), rather than the true mechanical
boundary conditions and applied external forces. Unless boundary conditions associ-
ated with the mechanical model are specified, methods based on minimization of data
and elastic energy terms result in underestimation of the true deformation field. This
can be explained by the fact that the elastic term forces solutions towards the minimal
elastic energy of the body, which, in the absence of boundary conditions and external
loads, corresponds to zero displacement throughout the body. Clatz et al. (2005)
[29] addressed this limitation by proposing and demonstrating the convergence of a
minimization approach, which evolves the deformation field from an approximation
to an interpolation solution, minimizing the least square error of an image-similarity
term along with an iterative outlier rejection scheme.

All of the discussed techniques exploit the knowledge of material properties (and
boundary conditions in some cases) to provide better estimates of underlying mo-
tion. The scope of the physics-based regularizers is generally limited to a specific
choice of constitutive mechanical behavior. With the ongoing progress in mechanical
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characterization of biological tissues beyond the standard linear viscoelastic mod-
els, regularizers capable of incorporating nonlinear material mechanics are needed.
Creating appropriate regularizers specific to tissue type and fundamental mechanical
behavior, however, is difficult due to the complexity of the underlying mechanics and
the need for custom finite-element solvers.

3.2.2 Framework for Image-Mechanics Coupling

To solve this problem, this work presents a general framework for the solution
of volumetric motion estimation under nonlinear continuum mechanics constraints.
In this framework, the model geometry, boundary conditions, and material behavior
can be modified independently, which provides the ability to include state-of-the-
art material constitutive models used in the solid mechanics, material science, and
biomechanics communities. This is accomplished by leveraging existing finite element
solvers and by coupling image intensity information to a finite element model in a
natural way. The only parameter of the resulting system is a single scalar value that
balances the contribution of the intensity data and the mechanics of the material. We
enforce image-driven local motion estimates as concentrated forces applied at mesh
nodes of an underlying mechanical model. The concentrated forces are generated
by regularization springs, connected to the mesh nodes, when their free ends are
displaced according to local motion estimates. The choice of each regularization
spring stiffness reflects local textural quality and associated local motion confidence.
Due to the image-mechanics coupling through concentrated forces applied throughout
the interior of the body, solution of the mechanics problem does not require complete
knowledge of boundary conditions.

One of the key benefits of this approach is the flexibility in choosing individual
components. Because the image-based deformations are coupled as spring forces,
the approach allows the use of any mechanics package. This is particularly advan-
tageous for complex mechanical interactions, where sophisticated modeling packages
from mechanics research groups or commercial enterprises can accurately model such
nonlinearities as large deformations, contact problems, and fracture. This avoids the
substantial burden of developing custom mechanical modeling code, which for these
situations is a far greater challenge than development of the linear solvers that have
been traditionally used in image-driven regularization. This modularity also enables
selecting mechanics packages that are best suited for each tissue type without the
necessity of altering other components of the system. In terms of mechanics, not
only can any material constitutive law be used, but also any (potential) knowledge
of boundary conditions can be directly incorporated.

For determining deformation fields from images, the image similarity measure,
local matching algorithm, and motion confidence metric can each be independently
and intuitively controlled. The method is formulated as an iconic (intensity-based)
approach, however it combines the benefits of feature-based methods by assigning
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texture/feature dependent confidence values to local motion estimates. Additionally,
it does not require explicit computation of the nodal deformation forces. The defor-
mation forces are handled implicitly by the displaced ends of regularization springs in
the mechanical finite-element model. This technique is suitable for large-deformation
tracking not only because of the finite-deformation formulation of the finite-element
method, but also due to the fact that the stress state is propagated from frame to
frame by the mechanical model. This approach helps to eliminate multi-frame accu-
mulation of error and also provides proper mechanical response over time for time/rate
dependent viscoelastic materials, unlike memoryless mechanical regularizers.

Additionally, the regularization energy corresponding to the potential energy
stored in regularization springs is minimized when the mechanical response of the
regularization model matches the mechanical response of the organ. We demonstrate
that this property can be used to identify the material parameters of the deforming
tissue through an iterative minimization scheme. Therefore, the general mechani-
cal regularization framework presented in this chapter is suitable for both classical
nonrigid image registration problems and for image-based identification of material
parameters.

The remainder of this chapter is organized as follows. We present the algorithm
and general methodology in Section III. Quantitative motion estimation evaluations
on synthetic and experimentally obtained 3D ultrasound sequences, including perfor-
mance analysis under noise, are presented and discussed in Section IV. Additionally,
Section IV includes an example application of this method to parameter identification
of a nonlinear poroelastic liver model, using a synthetically generated ground-truth
3D ultrasound indentation sequence. The benefits and implications of this work are
discussed in Section V. Finally, we address the relationship between linear elastic
regularization methods and image-based optical flow regularization schemes in the
appendix.

3.3 Methodology

3.3.1 Mechanical Regularization Framework

Our general regularization framework (Fig. 4.3) links local image motion to a me-
chanical model to provide a global and mechanically accurate dense motion field. We
propose to deform a mechanical model by applying concentrated forces, at nodal loca-
tions, which can be interpreted as lumped values for a corresponding body force field
f . Three regularization springs attached to each node of the model apply body forces
in the three orthogonal coordinate directions. The free-end regularization springs dis-
placements uOF are obtained from a local motion estimate, which is derived, in our
implementation, from the Lucas-Kanade optical flow method. The spring stiffness
is adjusted to reflect local nodal stiffness of the mechanical model and the motion
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Figure 3.1: In the proposed mechanical regularization framework, sparse local motion
estimates are coupled to a mechanical finite-element model as lumped body forces
applied by displaced regularization springs. This results in a mechanically constrained
deformation field uFEM and regularization energy Φ.

estimate confidence cOF , which reflects the textural content in the neighborhood.
The choice of mapping between local motion and spring stiffness is discussed in de-
tail in the following sections. The mechanically regularized optical flow uFEM is the
displacement field obtained from the solution of the mechanically deformed finite-
element model. Finally, dense motion fields providing per-voxel displacements u can
be obtained by interpolation of the nodal displacements uFEM with the model’s ele-
mental shape functions.

3.3.2 Meshing

Meshing is an important component of the regularization algorithm. There is
a vast array of literature regarding optimal meshing methods, given the required
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Input: 3DUS sequence, mechanical FEM model & material parameters,
regularization coefficient

Output: Volumetric displacement field, regularization energy Φ

Register 3DUS and FEM coordinate systems;
foreach 3DUS frame at time tcurrent do

Compute spatio-temporal image derivatives;
foreach FEM mesh node do

// local image motion estimation

Estimate local motion (modified Lucas-Kanade approach);
Estimate local motion confidence (textural quality);
// image-mechanics coupling

Compute regularization springs stiffness and displacement;
Connect regularization springs & update spring end displacement;

end
Solve FEM for t = tcurrent..(tcurrent + dt);

end
Interpolate nodal displacements to obtain a per-voxel displacement field;

Figure 3.2: Algorithmic description of the registration framework.

application. In some cases, meshes and nodal locations are optimized based on textu-
ral properties [134], to maintain nodal locations corresponding to prominent texture
features. Such texture-driven mesh density may be optimal for local image motion
estimation, but in our application the mechanical aspects must be considered.

In mechanical modeling, the mesh density and biasing are generally a function
of the expected deformation and stress field distribution. For this reason, we follow
the approach of generating meshes which are primarily intended for the mechanical
model. The use of texture-quality dependent regularization springs mostly alleviates
the need for nodal location dependence on textural features. Therefore, our method
is an appealing solution to the meshing problem, considering both the computational
mechanics as well as local image motion estimation requirements.

3.3.3 Local Optical Flow Estimation

In this modular architecture, any algorithm can be used to estimate the local
optical flow uOF . As an example, we use a modified Lucas-Kanade algorithm. The
traditional differential optical flow techniques, such as the Lucas-Kanade method,
rely on two fundamental assumptions: frame-to-frame intensity constancy and local
intensity gradient constancy. Under these assumptions the motion of each voxel is
constrained by the optical flow equation
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∂I

∂x
ux +

∂I

∂y
uy +

∂I

∂z
uz +

∂I

∂t
= 0, (3.12)

where I (x, y, z, t) is the voxel intensity and {ux, uy, uz} are vector components of
the voxel velocity. Since the optical flow constraint for a single voxel is ill-posed,
the solution of the Lucas-Kanade algorithm relies on additional motion assumptions
within the local neighborhood. In our case we sample the neighborhood of each mesh
node (all neighboring tetrahedra) and assemble a system of equations

Ni
∂Ii
∂x

uOF
x +Ni

∂Ii
∂y

uOF
y +Ni

∂Ii
∂z

uOF
z = −Ni

∂Ii
∂t

(3.13)

weighted by the linear tetrahedral shape functions (see e.g. Zienkiewicz (1977) [136]
for details) defined as

Ni =
1

6V
(ai + bixi + ciyi + dizi) , (3.14)

where

6V = det
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ai = det
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bi = det
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 (3.17)

ci = det





xl 1 zl

xm 1 zm

xn 1 zn



 (3.18)

di = det





xl yl 1
xm ym 1
xn yn 1



 (3.19)

are defined in terms of the coordinates {xi, yi, zi} of the voxel i and the coordinates
of the vertices of the tetrahedron klmn.

Using the linear tetrahedral shape function as the nodal neighborhood weighting
functions, the local system of optical flow equations can be rewritten as
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AuOF = b, Aij = Ni
∂Ii
∂j
, bi = −Ni

∂Ii
∂t
, (3.20)

where i is the voxel index and j = {x, y, z}. The nodal displacement can be re-
covered as the least-squares solution to this linear system. Local motion uOF is
computed at each mesh node, providing a globally unconstrained set of local motion
estimates. Each nodal motion estimate has an associated confidence cOF . Tradition-
ally, this confidence is computed from the three eigenvectors (direction of confidence)
and eigenvalues (level of confidence) of the square ATA matrix. However, to account
for the variability of local neighborhood size throughout the mesh, we follow an alter-
native approach in which we compute the texture-dependent confidence by summing
the absolute values of image gradients in the nodal neighborhood, such that

cOF
j =

n
∑

i=1

Ni

∣

∣

∣

∣

∂Ii
∂j

∣

∣

∣

∣

, (3.21)

where i = {1, .., n} are all voxels contained in elements surrounding the node of
interest and j = {x, y, z}. The value of cOF

j is subsequently normalized by the largest
value contained in the image volume, such that cOF

j ∈ [0, 1].

3.3.4 Mechanically Regularized Deformation

Once the local motion estimates and the associated confidence levels are computed,
the mechanical model is deformed by the forces applied through regularization springs
with one end attached to the nodes of the mechanical mesh, and one end constrained
to match the displacement corresponding to local image motion. To provide a con-
ceptual interpretation of this registration approach, the deformation of a simple one-
dimensional continuum mechanics model (beam) is described in Fig. 3.3. We address
two types of problems: the class of problems where boundary conditions are unknown
(shown in Fig. 3.3, left) and well-posed boundary value problems with fully specified
boundary conditions (Fig. 3.3, right).

The displacement field uFEM is the equilibrium field computed by the finite-
element solver, minimizing the total potential energy of the system, which includes
the strain energy stored in the continuum model and the potential energy in the reg-
ularization springs. Noisy uFEM fields are penalized by the strain energy associated
with the high local displacement gradients of the continuum model (beam) and ex-
cessively smoothed uFEM fields are penalized by the increased potential energy of the
regularization springs defined as

US =

N
∑

i=1

∑

j

(

1

2
ki

j

(

di
j

)2
)

, (3.22)



Chapter 3: Estimating Experimental Tissue Deformation 42

where j = {x, y, z}, N is the number of attached regularization springs, ki
j is the

spring stiffness, and the spring distension di
j is defined as di

j = uOF −uFEM . In order
to relate the image-based confidence values to physically relevant springs stiffnesses,
each stiffness is obtained not only as a function of local image texture, but also of
the local nodal stiffness of the mechanical model. Therefore, the stiffness of each
regularization spring is computed as

ki
j = βKi

jc
OF
ij , (3.23)

where i is the node index, β is the regularization coefficient, and Ki
j is the nodal

stiffness of the mechanical model. Nodal stiffness values are the diagonal members
of the global stiffness matrix, assembled from contributions of individual elemental
stiffness matrices (see [136] for details). The time-evolving global stiffness matrix is
computed by the finite-element solver and is available and updated at every solution
increment.

The balance between image-based and mechanics-based contributions of the final
regularized displacement is governed by the stiffness of the attached regularization
springs. As shown in Eq. 4.2, the spring stiffness contains a scaling parameter β.
A judicious choice of the parameter β ensures that an optimal balance between the

1

Figure 3.3: Deformation of a continuum mechanics model (beam) with image-based
forces in the form of elongated regularization springs. The class of problems where
boundary conditions are unknown is shown on the left. A well-posed boundary value
problem with fully specified boundary conditions is shown on the right.
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continuum body strain energy and spring potential energy costs is achieved. For prob-
lems in which the optical field data is the only available information, the parameter
β must be sufficiently high to impose the deformation on the body. Conceptually,
for the schematic in Fig. 3.3, if the deformation of the beam is only driven by the
displacement of the free ends of the springs, excessive compliance of the springs will
result in underestimation of the deformation. For well-posed boundary value prob-
lems (BVPs), in which either traction or displacements are known over the entire
boundary, the deformation of the continuum (finite-element) model could be driven
entirely by these boundary conditions.

We consider two applications of the proposed framework, where 3DUS imaging
can be combined with surface (boundary) information to provide (1) accurate re-
construction of organ inner field deformation and (2) enhanced measurement of the
constitutive response of an organ. For inner field reconstruction, the boundary con-
ditions drive the global deformation, while the regularization springs impose local
constraints. The spring stiffness does not need to exceed the model stiffness, there-
fore values of β ≈ 1 are more appropriate. When measuring the constitutive response
of an organ, the normalized potential energy in the springs, defined as

Φ (pn) =
N
∑

i=1

∑

j

(

1
2
ki

j

(

di
j

)2

1
2
βKi

j

)

=
N
∑

i=1

∑

j

cOF
ij

(

uOF
ij − uFEM

ij

)2
(3.24)

is a measure of model-experiment agreement. The energy is normalized by model
stiffness to prevent artificial bias towards compliant models. Additionally, the spring
energy is normalized by the regularization coefficient β. This parameter determines
the image-mechanics coupling balance in the conventional image registration appli-
cations. When modeling the constitutive response of an organ, we seek to identify
mechanical models which are consistent with the local unregularized motion estimates
uOF . Therefore, the choice of parameter β does not affect the model-experiment fit-
ting. Using the objective function Φ (pn) defined in Eq. 5.26, imperfect models are
associated with higher levels of regularization energy. In principle, if the model were
perfect, the regularization energy would be a measure only of the noise in the opti-
cal flow. The magnitude of the regularization energy, therefore, can be considered a
measure of the accuracy of a constitutive formulation, and minimization algorithms
can be used for optimal parameter selection.

3.4 Evaluation and Results

In the following sections we evaluate the registration framework in three image reg-
istration experiments and one material parameter identification study. These studies
are summarized in Table 3.1 and are intended to validate and evaluate the perfor-
mance of the method in both of its intended application scenarios.
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Table 3.1: Summary of evaluation studies presented.

Study Description Type Material Law BCs

Synth. Cube (Compression) registration linear elastic unknown

Synth. Cube (Torsion) registration nonlinear elastic unknown

Liver Indentation registration nonlinear elastic specified

Synth. Liver Indentation par. ID nonlinear poroelastic specified

In the first study we evaluate the accuracy of the estimated deformation field using
a two frame synthetic deformation of textured unit cube. The unit cube is deformed
in unconfined uniaxial compression and we assume linear elastic constitutive law and
unknown boundary conditions. The accuracy is evaluated against a ground-truth
deformation field and compared to traditional optical flow methods with image-based
regularization. Performance under noise is also evaluated. This study demonstrates
the benefits of the mechanically regularized registration method over a relatively large
range of the regularization coefficient β.

In the second study we demonstrate the effects of nonlinear material response and
boundary conditions on registration accuracy using a two frame synthetic deforma-
tion of textured unit cube in torsion. In this case β is assumed to be well-chosen
and constant, while the normalized boundary force is varied. We demonstrate that
an appropriate nonlinear regularizer offers improved accuracy over a linear elastic
regularizer even when boundary conditions are unknown, and also show that the best
registration accuracy is achieved when boundary force is known exactly.

The third study evaluates the performance of the registration algorithm on an
experimentally obtained indentation of perfused porcine liver using manually tracked
anatomical markers. To use a nonlinear regularizer with realistic mechanical response,
we assume nonlinear hyperelastic constitutive material law and estimate its parame-
ters with a traditional inverse modeling of the force-displacement response at the tip
of the indenter. Using this well-chosen regularizer, we demonstrate the utility of the
registration framework for estimation of accurate inner field deformation of an organ
(such as surface deformation driven brain shift estimation, liver tumor localization,
etc.). In this study, the boundary conditions are assumed to be known, regularization
coefficient β = 1, and the deformation is tracked continuously over 240 volumetric
frames. We demonstrate that an appropriately chosen nonlinear regularizer offers an
improved accuracy of estimated inner field deformation compared to a linear elastic
regularizer and an unregularized local optical flow.

As demonstrated by Balakrishnan et al. (2007) [11], unique identification of mate-
rial bulk and shear response in indentation requires additional sensor information (i.e.
secondary indenters, image-based surface deformation tracking, volumetric deforma-
tion tracking, etc.). In the fourth study we demonstrate the utility of the frame-
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work in material parameter estimation scenarios. We use experimentally obtained
boundary conditions to drive the model deformation and evaluate the volumetric
model-experiment agreement by the level of potential energy contained in the regu-
larization springs. Using a synthetically generated sequence of 100 3DUS frames, we
demonstrate that the method converges to ground-truth parameters of a nonlinear
poroelastic constitutive law initialized from three distinct locations in the parameter
space, suggesting the existence of a unique global minimum.

3.4.1 Synthetic Unit Cube: Unconfined Uniaxial Compres-
sion

To obtain ground truth motion field for performance evaluation, we generate a syn-
thetic deformation sequence (Fig. 3.4) by unconstrained compression (nominal ǫz =
0.05) of volumetric texture (30×30×30 voxels) obtained by imaging liver parenchyma
with 3D ultrasound (SONOS 7500, Philips Medical Systems, Andover, MA, USA).
We register the image volume to a mechanical finite-element model with correspond-
ing geometry (1.1×1.4×0.9 cm) and linearized material properties (elastic modulus,
E = 1.0 kPa [133], and Poisson’s ratio, ν = 0.25, reflecting high local compressibil-
ity). Warping the volumetric texture with the deformation field obtained from the
mechanical model provides a synthetic image sequence and a ground-truth motion
field, which we use in subsequent performance evaluations.

Figure 3.4: Left: Ground-truth uniaxial compression deformation field, depicted with
oriented cones (size and color proportional to magnitude), and the finite-element
regularization model. Right: 2D slice through the deformation field (y=15).

The accuracy of the recovered deformation field is evaluated in terms of mean mag-
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nitude error (MME) and mean angular error (MAE) for four regularization schemes:
the mechanics-based regularization, gradient-smooth Horn & Schunck optical flow
regularization, Laplacian-smooth regularization [63], and local Lucas-Kanade optical
flow. MME and MAE are mean error measures between the ground-truth optical flow
utrue and the estimated optical flow u defined as

MME =
1

N

∑

Ω

∣

∣utrue(x, y, z) − u(x, y, z)
∣

∣ (3.25)

and

MAE =
1

N

∑

Ω

∣

∣6 utrue(x, y, z) − 6 u(x, y, z)
∣

∣ (3.26)

over the volume domain Ω containing N voxels.
In this synthetic study, the evaluation of MME as a function of β (Fig. 3.5,

left) shows that the optimal regularization point is achieved at β = 5.72. Lower
values produce smoother motion fields and higher values preserve more high-frequency
content, including noise. The simulation results demonstrate that for our chosen
geometry, mechanical properties, and imaging characteristics, the mechanics-based
regularizers is superior to Horn & Schunck and Lucas-Kanade (Table 3.2) in the range
of β = 〈1.179, 187.4〉 (Fig. 3.5). For the purposes of this comparison the choice of an
optimal regularization parameter α in the first-order smooth and Laplacian smooth
Horn & Schunck implementation is made such that the mean magnitude error (MME)
is minimized.
To gain a sense of the effect of noise on the performance of the algorithm, we perform
noise analysis of the linear elastic deformation estimates by injecting varying levels

Figure 3.5: The effects of the regularization parameter β on registration accuracy
(left), and a subsection of the same graph (right) showing the range of parameter β
for which the mechanical regularizer performs better than traditional regularizers.



Chapter 3: Estimating Experimental Tissue Deformation 47

Table 3.2: Mean magnitude error (MME) and mean angular error (MAE) of common
optical flow techniques compared to the mechanically regularized approach.

Method MME MAE
[voxels] [deg]

Mechanics (β = 5.72, ν = 0.25) 0.1041 3.6941
∇u Horn & Schunck (α = 16.0) 0.1329 4.7162
∇2u Horn & Schunck (α = 6.0) 0.1391 9.0781
Local Lucas-Kanade 0.1358 4.8191

of multiplicative Gaussian noise into the local motion estimates (Fig. 3.6). The
level of noise varies from noise-free local motion (corresponding to the ground-truth
motion field) to Gaussian distributed with standard deviation σN = 0.8 voxels. These
simulations demonstrate that as the level of noise increases, mechanical regularization
(β near optimal regularization point) provides increasing benefit over local methods
(β → ∞).

Figure 3.6: Mean magnitude error (left) and mean angular error (right) with vary-
ing levels of local optical flow error (multiplicative, Gaussian-distributed noise with
variance σN injected into ground-truth local optical flow).

3.4.2 Synthetic Unit Cube: Torsion

While linear elasticity is an adequate approximation of material mechanics in the
small-deformation regime, most materials (especially biological) exhibit a nonlinear
stress-strain relationship in the large-deformation regime. We demonstrate these ef-
fects by selecting two common material laws (linear elastic and 2nd-order reduced
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polynomial hyperelastic) and parameters, whose uniaxial loading stress-strain char-
acteristics coincide at low strains (less than 1%) and diverge at higher strains in both
shear and bulk material response. The goal of this synthetic study is to demon-
strate that a nonlinear regularizer can be easily implemented in this framework and
to evaluate the performance benefits over the linear elastic regularizer.

We generate the ground-truth nonlinear torsional displacement field (shown in
Fig. 3.7) by constraining the bottom surface of the previously described material
cube and applying a torsional moment of 7.0 × 10−7N ·m to the rigid top. The 2nd-
order reduced polynomial strain energy formulation of the reduced polynomial form
[60, 1] is defined as

U = C1 (I1 − 3) + C2 (I1 − 3)2 +
1

D1

(Jel − 1)2 (3.27)

where C1, C2, and D1 are the material parameters, I1 is the 1st stretch invariant, and
Jel is the elastic volumetric stretch. The selected material parameters (C1 = 0.2×103,
C2 = 0.5 × 104, D1 = 1.5 × 10−3) are reasonable choices for a biological material,
such as porcine liver parenchyma in the large deformation mode (see experimental
liver tracking section below for details on liver-specific parameters). The linear elas-
tic material used in the previous synthetic study (E = 1.0 kPa, ν = 0.25) may be
rewritten as a 1st-order reduced polynomial with the coefficients C1 = 0.2 × 103 and
D1 = 1.5 × 10−3 and serves as a small-deformation approximation of the 2nd-order
material.

In this study we evaluate the nonrigid registration accuracy as a function of the
normalized boundary force applied to the regularization model and a constant regu-
larization coefficient (β = 1.0). In experimental scenarios where boundary forces and
displacements may be directly measured or controlled, the knowledge of these con-
straints further improves registration accuracy. The results of this study demonstrate
that even partially known boundary conditions can greatly improve the motion esti-
mates. The improvement gained by the knowledge of boundary conditions is demon-
strated in Fig. 3.8 as a dependence of MME on the applied normalized boundary force
(FN = 1 corresponds to the ground-truth boundary force). These results suggest that
while a linear elastic regularizer with no knowledge of the boundary force (FN = 0)
can provide better accuracy than image-driven regularizers (gradient-smooth Horn &
Schunck algorithm shown in red dashed line in Fig. 3.8), the knowledge of nonlinear
mechanics and boundary conditions (FN = 1) can further improve the deformation
estimates. It is important to note that this example is meant to demonstrate a trend
of improvement in a single frame-to-frame deformation and results in an incremen-
tal benefit in long-time, large-deformation, multiple-frame registration scenarios. In
these situations, nonlinear mechanics become even more important and the knowl-
edge/control of boundary conditions provides a constraint on accumulation errors,
which are a well documented [79] and significant source of error in multiple-frame
motion estimation.
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Figure 3.7: Left: Ground-truth torsional deformation field, depicted with oriented
cones (size and color proportional to magnitude), and the nonlinear finite-element
regularization model. Right: 2D slice through the deformation field (z=15).

Figure 3.8: The nonlinear 2nd-order reduced polynomial regularizer (lower line)
outperforms the linear elastic regularizer (black line) and gradient-smooth Horn &
Schunck optical flow (red dashed line) both in the presence and absence of known
boundary conditions. The registration error improvement is most significant when the
exact ground-truth boundary force (FN = 1) is applied to the regularization model.

3.4.3 Liver Indentation: Inner Field Estimation

To demonstrate the ability of the registration algorithm to estimate large-displacements
over multiple frames in an experimental setting, we evaluated its registration accuracy
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against manually segmented motion of three anatomical tissue markers in a perfused
porcine liver indentation experiment (Fig. 4.1, left). Following the experimental pro-
tocol described in [71] and [69], the liver was indented with a cylindrical indenter
(12 mm diameter, 10 mm total displacement) actuated by material testing system
(Electroforce ELF 3200, Bose Corporation, Eden Prairie, MN, USA), while the vol-
umetric deformation was acquired with 3D ultrasound probe (SONOS 7500, Philips
Medical Systems, Andover, MA, USA) placed below the tissue sample, as shown in
Fig. 3.10. The 3DUS volume was registered to a simplified cylindrical liver model
(10 cm diameter, 3 cm height). To obtain tissue specific material parameters, we
fit the indentation force-displacement response to a finite-element model with 2nd-
order reduced polynomial hyperelastic constitutive law through an iterative inverse
FEM approach [70]. We make the assumption of compressibility, ν = 0.3 (ν is not
directly observable in indentation experiments), and obtain the material parameters
(C1 = 236.6, C2 = 520.9, D1 = 9.75 × 10−4), reflecting the fit to the loading portion
of the indentation response (Fig. 4.1, right).

The trajectories of three tissue markers (shown in Fig. 3.10) were obtained by
manually tracking their displacements in a 3DUS sequence consisting of 240 frames
acquired at 25Hz. The marker displacement histories serve as the ground-truth mo-
tion for this evaluation. The accuracy of our method, using a linear elastic regularizer,
nonlinear hyperelastic regularizer, and no regularization, is summarized in Fig. 3.11
and demonstrates the feasibility of this approach in the presence of considerable imag-
ing noise associated with 3DUS data. The marker trajectories in Fig. 3.10 (right)
show good agreement between the manually segmented and estimated displacements
along the vertical axis.

Figure 3.9: Left: The perfused porcine liver is indented with a cylindrical indenter
actuated by Bose Electroforce ELF 3200 material testing system. Right: Experimen-
tal force-displacement indentation response (red) obtained from a 0.2Hz load/unload
cycle and a 2nd-order reduced polynomial model fit (blue).
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Figure 3.10: Left: Experimental configuration, showing a cut through the deforming
finite-element model, the 3DUS volume, and three tissue markers used for evaluation.
Right: Vertical trajectories of the markers estimated by nonrigid registration algo-
rithm with 5-frame incremental registration steps, using 2nd-order reduced polynomial
constitutive law, evaluated against manually segmented marker trajectories.

Due to the small frame-to-frame displacement requirements of the optical flow
constraint used in the local Lucas-Kanade motion estimates, the accuracy of the local
motion estimates degrades with increasing indenter velocity. This trend is captured
in Fig. 3.11, demonstrating the performance benefits of a mechanical regularizer
(β = 1 assumed in all studies). These results suggest that for properly chosen material
parameters, a nonlinear hyperelastic regularizer provides better accuracy than a linear
elastic regularizer (E = 1.0 kPa, ν = 0.3) and the unregularized local optical flow.

3.5 Discussion

We have presented a nonrigid registration algorithm regularized by a mechanical
finite-element model suitable for applications in 3D ultrasound tissue tracking and
material parameter estimation. One of the key contribution of this method is the
image-mechanics coupling approach, which uses regularization springs attached at
nodal locations to impose image-based motion estimates. This approach avoids the
need for direct computation of image forces and provides an intuitive assignment of
image-based motion confidence, reflecting the spatial variations in texture quality.

A key advantage of this framework is its modular structure, under which the
choices of image similarity measure, local search algorithm, image-mechanics con-
fidence mapping, and most importantly, the mechanical model’s material law and
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Figure 3.11: Performance of the nonrigid registration algorithm with increasing inden-
ter velocity, demonstrating the benefits of a properly chosen nonlinear regularization
model over the linear elastic regularizer and the unregularized local optical flow.

solver, are completely independent. This ability to leverage state-of-the-art mechan-
ical modeling packages is of key importance, as it enables the use of nonlinear, vis-
coelastic material models of arbitrary complexity in nonlinear interactions, such as
large strains and variable contact conditions, without the need for a reliable custom-
made FEM solver. This flexibility becomes increasingly important with the ongo-
ing progress and increasing complexity of constitutive mechanical models formulated
specifically for large-strain behavior of biological tissues. Additionally, the proposed
framework also allows for incorporation of information from other sensor modalities
(Doppler ultrasound, tissue sono-crystals, electromagnetic trackers, ultrasound RF
strain estimates, etc.) through additional regularization spring elements.

Through synthetic and real-world evaluations, we demonstrated the benefits of
the nonrigid registration algorithm over traditional regularizers in image-based op-
tical flow methods. Additionally, we have shown the extensibility of the framework
by incorporating nonlinear and rate-dependent tissue constitutive laws into the regu-
larization model. Our results suggest that, in the large deformation mode, there are
significant benefits to using nonlinear, tissue-specific constitutive laws for mechan-
ically constrained nonrigid registration even in the presence of unknown boundary
conditions. As expected, the knowledge of boundary conditions significantly improves
the registration accuracy and reduces the underestimation bias of the approximation
solution schemes.

Finally, the proposed registration framework is suitable for applications in me-
chanical parameter identification and provides good accuracy and sensitivity to the
bulk and shear components of the material response. This ability is of high impor-
tance to future characterization of complex constitutive laws and is appealing for in
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vivo applications, where tissue and organ boundaries cannot be directly controlled.
Boundaries can instead be imaged and accounted for in the inverse modeling process.
While the evaluations in this chapter were performed on synthetic and well-controlled
ex vivo tissues, the methodology is independent of the imaging modality and mechan-
ical tissue model used, showing its promise for future investigation of patient-specific
tissue modeling and parameter identification.



Chapter 4

Image-Based Mechanical
Characterization of Soft Tissues

4.1 Introduction

Computational models of organ and tissue mechanical response are beginning to
play a significant role in modern computerized medicine and have become integral
components of image-guided surgery and interventions [25, 29, 37, 5, 26, 6]. Such
image-guided tasks require close interplay of computational biomechanical models
with preoperative and intraoperative imaging. The development of appropriate mod-
els is challenging for two reasons: a) formulation of suitable constitutive laws capable
of capturing the large-strain, nonlinear, viscoelastic response of soft tissue and b)
development of experimental testing protocols appropriate for unique identification
of the material parameters. In addition, the significant subject-to-subject variability
contributes to a strong need for patient-specific (personalized) models, which may be
generated and parameterized with clinically feasible testing protocols.

Material properties of soft tissues vary significantly between in vivo and in vitro
settings [48, 91, 93, 53, 90, 71]. Current in vivo soft tissue testing is dominated
by indentation due to the limited access requirements, simplicity of the tool con-
figuration, and low-risk of injury associated with the procedure [11]. The single
force-displacement history obtained during conventional indentation experiments is
governed by the mechanical response of the whole material domain, combining near-
field (large strain) and far-field (low strain) contributions. Much of the information
related to the interplay between shear and bulk compliance in the complex defor-
mation field beneath the indenter is lost when capturing this single output. There-
fore, supplemental experimental methods, such as secondary indentation sensors [11],
tissue surface tracking [41, 42], or independent tests of bulk compliance (i.e. con-
fined tissue compression) are necessary for well-conditioned parameter identification.
Image-based characterization methods are a promising solution, as they provide the

54
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means for noninvasive, in vivo estimation of material parameters and offer improved
sensitivity and uniqueness of recovered parameters.

A general inverse finite-element modeling framework is presented for applications
in constitutive modeling and parameter estimation of soft tissues using full-field vol-
umetric deformation data obtained from 3D ultrasound. We validate the parameter
estimation method on synthetically generated data and perform constitutive model
selection for perfused porcine liver in indentation. While we limit our investigation
to an experimental protocol, which involves a single indenter displacement rate, the
volumetric imaging captures local tissue strain rates in the range from zero to the
maximum rate beneath the indenter. Considering the image-based agreement with
the internal tissue displacement field, we determine an appropriate constitutive law
and material parameters, which capture the time-dependent of the tissue.

4.2 Methods

In this chapter we describe a liver indentation experimental system and an in-
verse finite-element modeling framework, which takes advantage of concurrent image
data obtained from 3D ultrasound imaging. While the liver is an inhomogeneous or-
gan with complex anatomical structure, our model approximates it as a homogeneous
and isotropic material. The characteristic length of the hepatic lobules, the functional
units of the organ, is on the order of 1 mm. Therefore, the concept of homogeniz-
ing the tissue is justifiable for deformation fields applied over longer length scales
(approximately 1cm). In this work we also neglect the effects of the liver capsule
and minimize the contributions from vasculature by examining the parenchyma with
3DUS and avoiding the placement of the indenter over large vessels. The proposed
approach relies on the following components: experimental indentation and liver per-
fusion apparatus, volumetric imaging system, a nonrigid registration algorithm for
deformation field estimation, and a nonlinear parameter optimization algorithm. The
design considerations and performance of each component are described in the fol-
lowing sections. In addition, we present a validation study and an application of this
framework to constitutive modeling of perfused porcine liver in indentation.

4.2.1 Experimental Setup

Liver Perfusion Apparatus

Due to changes in the liver’s mechanical properties ex vivo [69, 96], it is impor-
tant to measure the organ response in its physiological conditions. Measurement of
boundary conditions and instrument access are often the limiting factors in in vivo
testing. To address these challenges, we used an ex vivo perfusion system, described
by [69] and depicted in Figure 4.1. This system allowed us to perform organ tests with
control of boundary conditions and near in vivo tissue state. The whole porcine liver
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Figure 4.1: Left: liver perfusion system. Right: the experimental arrangement show-
ing the indenter at the top surface of the organ and the 3DUS probe beneath the
organ.
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Figure 4.2: The indenter force and displacement histories and force-displacement
indentation response, acquired during 2 mm.s−1 load/unload cycle. The associated
2D slices through the 3DUS sequence are shown at the bottom.
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was perfused with a heated perfusate (five liters of Dextrose 5% Lactated Ringers
Solution (D5RL) and one liter of 6% Hetastarch (Henry Schein, Melville, NY)) under
physiologic pressures, with a mean portal venous pressure of 7.98 mmHg, a mean
hepatic arterial pressure of 94.77 mmHg, and at a mean temperature of 33 ◦C.

Following the experimental protocol described in [71] and [69], the liver was in-
dented with a 12mm diameter, flat, cylindrical indenter actuated by Bose Electroforce
ELF 3200 material testing system (Bose Corporation EnduraTEC Systems Group,
Minnetonka, MN). The system measures displacement using a linear variable dif-
ferential transformer (Schaevitz MHR-250 from Measurement Specialties, Hampton,
VA) with 6.3 mm travel (0.559 µm RMS alone, 3.9 µm RMS with controller), force
using a 22 N submersible load cell (0.49 mN RMS alone, 13 mN RMS with controller)
(Honeywell Sensotec Sensors Model 31, Columbus Ohio), and acceleration using a 50
g accelerometer (0.024 V RMS alone, 0.204V RMS with controller) (Kistler, Amherst
NY).

Volumetric Imaging

The volumetric deformation was imaged with the 3D ultrasound probe (SONOS
7500, Philips Medical Systems, Andover, MA, USA) placed below the tissue sample,
as shown in Fig. 4.1. The 2-4MHz probe acquires data at the rate of 26 frames per sec-
ond, which is subsequently streamed over an Ethernet connection to a PC workstation
for storage and processing. The transducer was operated at a 7cm depth of focus to
provide sufficient field of view, which contains the organ surface, parenchyma, and the
probe stand-off pad. The resulting volumetric frames were rasterized at 128x48x204
voxels, corresponding to an axial resolution of approximately 0.3 mm/voxel and a
lateral resolution of 0.5 mm/voxel. Two-dimensional image slices of the volumet-
ric sequence and the associated indenter force and displacement histories, acquired
during a 2 mm.s−1 load/unload cycle, are shown in Figure 4.2.

4.2.2 Nonrigid Image Registration and Constitutive Model-
ing

We use a nonrigid registration scheme (Fig. 4.3), described in further detail in
[65], to estimate the deformation field captured by the concurrent 3DUS imaging.
The volumetric image data obtained during organ indentation contains relatively slow
deformations (maximum tissue displacement is less than 0.3 voxels per frame) and
the liver parenchyma produces rich textural content under 3DUS (see Figure 4.2).
Given these conditions, the algorithm achieves good accuracy and robustness. In
Jordan et al. (2008) [65] we demonstrate the accuracy against manually tracked tissue
landmarks (mean magnitude error of less than 0.6mm) in ex vivo liver indentation
and present a quantitative error analysis using synthetic deformation sequences.
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In the proposed nonrigid image registration scheme, sparse image-based local mo-
tion estimates uOF and associated confidence cOF are estimated with an adapted
implementation of the [84] optical flow algorithm described in Appendix A. These
local motion estimates are enforced as concentrated forces applied at the nodes of a
deformable finite-element organ model, enforcing physically admissible deformations.
The concentrated forces are generated by regularization springs, connected to the
mesh nodes, as their free ends are displaced according to local motion estimates. The
choice of each regularization spring stiffness reflects local textural quality and associ-
ated local motion confidence. This approach not only provides regularized estimate
of organ deformation field (uFEM) but also offers a measure of model/experiment
agreement in the form of normalized potential energy (Φ) contained in regularization
springs. The displacement field uFEM is the equilibrium field computed by the finite-
element solver, minimizing the total potential energy of the system, which includes
the strain energy stored in the continuum model and the potential energy in the
regularization springs. Consequently, noisy uFEM fields are penalized by the strain
energy associated with the high local displacement gradients of the continuum model
and excessively smoothed uFEM fields are penalized by the increased potential energy
of the regularization springs defined as

US =

N
∑

i=1

(

1

2
ki

j

(

di
j

)2
)

, (4.1)

where j = {x, y, z}, N is the number of attached regularization springs, ki
j is the

spring stiffness, and the spring distension di
j is defined as di

j = uOF −uFEM . In order
to relate the image-based confidence values to physically relevant springs stiffnesses,
each stiffness is obtained not only as a function of local image texture, but also of
the local nodal stiffness of the mechanical model. Therefore, the stiffness of each
regularization spring is computed as

ki
j = βKi

jc
OF
ij , (4.2)

where i is the node index, β is the regularization coefficient, and Ki
j is the global

stiffness of node i in direction j (obtained from the diagonal members of the global
stiffness matrix).

The image registration framework is suitable for two types of fundamentally dif-
ferent applications. In the first category of applications, the framework may be used
to obtain a mechanically admissible image registration, such as between preoperative
and intraoperative images. In these applications the biomechanical model and the
image similarity term are coupled via the regularization springs to provide mechan-
ically consistent inner organ deformations. Examples of such applications include
the intraoperative brain shift, tumor localization, mammogram registration, etc. The
second category consists of applications in constitutive organ response characteriza-
tion. When external forces and boundary conditions are known or experimentally
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measured, the registration framework may be used to optimize the consistency be-
tween the chosen biomechanical model and the experimental images. When measuring
the constitutive response of an organ, an objective function Φ (pn) derived from the
springs potential energy US, may be defined as

Φ (pn) =
N
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i=1

∑

j

(

1
2
ki

j

(

di
j

)2
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(

uOF
i − uFEM

i

)2
(4.3)

and serves as an appropriate measure of model-experiment agreement. The energy
is normalized by model stiffness to prevent artificial bias towards compliant models.
Additionally, the spring energy is normalized by the regularization coefficient β. This
parameter determines the image-mechanics coupling balance in the conventional im-
age registration applications. When modeling the constitutive response of an organ,
we seek to identify mechanical models which are consistent with the local unregu-
larized motion estimates uOF . Therefore, the choice of parameter β does not affect
the model-experiment fitting1. Using the objective function Φ (pn) defined in Eq.
5.26, imperfect models are associated with higher levels of regularization energy. The
magnitude of the regularization energy, therefore, can be considered a measure of the
accuracy of a constitutive formulation, and minimization algorithms can be used to
determine optimal material parameters.

In our experimental configuration, the force and displacement histories at the tip
of the indenter are acquired with higher accuracy and lower noise in comparison to
the optical flow measurements. To incorporate these sensor measurements into the
optimization framework, we define an objective function Φ̇, which is the sum of a
volumetric error term Φ̇vol and an indenter error term Φ̇ind defined as

Φ̇vol (pn) =
1

NT

∫ T

0

N
∑
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i (t)
)2
dt (4.4)

and

Φ̇ind (pn) =
1

T

∫ T

0

(

u̇exp
z (t) − u̇model

z (t)
)2
dt. (4.5)

The volumetric error term Φ̇vol is the mean squared difference between the optical
flow and the model velocity fields over the time period T normalized by the number
of regularization springs N . The indenter error term Φ̇ind is the mean squared differ-
ence between the vertical indenter velocity u̇exp

z (t) and the modeled indenter velocity

1The role of the regularization parameter (and corresponding spring stiffness) is significant in
scenarios where the framework is used for estimation of the inner organ deformation fields (i.e.
brain shift problems, liver tumor localization, etc.). Details regarding these applications may be
found in chapter 3
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u̇model
z (t). Such definition of the objective function scales the two error components to

comparable magnitudes and aids in obtaining model fits consistent with experimental
tissue displacement field as well as the indenter force-displacement history.

Throughout this paper, we chose to use indenter and nodal velocity histories as
the measure of model-experiment agreement. Objective functions based on velocity-
based or displacement-based model-experiment agreement are both suitable choices
for model optimization. The differential optical flow estimates are frame-to-frame
displacement estimates (not absolute). Therefore, small estimation errors may con-
tribute to more significant accumulation error when integrated over long periods of
time [79]. For this reason, we determined the velocity fields as the more appropriate
choice and were able to confirm their improved convergence properties.

Liver Finite-Element Model

The perfused ex vivo liver is modeled with a finite-element model implemented in
a commercial FE solver (ABAQUS 6.7, Simulia, Providence, RI, USA). The model
has a simplified cylindrical geometry (10cm diameter, 3cm height) shown in Fig.
4.4, as most of the contributions to the indentation response are assumed to be
local and not significantly dependent on the whole organ geometry. The mesh is
generated automatically with increased density beneath the indenter and consists of
1424 nodes and 804 quadratic tetrahedral elements. The bottom surface of the organ
is fully constrained, while the upper and side surfaces are assumed to be stress-free
boundaries. The force at the tip of the indenter is prescribed to match the indentation
force history obtained experimentally.

4.2.3 Method Validation: Synthetic Volumetric Data

To evaluate the sensitivity of the testing method to material parameters, accuracy
of the parameters recovered, and to assess the convergence characteristics of the op-
timization scheme, we conducted a parameter identification study on a synthetically
generated 3DUS sequence. We computed a ground-truth deformation field from a
”forward” finite-element model of the indentation experiment with assumed consti-
tutive law and material parameters. We used a high density mesh (4281 nodes, 2706
quadratic tetrahedral elements) in the forward model to minimize field discretization
artifacts. The boundary conditions of the forward model were prescribed to match
the boundary conditions of the real experimental procedure. The displacement and
force histories at the tip of the indenter were recorded to mimic the measurements
obtained during the ex vivo experimental procedure. The resulting deformation field
was used to warp a reference 3DUS volume, generating a sequence of 100 volumes.
The reference 3DUS volume is a single frame acquired by imaging perfused ex vivo
liver. Consequently, the generated volumetric sequence preserves the true texture
and intensity distribution of liver parenchyma under 3DUS. This synthetic study,
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Figure 4.3: In the nonrigid image registration framework, sparse local motion esti-
mates uOF are coupled to a mechanical finite-element model as lumped body forces
applied by displaced regularization springs. This results in a mechanically constrained
deformation field uFEM and regularization energy Φ.

3DUS Probe

Indenter

Liver Finite-Element Model

3DUS

Volume

Figure 4.4: The deforming finite-element liver model with simplified cylindrical ge-
ometry, experimentally measured boundary conditions, and a coregistered 3DUS
sequence.
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however, excludes image artifacts and noise contributions from the imaging sensor.

Biphasic Poroelastic Constitutive Law

To mimic the nonlinear viscoelastic response of the perfused porcine liver, we use
a biphasic (mixture theory) constitutive model [119, 135]. Biphasic models account
for viscous material effects through momentum exchange effects between the solid and
fluid phases. The solid phase is formulated through the 2nd-order reduced polynomial
strain-energy defined as

U = C1 (I1 − 3) + C2 (I1 − 3)2 +
1

D1
(Jel − 1)2 (4.6)

where C1, C2, and D1 are the material parameters, I1 is the 1st stretch invariant, and
Jel is the elastic volumetric stretch. The flux of the fluid phase is governed by Darcy’s
law expressed as

q = κ∇P, (4.7)

where q is the flux, κ is the permeability coefficient, and ∇P is the fluid pressure
gradient.

Using the synthetic 3DUS sequence and force-displacement indentation histories,
we perform material parameter estimation in a way that is identical to the approach
used with true experimental liver measurements. The geometry and boundary con-
ditions of the FE model used in this inverse process reflect the assumed experimental
conditions. The indentation force F (t) is applied at the tip of the indenter, and
the bottom surface of the organ is fully constrained. We initialize material parame-
ters with feasible parameter estimates and use a nonlinear optimization algorithm, a
bounded downhill simplex method [76], to iteratively evolve the material parameters
(C1, C2, D1, κ) and minimize the objective function Φ̇(pn).

Quasilinear viscoelastic Constitutive Law

In the second synthetic parameter recovery study we perform parameter identifi-
cation using an alternative constitutive material law, a 2nd-order reduced form poly-
nomial hyperelastic law with a Prony series relaxation of the shear modulus [60, 57].
The hyperelastic strain energy of this constitutive law defined in Eq. 4.6 and the
relaxation of the shear modulus G(t) is captured by a 1st-order Prony series

G(t) = G0

(

g∞ + g1e
−t/τg1

)

, (4.8)

where G0 is the instantaneous shear strain modulus (computed from Eq. 4.6), G0g∞
is the equilibrium shear strain modulus, g1 = 1 − g∞ is the relative amplitude of the
relaxation, and τg1 is the relaxation time constant. The biphasic poroelastic constitu-
tive law governing the response of the synthetic deformation is known to exhibits bulk
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relaxation. We evaluate the volumetric agreement with a shear relaxation constitu-
tive law to demonstrate the ability to distinguish between materials with inherently
different modes of relaxation. We also evaluate the method’s ability to consistently
converge to the best possible fit under the given assumptions.

4.2.4 Perfused Porcine Liver Constitutive Modeling

We perform constitutive modeling of perfused porcine liver in indentation (2
mm.s−1 load/unload cycle) using the proposed inverse modeling framework. We con-
strain our attention to the 2nd-order reduced polynomial hyperelastic form

U = C1 (I1 − 3) + C2 (I1 − 3)2 +
1

D1

(Jel − 1)2 +
1

D2

(Jel − 1)4 (4.9)

and shear and bulk relaxation components

G(t) = G0

(

g∞ + g1e
−t/τg1

)

(4.10)

K(t) = K0

(

k∞ + k1e
−t/τk1

)

. (4.11)

Under this general form, we explore 5 constitutive laws. In the shear relaxation
variant (SR), the relaxation of the tissue is assumed to be captured by the relaxation
of the instantaneous shear modulus. The bulk compliance is assumed to be linear
(D2 = 0) and no bulk relaxation is permitted (k1 = 0). In the subsets SRlow and
SRhigh we enforce low (D1 = 1.0×10−4) and high (D1 = 3.0×10−3) bulk compliance,
respectively, to investigate the effects of bulk compliance on the full-field deformation
fields.

To investigate the role of bulk relaxation we consider two additional constitutive
laws. First, we consider a bulk relaxation (BR) model with 2nd- order bulk compliance
and no shear relaxation (g1 = 0). Second, we considered the full constitutive law
(SBR) with relaxation of both bulk and shear moduli.

4.3 Results

4.3.1 Method Validation: Synthetically Generated Volumet-
ric Data

Biphasic Poroelastic Constitutive Law

Using the synthetically generated deformation sequence governed by biphasic
poroelastic constitutive law, the parameter estimation framework consistently con-
verges to the ground-truth parameter values. The evolution of the objective function
during the optimization processes seeded from 3 distinct points in the parameter space



Chapter 4: Image-Based Mechanical Characterization of Soft Tissues 64

is shown in Fig. 4.5, left. The convergence of the material parameters for all 3 seeds is
shown in Fig. 4.5, right. These results are summarized in Table 4.1 and demonstrate
that in the absence of imaging noise (a consequence of synthetic data) the method
converges consistently and recovers both bulk and shear response parameters with
good sensitivity.

Quasilinear Viscoelastic Constitutive Law

The parameter estimation of the quasilinear viscoelastic constitutive law using
the deformation sequence with assumed biphasic poroelastic response is summarized
Fig. 4.6 and Table 4.2. These results suggest that the method converges consistently
for all 3 seed points and is able to obtain excellent indenter response agreement with
the ground-truth data (see Fig. 4.7). However, when comparing the magnitudes of
the volumetric error, this form of constitutive law offers lesser volumetric agreement
with the data. This point is further illustrated by comparing the nodal velocities of
the poroelastic (PE), viscoelastic (VE), and optical flow data in Fig. 4.8. Since the
PE model corresponds to the ground-truth deformation, Fig. 4.8 demonstrates the
volumetric disparity of the VE model. In addition, the good agreement of the optical
flow estimates with the PE model serves as a validation of the motion estimation
scheme (in the absence of imaging system noise). In addition, it serves as a basis
for measuring the noise floor of the motion estimation system. Minor oscillations in
the optical flow estimates may be observed at some nodes due to voxel-to-element
correspondence effects near the model boundary.

4.3.2 Perfused Porcine Liver Constitutive Modeling

The results of the constitutive modeling of perfused porcine liver are summarized
in Table 5.3 and Fig. 4.9. Several observations should be noted regarding the methods
ability to characterize the material response and its contributions in the constitutive
law selection process.

The results of the quasilinear viscoelastic constitutive law with shear modulus
relaxation (SR) demonstrate that the proposed parameter identification method is
capable of recovering the linear bulk compliance parameter D1, which is not observ-
able in conventional indentation tests. While the indentation response (Fig. 4.9 top
middle) is nearly identical for all three SR models, the volumetric nodal velocities
differ significantly. This disparity is captured by comparing the SR model’s volumet-
ric error term (Φ̇vol = 2.15 × 10−5) to the SRlow (Φ̇vol = 3.52 × 10−5) and SRhigh

(Φ̇vol = 2.25 × 10−5) models with assumed low and high bulk compliance D1, re-
spectively. These findings indicate that estimating the bulk compliance parameter
D1 from the full-field deformation data maximizes the volumetric model/experiment
agreement.

The parameter identification results using the BR and SBR models suggest that
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Figure 4.5: Biphasic poroelastic CL: regularization energy evolution (left) and mate-
rial parameter evolution (right) during material parameter identification seeded from
3 different locations in the parameter space.

Table 4.1: Biphasic poroelastic CL: recovered material parameters and associated reg-
ularization energy obtained from 3 independent parameter seed points (initial param-
eter values shown in parentheses). Ground-truth values: C1 = 200, C2 = 5000, D1 =
1.5 × 10−4, κ = 1.0 × 10−7

Parameter Seed 1 Seed 2 Seed 3

C1 193.6 (150) 192.4 (300) 192.7 (200)

C2 4,998 (4,000) 4,999 (6,000) 5,014 (5,000)

D1 1.53 × 10−3 (2.0 × 10−4) 1.53 × 10−3 (5.0 × 10−3) 1.53 × 10−3 (1.5 × 10−3)

κ 0.96 × 10−7 (1.0 × 10−8) 0.93 × 10−7 (5.0 × 10−7) 0.95 × 10−7 (1.0 × 10−7)

Φ̇ 2.63 × 10−6 (6.39 × 10−6) 2.63 × 10−6 (9.10 × 10−6) 2.63 × 10−6 (2.65 × 10−6)

Φ̇ind 1.08 × 10−8 (2.54 × 10−6) 1.23 × 10−8 (5.12 × 10−6) 1.22 × 10−8 (1.70 × 10−8)

Φ̇vol 2.62 × 10−6 (3.85 × 10−6) 2.62 × 10−6 (3.98 × 10−6) 2.62 × 10−6 (2.63 × 10−6)
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Figure 4.6: Quasilinear viscoelastic CL: regularization energy evolution (top left) and
material parameter evolution during material parameter identification seeded from 3
different locations in the parameter space.

Table 4.2: Viscoelastic CL - recovered material parameters and associated regular-
ization energy obtained from 3 independent parameter seed points (initial parameter
values shown in parentheses).

Parameter Seed 1 Seed 2 Seed 3

C1 23.1 (200) 24.9 (500) 23.1 (50)

C2 2,039 (5,000) 2,048 (1,000) 2,030 (6,000)

D1 2.25 × 10−4 (1.5 × 10−3) 2.27 × 10−4 (1.0 × 10−4)) 2.24 × 10−4 (5.0 × 10−5)

g1 0.392 (0.400) 0.398 (0.600) 0.394 (0.200)

τ1 0.059 (0.100) 0.058 (0.500) 0.059 (0.010)

Φ̇ 1.57 × 10−5 (1.90 × 10−5) 1.51 × 10−5 (1.07 × 10−4) 1.56 × 10−5 (6.01 × 10−5)

Φ̇ind 9.32 × 10−6 (1.13 × 10−5) 8.82 × 10−6 (9.87 × 10−5) 9.18 × 10−6 (5.54 × 10−5)

Φ̇vol 6.39 × 10−6 (7.79 × 10−6) 6.32 × 10−6 (7.79 × 10−6) 6.38 × 10−6 (4.69 × 10−6)
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bulk modulus relaxation does not significantly improve the model fit (Φ̇vol = 3.8×10−5

for BR, Φ̇vol = 2.20×10−5 for SBR). For this mode and rate of deformation the simple
SR constitutive form is able to account for the material response both at the indenter
as well as volumetrically (within the precision of the imaging and deformation tracking
systems).

The agreement between the model and the experiment was also quantified in terms
of the root mean squared (RMS) error of the indenter and of the nodal displacement
histories. While nodal velocity mean squared error (MSE) was found to be the more
appropriate objective function choice for model optimization, the nodal displacement
RMS errors provide an intuitive measure of the model-experiment agreement. Under
this metric, the SR model offers good indenter displacement agreement (0.19 mm
RMS error) and volumetric deformation agreement (0.97 mm axial RMS error).

4.4 Conclusions and Discussion

In this chapter a method for constitutive model selection and parameter identifi-
cation using real-time 3DUS volumetric imaging was presented and validated. This
approach enriches the traditional force-displacement indentation response with the
measurement of volumetric deformation and provides good sensitivity to parameters
governing the bulk response of the material. These parameters are otherwise not
observable in conventional indentation. The ability to decouple the bulk and shear
components of the deformation is of high importance and we demonstrated that we
can reconstruct the parameters with high precision and repeatability in a validation
study. Furthermore, the measurement of full volumetric deformation histories offers
the ability to observe material response over a range of strain rates. While the inden-
ter is driven at a chosen displacement rate, the local material strain rates throughout
the tissue sample vary from zero in the far-field to the maximum levels beneath
the indenter. The method is independent of imaging modality and constitutive law,
suggesting potential applications for other tissues and scales (i.e. nanoindentation,
confocal microscopy, etc.).

The proposed approach is a useful tool for constitutive model selection, as sug-
gested in our porcine liver indentation modeling. The best experimental fits were
attained with a quasilinear viscoelastic model with 2nd-order reduced polynomial in-
stantaneous response and a Prony series relaxation of the bulk and shear moduli.
Using the full-field measurements, we demonstrated that a simpler constitutive form
with shear relaxation provides comparable model-experiment agreement. This obser-
vation suggests that shear relaxation is the dominant mode of relaxation for liver in
indentation and that the SR model is appropriate (considering the reduced number
of parameters).

One of the advantages of the proposed method is the ease of application in in
vivo settings. The knowledge/observation of boundary condition is one of the chief
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Figure 4.9: Perfused liver sequence: indentation histories (top, middle) are virtu-
ally identical between SR, SRlow, and SRhigh. The SR model provides significantly
improved volumetric agreement illustrated with vertical node velocity histories.

Table 4.3: Perfused porcine liver: estimated material parameters for the 5 constitutive
laws considered.

Parameter SRlow SRhigh SR BR SBR

C1 4.3 185.4 79.2 83.9 71.6

C2 47.0 612.6 257 40.9 218.3

D1 1.0 × 10−4 3.0 × 10−3 4.38 × 10−4 4.71 × 10−4 3.65 × 10−4

D2 - - - 2.22 × 10−5 6.7 × 10−3

g1 0.967 0.779 0.832 - 0.794

τg1 0.585 0.168 0.150 - 0.203

k1 - - - 0.890 0.032

τk1 - - - 0.134 0.176

Φ̇ 3.52 × 10−5 2.25 × 10−5 2.15 × 10−5 3.08 × 10−5 2.20 × 10−5

Φ̇ind 1.52 × 10−7 1.69 × 10−7 1.31 × 10−7 1.58 × 10−7 1.35 × 10−7

Φ̇vol 3.51 × 10−5 2.24 × 10−5 2.14 × 10−5 3.06 × 10−5 2.19 × 10−5
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motivating factors for ex vivo testing. Imaging the organ during indentation testing,
however, offers the ability to observe the in vivo boundary conditions and account
for them during the inverse modeling process. Direct in vivo indentation tests of
the liver can be performed in the operating room due to the relatively easy access
to the organ within the abdominal cavity. The method may also find suitable appli-
cations in noninvasive (percutaneous) organ characterization. Such applications will
require proper image segmentation and mechanical models, which incorporate the
tissue inhomogeneities, layers, and organ boundaries.

In our future work, we intend to incorporate constitutive laws with higher com-
plexity [71, 85], which are capable of capturing the liver response across the DC-2Hz
frequency range characteristic of surgical manipulation.



Chapter 5

Viscoelastic Characterization of
Perfused Porcine Liver

5.1 Introduction

The liver is a frequently manipulated organ in abdominal procedures, therefore a
thorough characterization of the nonlinear, visco-elastic mechanical response in the
modes of deformation representative of surgical manipulation is crucial for emerging
image-guided technologies, robotic procedures, and surgical simulation. The liver has
a complex internal structure consisting of vascular, structural, and cellular elements
(blood, bile, lymph, collagen, hepatocytes, endothelial cells), giving rise to its non-
linear rate-dependent mechanical response. Because the liver is a highly perfused
organ, its observed mechanical properties are strongly dependent on the physiolog-
ical conditions (i.e. temperature, arterial pressure, and venous pressure). Unlike
most organs however, the liver’s internal structure is relatively homogeneous (on the
scale of 1 cm and above) and does not have a dominant directional dependence, sug-
gesting that isotropic constitutive law formulations may be capable of capturing its
three-dimensional response.

Much of the experimental data on the mechanical response of soft tissues is ac-
quired in ex vivo conditions. Such data, however, is often inappropriate for accurate
modeling and characterization, as the material properties of soft tissues vary signif-
icantly between in vivo and in vitro settings [48, 91, 93, 53, 90, 71]. Kerdok et al.
[71] have demonstrated that near in vivo mechanical behavior may be achieved by
using physiologic perfusion conditions in an ex vivo setting, while providing testing
conditions amenable to extensive characterization of the organ’s visco-elastic response
and well-controlled experimental boundary conditions. A recent study by Nava et al.
[96] has demonstrated the use of an aspiration testing device to measure the mechan-
ical properties of human liver in vivo. The material properties were identified via an
inverse finite-element modeling approach and suggest that a quasi-linear visco-elastic

71
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constitutive law can capture the liver response within the applied loading history and
relative small deformation of the organ (considering the scale of deformations during
surgical procedures). Another study by Carter et al. [24] reported on the measure-
ments of intra-operative in vivo mechanical properties of human and porcine liver
using indentation and fitted the experimental data to a simple exponential analytical
model. Numerous other studies [23, 97, 100, 108, 112, 125] have performed in vivo
mechanical tests in porcine and bovine animal models.

This chapter presents a comprehensive visco-elastic characterization of perfused
porcine liver using conventional indentation testing and image-based material char-
acterization proposed in chapter 4. A physically-based nonlinear visco-elastic consti-
tutive model of the liver is fitted to data from porcine livers using iterative inverse
finite-element modeling. This study examines a broad set of loading histories, includ-
ing consecutive cyclic loading tests with indenter displacement rates spanning two
orders of magnitude (0.2 mm/s to 40 mm/s) and stress relaxation tests. The order of
the cyclic loading experiments is randomized across the three animal subjects tested
and alternative loading histories are used to evaluate the model predictive capability.

5.2 Materials and methods

5.2.1 Design of experiments

Data for this study was acquired by Kerdok as described in detail in [69]. Three
porcine livers from freshly sacrificed animals (60 kg mean mass) were harvested, trans-
ported from the operating room to the laboratory in an ice bath, and were perfused
and tested within 1 hour after harvest. This protocol has been shown to preserve
the in vivo response of the organ [71], while offering unrestricted access and well
controlled boundary conditions. The livers were tested in an orientation consistent
with the supine subject position, while the perfusate was infused continuously with
a mean portal venous pressure of 7.98 mmHg (± 1.44 standard deviation), a mean
hepatic arterial pressure of 94.77 mmHg (± 1.75), and at a mean temperature of
33 ◦C (± 4.34). Temperature and pressure were continuously monitored throughout
the tests to ensure proper perfusion of the liver. The 3D ultrasound probe was placed
beneath the organ to capture the internal organ deformation during indentation. The
complete experimental setup was described in section 4.2.1 and illustrated in Figure
4.1.

To characterize the tissue over the strain rates relevant to surgical manipula-
tion and to capture the preconditioning effects of this heavily tissue, we subject the
organs to consecutive, constant strain rate cyclic loading (indenter displacement ve-
locity spans the range of 0.2 mm/s to 40 mm/s). Each specimen is indented three
consecutive times at four loading rates (0.2 mm/s, 2 mm/s, 20 mm/s, and 20 mm/s).
The order of the three cycle blocks is varied for each test. The cyclic indentation
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experiments are summarized in Table 5.1. The loading history consists of trian-
gular pulse sequences, rather than sinusoidal trajectories, which results in a richer
spectral profile of each indentation. Within the small displacement approximation,
sinusoidal loading histories examine the tissue response at a single discrete frequency.
Triangular sequences, however have a richer spectral profile and include higher fre-
quency components. The time-displacement histories and power spectra of the four
triangular load/unload cycles considered in this study are summarized in Figure 5.1,
demonstrating the range of the frequency range tested.

In addition to cyclic consecutive loading, each specimen was tested by applying
fast step indentation to a constant strain (over 30%) to observe the stress relaxation
of the tissue over long periods (over 1200 seconds). The stress relaxation experiments
test the tissue response on significantly different time scales and approximate both the
instantaneous and equilibrium response. A summary of the experiments is provided
in Table 5.2.

5.2.2 Finite-element model

The results of the indentation experiments showed that the response of the tis-
sue is strongly nonlinear and demonstrated rate-dependence in cyclic loading tests,
as well as long-time relaxation in stress relaxation experiments. When appropriate
organ perfusion is provided, the tests revealed that the tissue fully recovers within
20 minutes after testing [71, 69]. To capture this behavior we developed an nine-
parameter visco-elastic constitutive model, which was implemented as a FORTRAN
user-defined subroutine (UMAT) in ABAQUS (Simulia, Providence, RI, USA) finite-
elemenet analysis package.

Material Constitutive Law

Considering the large deformation requirements of soft tissue models, we develop
a constitutive material law within the finite-strain continuum mechanics theory. The
deformation gradient F is defined in terms of the deformed (x) and reference (X)
coordinates of a material particle in the body undergoing deformation as

F =
∂x

∂X
. (5.1)

The material deformation gradient (F) may be decomposed into its deviatoric (Fd)
and hydrostatic (Fh) components according to

F = FhFd = J
1

3 IFd, (5.2)

where J is the scalar volumetric strain (defined as det (F) or the ratio of the cur-
rent volume V and the initial volume V0) and I is the identity matrix. The total
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Table 5.1: Summary of cyclic loading indentation tests performed on three perfused porcine liver specimens.

specimen thickness [mm] nominal strain loading history
Liver 1 31 0.35 sequence 1: 3×0.2 mm/s, 3×20 mm/s, 3×40 mm/s, 3×2 mm/s

sequence 2: 3×2 mm/s, 3×40 mm/s, 3×0.2 mm/s, 3×20 mm/s
Liver 2 32 0.36 sequence 1: 3×40 mm/s, 3×20 mm/s, 3×2 mm/s, 3×0.2 mm/s

sequence 2: 3×0.2 mm/s, 3×2 mm/s, 3×20 mm/s, 3×40 mm/s
Liver 3 26 0.36 sequence 1: 3×40 mm/s, 3×0.2 mm/s, 3×20 mm/s, 3×2 mm/s

sequence 2: 3×2 mm/s, 3×20 mm/s, 2×0.2 mm/s, 3×40 mm/s
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Table 5.2: Summary of stress relaxation indentation tests performed on 3 perfused porcine liver specimens.

specimen thickness [mm] nominal strain loading history
Liver 1 31.34 0.35 200 mm/s load, 1800 s hold
Liver 2 32.18 0.34 200 mm/s load, 1800 s hold
Liver 3 26.12 0.35 200 mm/s load, 1200 s hold
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Figure 5.1: Indentation loading histories, consisting of load/unload ramps at 0.2
mm/s, 2 mm/s, 20 mm/s, and 40 mm/s, are shown in the left column and the
corresponding power spectra are shown in the right column.
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Indenter

Force(time), Displacement(time)

Tissue

Figure 5.2: A representative axisymmetric finite-element model of the liver in in-
dentation using quadratic triangular meshing, simplified cylindrical geometry, and
experimentally observed boundary conditions.

Cauchy stress in the tissue is computed as the sum of the deviatoric and hydrostatic
components

T(F) = Td (Fd) + Th (Fh). (5.3)

The hydrostatic component of the Cauchy stress tensor Th is captured by a single
linear elastic element responding to the volumetric component of the deformation
gradient Fh. A rheological network representing the response of the model to the iso-
choric (deviatoric) component of the deformation gradient Fd is shown in Figure 5.3.
The network consists of a nonlinear elastic element (A) representing the instantaneous
response of the collagen network and a visco-elastic dissipative network (elements B,
C, D, and E) representing the response of the cellular and fluid components of the
liver parenchyma. Therefore, we devide the total deviatoric deformation gradient into
its components representing the contributions from the collagen network (Fc) and the
parenchyma (Fp).

The visco-elastic arrangement of the paranchyma component is intended to ac-
commodate both the short-time viscous effects (associated time constant τ < 2 s)
of the tissue and the long-time relaxation effects (τ > 20 s) observed during stress-
relaxation experiments. The short-time dissipative effects are captured with a nonlin-
ear reptation-based viscous element C, while the long-time relaxation is represented
with a network configuration in the form of the standard linear solid (elements B, D,
and E).

The response of the model is constrained by compatibility equations, the equi-
librium equations, and the constitutive equations representing the characteristic re-
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Figure 5.3: Rheological arrangement of the deviatoric component of the nonlinear
viscoelastic constitutive model.

sponse of individual elastic and viscous elements. The compatibility equations may
be written as

Fd = FcFp (5.4)

Fp = FbFeq (5.5)

and the equilibrium equations are

TA (Fc) = TB (Fb) + TC
(

Ḟp,Fp

)

(5.6)

TB (Fb) = TD (Feq) + TE
(

Ḟeq,Feq

)

. (5.7)

Response of the Collagen Matrix

The response of the collagenous component of the tissue is captured by a freely
jointed 8-chain model [7, 118]. In this formulation, the force-stretch relationship for
an individual collagen fibril is

f =
Ki

b
L−1

(

λf

λL

)

, (5.8)

where Ki is the reference stiffness, b is the persistence length for the fibril, λf is
the fibril stretch, λL is the limiting fibril stretch parameter, and L−1 is the inverse
Langevin function defined by

β = L−1

(

λf

λL

)

(5.9)
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λf

λL

= L (β) = coth β − 1

β
. (5.10)

The three-dimensinal representation of the single collagen fibril model follows the
representation proposed by Arruda and Boyce, using a cubic unit cell with eight
individual chains connected at the center of the cell. As the cell deforms along the
principal stretch directions {λ1, λ2, λ3}, the chains rotate towards the direction of the
highest stretch component, while the symmetry of the 8-chain arrangement guarantees
that the junction point remains in the center of the unit cell. Consequently, all eight
chains experience the same level of stretch defined by

λ =

√

λ2
1 + λ2

2 + λ2
3

3
. (5.11)

The full three-dimensional stress-strain constitutive behavior of the eight chain-
model is described in terms of a hyperelastic strain energy density W , which is differ-
entiated to with respect to the deformation gradient to obtain the associated Cauchy
stress

TA =
1

J
µ0
λL

λ
β
(

Bc − λ2I
)

, (5.12)

where µ0 is the initial shear modulus and Bc is the left Cauchy-Green stretch tensor
defined as Bc = FcF

T
c .

Response of the Parenchyma

The response of the liver parenchyma is governed by the visco-elastic network (el-
ements B, C, D, and E) under the deformation gradient Fp. Given the arrangement
of the constitutive elements of the rhelogical model, the numerical solution consists
of satisfying the equations of equilibrium, the compatibility equations, and the invi-
didual constituative relationships for each element. Here we provide the constituve
description of the individual elements governing the response of the parenchyma.

The short-time response of the parenchyma is governed by the reptation-based
nonlinear viscous element C. The deviatoric stress T′C driving the viscous element C
is obtained from

TC = TA −TB. (5.13)

T′C = TC − 1

3

(

tr TC
)

I. (5.14)

The viscous rate of stretch DC is prescribed to be proportional to the direction of
the viscous stress deviator. The direction (NC) and magnitude (τC) of the deviatoric
viscous stress are defined as
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NC =
T′C

√
2τC

(5.15)

τC =

√

1

2
T′C : T′C. (5.16)

The viscous rate stretch is then expressed through a viscous strain-rate coefficient γ̇v

DC = γ̇vNC. (5.17)

where the coefficient γ̇v describes the reptation-based viscous shear strain-rate in a
form adapted from Bergstrom and Boyce [14]

γ̇v = γ̇v
0

αC

||Fp||2 + αC

(

τC

SC

)mC

, (5.18)

where ||Fp||2 is the magnitude (Frobenius norm) of the accumulated viscous defor-
mation, αC is the reptation coefficient controlling the flow-limitting behavior of the
element, SC is the shear strength modulus, m is the order of the viscous power law,
and γ̇v

0 is the initial viscous strain-rate constant (γ̇v
0 = 0.01) introduced for numerical

stability reasons.
The response of the remaining elements (B, D, and E) is computed with an anal-

ogous approach. The Cauchy stress in the elastic element B is computed as

TB = 2GBF′
b. (5.19)

where F′
b is the deviatoric component of the deformation gradient Fb = Fp

(

Feq
−1
)

and GB is the shear modulus. The Cauchy stress in the elastic element D is computed
as

TD = 2GD
eqF

′
eq, (5.20)

where GD
eq is the element’s shear modulus and F′

eq is the deviatoric component of

Feq = Fp

(

Fb
−1
)

. Finally, the linear viscous element capturing the long-time relax-
ation of the parenchyma is captured by the relationship between its viscous rate of
stretch Deq and the direction of the viscous stress deviator NE

Deq = ηENE, (5.21)

where ηE is the linear viscosity coefficient and NE is computed analogously to the
approach in eqn. 5.15.
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Solution Approach

The response of the whole rheological network proposed in Figure 5.3 is obtained
by numerical integration of the individual constitutive elements and their state vari-
ables. The time integration is initialized by assuming that the instantaneous response
is entirely accomodated by the response of the collagen matrix. Therefore, the initial
value conditions (t = 0) prescribe Fc = Fd. The deformation gradients associated
with the viscous components of the model (Fp and Feq) and their corresponding
Cauchy stress (TC and TE) are assumed to have zero initial state and are subse-
quently integrated according to the evolution of the differential equations governing
the response of the whole network. The time integration of the model response to the
deviatoric component Fd of the prescribed deformation gradient may be summarized
as

1. Compute Fc[t] = Fd[t]
(

Fp[t]−1)

2. Compute Fb[t] = Fp[t]
(

Feq[t]
−1)

3. Compute the elastic stress TA[t] from the current deformation gradient Fc[t]

4. Compute the back stress TB[t] from the current deformation gradient Fb[t]

5. Compute the long-term back stress TD[t] from the current deformation gradient
Feq[t]

6. Compute the plastic stress TC[t] = TA[t] −TB[t]

7. Compute the long-term plastic back stress TE[t] = TB[t] −TD[t]

8. Evolve Fp[t + ∆t] by integrating Fp[t] according to the current Cauchy stress
TC[t] experienced by element C

9. Evolve Feq[t+ ∆t] by integrating Feq[t] according to the current Cauchy stress
TE[t] experienced by element E

10. The computed Cauchy stress in element A due to the deformation gradient Fc[t]
is equivalent to the total stress state of the model at time t

5.2.3 Mesh Convergence

The accuracy of the numerical solution is dependent on various factors, such as
the size of the time integration steps as well as the spatial discretization (meshing) of
the model geometry. Figure 5.4 demonstrates three meshes with increasing density
(173 elements, 719 elements, and 3250 elements) composed of axisymmetric quadratic
triangular elements (CAX6). We evaluated the mesh convergence on a single 2 mm/s
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indentation simulation (30 mm height, 10 mm indentation depth). The resulting
forces vs. time output of the simulation is shown in Figure 5.5, demonstrating that
meshes with density comparable to mesh #2 are appropriate for our application.
While the difference between the numerical solutions produced by mesh #2 and mesh
#3 are negligible, the computation run times were six times longer for mesh #3.

5.2.4 Internal Deformation Field Estimation

The estimation of the internal deformation field of the organ provides a valuable
insight in the three-dimensional response of the tissue. As demonstrated in Chapter 4,
the volumetric imaging approach offers means for estimation of material parameters
which are not directly observable in conventional indentation. Most notably, the
bulk modulus K can be properly constrained with volumetric data. Additionally,
the volumetric data captures the tissue response at various local strain rates (strain
rates diminish with distance from the indenter). Therefore, even a single indentation
performed at one indenter displacement velocity can provide information about the
strain-rate dependence of the material. This information is especially valuable for
constitutive laws with nonlinear viscous components, such as the reptation-limited
power law employed in this study.

To estimate the internal deformation fields of the organ during indentation testing,
we follow the methods described in Chapter 3, relying on a modified implementation
of the Lucas-Kanade [84, 10] optical flow algorithm. The discretization of the image
space is performed by a tetrahedral mesh (shown in Figure 5.6), where the mesh
elements and their elemental shape functions serve as the local image neighborhoods.
The mesh is registered to the 3DUS volume by manually aligning the top surface of the
liver parenchyma and the circular cross-section of the indenter. The displacement of
individual mesh nodes is obtained by solving the least-squares solution of the optical
flow equations for each voxel in the local neighborhood. The confidence of each local
motion estimate is quantified by the local textural quality (local image gradient).
Further details and performance evaluation of this method may be found in Chapter
3.

While the optical flow discretization relies on a three-dimensional tetrahedral
mesh, the computational model is an axisymmetric implementation for computa-
tional efficiency. To relate the image-based internal displacements, the nodal velocity
histories are mapped from cartesian {x, y, z} space to the coordinate system of the
axisymmetric model {raxi, zaxi} as

raxi =
√

x2 + y2 (5.22)

and

zaxi = z. (5.23)
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Mesh #1

Mesh #2

Mesh #3

Figure 5.4: Three axisymmetric quadratic triangular (CAX6) meshes of increasing
density (173 elements, 719 elements, and 3250 elements) used to evaluate the depen-
dence of the solution accuracy on the mesh density.
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Figure 5.5: Mesh convergence study showing indentation force predicted by finite-
element models using meshes #1, #2, and #3 (meshes shown in Figure 5.4).

The image-based velocities can then be directly compared to the simulated response
of the organ model.

5.2.5 Material parameter estimation

We rely on iterative inverse modeling to identify the model material parameters.
Using the bounded downhill simplex method [76], we iteratively adjust material pa-
rameters until the error between the experimental and model response is minimized.
Given the number of measurement modalities involved in the experimental protocol,
the total objective function is defined as a sum of the errors in indentation sequence
block (Φblock), the stress-relaxation response (ΦSR), and the image-based volumetric
tissue response during a 2 mm/s indentation (Φim). The components of the objec-
tive function relying on the time-displacement-force relationship of the indenter are
defined as normalized mean-squared error (MSE) between the experimental (F exp(t))
and modeled (Fmodel(t)) indentation force history. The model response is resampled
using linear interpolation at time indeces coinciding with the experimental force his-
tory. While initially obtained at 1000Hz, the experimental data is resampled offline
to 100Hz. To maintain dimensional homogeneity between the three error terms (to
maintain comparable importance of each term), we normalize the force history terms
by the peak force and the internal deformation fields are normalized by the prescribed
velocity of the indenter. The force history error measures (Φblock and ΦSR) are defined
as

Φblock (pn) =
1

max(F exp
block)N

N
∑

i=1

(

F exp
block[i] − Fmodel

block [i]
)2

(5.24)
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Figure 5.6: 3DUS sequence (gray) is registered to a tetrahedral three-dimensional
mesh (yellow), which is used to discretize the image space for the local optical flow
algorithm. The elemental shape functions are used as local neighborhood weights.

and

ΦSR (pn) =
1

max(F exp
SR )M

M
∑

i=1

(

F exp
SR [i] − Fmodel

SR [i]
)2
, (5.25)

where N and M are the number of samples in the experimental force history signals.
The image-based model agreement is expressed in terms of the MSE between the
internal velocity fields of the model (u̇model) and the experiment (u̇exp) as

Φim (pn) =
1

vexpLP

L
∑

k=1

P
∑

i=1

∑

j

cj,k[i]
(

u̇exp
j,k [i] − u̇model

j,k [i]
)2
, (5.26)

where j = {x, y, z}, P is the number of experimental time frames (image data is
acquired at 25 Hz), L is the number of local image motion estimates/neighborhoods,
vexp is the normalization factor corresponding to the prescribed velocity of the in-
denter (0.002 m/s), and ci is the confidence of the local optical flow estimate (see
Chapter 3 for implementation details). The total error function is defined as

Φtotal (pn) = α1Φblock (pn) + α2ΦSR (pn) + α3Φim (pn) , (5.27)

where parameters α1, α2, and α3 determine the relative weights of the error func-
tion components. The choice of the weighting between the individual error terms is
dependent on the amount of information contained in the specific experiments and
the perceived importance of each experimental component. For example, considering
the significant amount of information regarding the material response across multiple
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strain rates contained in the indentation block data, its corresponding weight coef-
ficient (α1) may need to be relatively high to ensure close fits to this component of
the experimental data. It is necessary to ensure that the choice of α1 does not dom-
inate the total error function and that satisfactory fits are maintained in the stress
relaxation and volumetric response tests. Under these considerations, the weighting
coefficients in this study were determined to be: α1 = 2, α2 = 1, and α3 = 1.

5.3 Results

Imaging the Internal Tissue Deformation

The volumetric data containing the internal tissue displacements was acquired
during 2 mm/s indentation tests in each specimen. The indenter force-time and
displacement-time signals are shown with two-dimensional cross-section through the
corresponding 3DUS sequence. See Figures 5.7, 5.8, and 5.9 for the image-data syn-
chronized with the conventional indentation outputs. The liver parenchyma produces
rich textural pattern, which results in good tracking accuracy of the optical flow
algorithm (see Chapter 3 for performance evaluation). In indentation sequences per-
formed at the rate of 2 mm/s, the frame-to-frame tissue displacements are on the
sub-voxel scale and do not suffer from the large displacement limitations of differen-
tial optical flow methods. The contact surfaces of the indenter can be clearly seen in
the images, however in some instances local reverberation artifacts may be observed
(see Figure 5.8).

Model Fitting

Tissue models reflecting experimental geometry and boundary conditions were
fitted to three perfused porcine liver specimens, following the material parameter
estimation method described in section 5.2.5. The model fits reflect the material
parameters, which minimize the model-experiment error for the repeated indentation
cycles, conventional stress-relaxation tests, as well as internal tissue displacement
obtained with 3D ultrasound. Figures 5.10, 5.11, and 5.12 show the model fits to the
repeated indentation cycles performed on liver specimens 1, 2, and 3, respectively. It
may be observed that the model, in all three cases, provides excellent agreement with
experimental data across the broad range of strain rates tested. Additionally, the
model is capable of accommodating for the complex time-dependent pre-conditioning
effects, which make the experimental data strongly dependent on the testing history.
For instance, the experimental forces obtained from the 40 mm/s cycles in liver 1
have smaller magnitude than the magnitude of the response to the 20 mm/s cycles,
which immediately precede the 40 mm/s cycles. This counter-intuitive response of the
tissue can be explained by the pre-conditioning effects mediated by the displacement
of the local fluid and relatively long time constant governing the refill and recovery
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Figure 5.7: Liver 1: indentation displacement and force histories along with a 2D
slice through the corresponding 3DUS sequence capturing internal organ deformation
field.
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Figure 5.8: Liver 2: indentation displacement and force histories along with a 2D
slice through the corresponding 3DUS sequence capturing internal organ deformation
field.
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Figure 5.9: Liver 3: indentation displacement and force histories along with a 2D
slice through the corresponding 3DUS sequence capturing internal organ deformation
field.
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of the tissue. The proposed model is capable of accounting for this effect through the
reptation-limited nonlinear viscous element proposed by Bergstrom and Boyce (2001)
[14].

The models were concurrently fitted to the stress relaxation experiments and show
good agreement with this alternative loading history. The stress relaxation tests are
fundamentally different from cyclic loading as they test both the response at the very
short time-scale as well as the long-time equilibrium response.

The third experimental data source that the model is concurrently fitted to is the
internal deformation field of the organ obtained by real-time 3D ultrasound imaging.
This data offers rich information regarding the volumetric, time-dependent response
of the organ. Most importantly, the measurement of the internal deformation field
allows for overcoming the material parameter ambiguities due to the inherent coupling
between the bulk and shear components of the material response. The benefits of
image-based parameter identification were demonstrated in Chapter 4, where we have
shown that material parameters that the bulk modulus, a parameter not directly
observable in conventional indentation, can be accurately and reliable estimated with
the proposed image-based inverse modeling approach.

The agreement between the internal velocity field of the liver specimens and their
corresponding models is illustrated in Figures 5.19, 5.20, and 5.21, showing the vertical
(dominant) component of the velocity field at various mesh node location throughout
the organ volume. The results demonstrate that the models offer good agreement,
within the measurement accuracy of the imaging method, throughout the field be-
neath the indenter.
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Figure 5.10: Liver 1: indentation sequence (3 × 0.2 mm/s, 3 × 20 mm/s, 3 × 40
mm/s, 3 × 2 mm/s) and the corresponding model fit. The full sequence is shown in
the top plot. Subsections of the sequence separated by indentation rate are shown in
the remaining plots.
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Figure 5.11: Liver 2: indentation sequence (3 × 40 mm/s, 3 × 20 mm/s, 3 × 2 mm/s,
3 × 0.2 mm/s) and the corresponding model fit. The full sequence is shown in the
top plot. Subsections of the sequence separated by indentation rate are shown in the
remaining plots.
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Figure 5.12: Liver 3: indentation sequence (3 × 40 mm/s, 3 × 0.2 mm/s, 3 × 20
mm/s, 3 × 2 mm/s) and the corresponding model fit. The full sequence is shown in
the top plot. Subsections of the sequence separated by indentation rate are shown in
the remaining plots.
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Figure 5.13: Liver 1: indentation sequence (experimental response and model pre-
diction) separated into individual displacement rates plotted as nominal strain vs.
indenter force.

Figure 5.14: Liver 2: indentation sequence (experimental response and model pre-
diction) separated into individual displacement rates plotted as nominal strain vs.
indenter force.

Figure 5.15: Liver 3: indentation sequence (experimental response and model pre-
diction) separated into individual displacement rates plotted as nominal strain vs.
indenter force.
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Figure 5.16: Liver 1: experimental stress relaxation and model fit.

Figure 5.17: Liver 2: experimental stress relaxation and model fit.

Figure 5.18: Liver 3: experimental stress relaxation and model fit.
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Figure 5.19: Liver 1: measured and predicted vertical component of the internal
velocity field fit evaluated and various locations within the organ).

Table 5.3: Estimated material parameters for the three liver specimens.

µA
0

[Pa] λA
L GB [Pa] mC SC [Pa] αC GD

eq [Pa] ηE [Pa.s] K [Pa]

Liver 1 8.93 1.023 16,275 1.197 28.92 0.100 1,056 31,673 26,569

Liver 2 19.0 1.041 24,214 1.80 146.53 0.133 1,234 21,329 19,542

Liver 3 16.76 1.043 29,472 1.62 105.47 0.089 4,636 83,950 28,001

5.3.1 Sensitivity Analysis

Given the high-dimensional nature of the parameter space, it is important to inves-
tigate the issues pertinent to understanding the properties of the objective function
hypersurface. It is important to evaluate the optimization method’s sensitivity to
the individual material parameters. We evaluate the parameters sensitivity by local
perturbation of the best fits of each liver specimen. While not fully comprehensive,
this approach provides an insight into the local shape of the objective function and
gauges the confidence in the estimated material parameters.

The sensitivity of each parameter (pi) is measured as the curvature of a quadratic
polynomial function,

ζ (pi) = api
2 + bpi + c, (5.28)

fitted to the objective function surface along the parameter axis. See Figure 5.22 for
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Figure 5.20: Liver 2: measured and predicted vertical component of the internal
velocity field fit evaluated and various locations within the organ).

Figure 5.21: Liver 3: measured and predicted vertical component of the internal
velocity field fit evaluated and various locations within the organ).
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quadratic polynomial fits to the objective function surface for liver #1. The curvature
of the polynomial is computed as

k (pi) =

∂2ζ
∂pi

2

[

1 +
(

∂ζ
∂pi

)2
]3/2

=
2a

(

1 + (2api + b)2)3/2
. (5.29)

The sensitivity of the objective function to each parameter in the vicinity of the best
model fit to each liver specimen is summarized in Table 5.4.

5.3.2 Validation

The model’s predictive capability is evaluated in a validation study in which the
model is subjected to alternative cyclic loading histories. The results predicted by
the model are illustrated in Figure 5.23, 5.24, and 5.25. In all three simulations,
the model demonstrates satisfactory agreement with the experimental data, although
not as good as with the primary sequences that the model was fitted to. The dis-
crepancies between the model prediction and the experimental data can most likely
be attributed to the aforementioned complex preconditioning effects in consecutive
cyclic loading tests and the long period of time (approximately 30 minutes) between
the experimental sequences.

5.4 Discussion

The main objective of this work was to develop an accurate, physically motivated
liver model, suitable for applications in surgical simulation and image-guided proce-
dures. In these scenarios, the model must predict organ response across a wide range
of frequencies. This was achieved by a nonlinear visco-elastic constitutive law, previ-
ously identified as the simplest configuration for the given application, as well as an
extensive experimental testing protocol. The testing methods relied on conventional
indentation testing, spanning strain-rates over two orders of magnitude, along with
image-based measurement of the organ’s internal deformations.

An earlier study by Nava et al. [96] identified parameters of human liver in small-
displacement aspiration tests using single-rate repeated tests, using a 6-parameter
quasilinear viscoelastic (QLV) model and a 14-parameter Rubin-Bodner model [109].
The study by Nava el al. [96] is unprecedented in the sense that it uses human in
vivo liver data and determines material parameters via inverse finite-element mod-
eling. In comparison, the work proposed in this work uses ex vivo perfused porcine
liver, however the 9-parameter model and the tissue testing methodology offer the fol-
lowing benefits: (i) it accurately captures the large deformation response of the liver
tissue (over 30% nominal strain); (ii) it uses concurrent full-field volumetric data to
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Figure 5.22: Liver 1: parameter sensitivity analysis measured as the curvature of a
quadratic function fitted to a cut through the objective space along each parameter
axis.
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Table 5.4: Parameter sensitivity measured as the curvature of a quadratic function fitted to a cut through the objective
space along each parameter axis.

µA
0

λA
L GB mC SC αC GD

eq ηE K

Liver 1 5.96 × 10−4 5.29 × 101 6.17 × 10−11 4.34 × 10−1 3.25 × 10−5 5.76 × 10−1 5.21 × 10−11 2.23 × 10−7 2.00 × 10−10

Liver 2 1.78 × 10−3 3.02 × 103 4.50 × 10−10 2.32 × 100 1.08 × 10−5 2.80 × 101 8.27 × 10−10 1.63 × 10−7 4.09 × 10−9

Liver 3 6.60 × 10−4 5.11 × 102 1.28 × 10−9 1.64 × 100 3.76 × 10−4 4.43 × 101 1.33 × 10−9 4.48 × 10−8 3.70 × 10−9
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Figure 5.23: Liver 1: using the estimated material parameters, the predictive ability
of the model is evaluated by comparing its response to an alternative loading history
(3 × 2 mm/s, 3 × 40 mm/s, 3 × 0.2 mm/s, 3 × 20 mm/s).
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Figure 5.24: Liver 2: using the estimated material parameters, the predictive ability
of the model is evaluated by comparing its response to an alternative loading history
(3 × 0.2 mm/s, 3 × 2 mm/s, 3 × 20 mm/s, 3 × 40 mm/s).



Chapter 5: Viscoelastic Characterization of Perfused Porcine Liver 103

Figure 5.25: Liver 3: using the estimated material parameters, the predictive ability
of the model is evaluated by comparing its response to an alternative loading history
(3 × 2 mm/s, 3 × 20 mm/s, 2 × 0.2 mm/s, 3 × 40 mm/s).
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Figure 5.26: Liver 1: indentation cycles from alternative loading history separated
into individual indenter displacement rates.

Figure 5.27: Liver 2: indentation cycles from alternative loading history separated
into individual indenter displacement rates.

Figure 5.28: Liver 3: indentation cycles from alternative loading history separated
into individual indenter displacement rates.
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characterize and decouple the shear and bulk compliance components of the tissue
response; (iii) it captures the viscoelastic tissue response across two orders of strain
rate magnitude; (iv) it does not rely on a pre-conditioning protocol and instead mea-
sures the ”virgin” response of the tissue upon the first and subsequent indentations;
(v) the proposed model has very little (if any) ambiguity in its parameter space, due
to the incremental determination of the simplest constitutive law required and the
proper constraint on the interaction between the bulk and shear response components
measured by the full-field volumetric imaging.

The model fits to the experimental data, as well the validation study showing good
predictive ability, suggest that the constitutive material law and the associated testing
protocol are appropriate for characterizing the large-strain, nonlinear, visco-elastic re-
sponse of the liver. The liver experiments have revealed a significant preconditioning
effects of the tissue. We were able to capture these effects with a reptation-limited
power law formulation of the nonlinear viscous component of the model. Based on
our investigation of the potential constitutive formulations, the proposed rheological
configuration is the simplest form with the fewest number of material parameters
capable of capturing all of the salient features of the tissue time-dependent response.
The rheological configuration of the constitutive law was determined by an incre-
mental constitutive model selection process (see Chapter 2), considering rheological
arrangements from the standard linear solid to the final 9-parameter law employed in
this work.

The concurrent volumetric imaging is an essential component of the characteri-
zation, facilitating the recovery of the bulk component of the material response. In
each specimen, we have considered image data from one indentation cycle at 2 mm/s
displacement rate, mostly due to the difficulties associated with obtaining long volu-
metric sequences necessary to capture the full indentation history. Furthermore, the 2
mm/s tests contain deformations that are slow relative to the image acquisition rate,
resulting in small frame-to-frame voxel displacements. Traditionally, large frame-
to-frame displacement provide a significant challenge to differentail optical flow and
significantly degrade its accuracy. Alternative methods relying to exhaustive searches
of the local neighborhood, however, may be implemented to estimate local deforma-
tion at the faster experimental strain rates. Also, the presented results only show the
vertical component of the internal organ deformation field. In the model fitting pro-
cess, however, all components of the deformation field are considered and contribute
equally to the objective error. In future work, it would be beneficial to consider the
higher noise and lower resolution associated with the lateral imaging plane. One
potential approach to addressing this issue is to estimate the noise characteristics
resolution limits in all three imaging direction, as well as their dependence on the dis-
tance from the transducer. Such noise level estimates can be readily incorporated into
the motion confidence parameters associated with each local image motion estimate.

In this study we were able to reduce the computational cost of the finite-element
simulations by modeling the organ response under the axisymmetric formulation. The
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approach is permissible for the organ geometry and boundary conditions here, but
requires a mapping step between the image-based local motion estimates in cartesian
3D space and the axisymmetric coordinate system of the mechanical model.

The choice of the optimization algorithm along with appropriate initial parameter
estimates and parameter constraints are essential for the success of high-dimensional
optimization process. This work relied on the bounded simplex method due its fast
convergence. Fast convergence is an important consideration in this application due
to the computational cost associated with each evaluation of the objective function,
which consists of three finite-element simulation with total runtime on the order
of 8 minutes on a personal computer (dual Intel Xeon 2.8 GHz, 2 GB RAM). The
drawbacks of the simplex method include its global convergence properties, especially
in scenarios with multiple global minima and non-smooth objective function surface
often seen in problems involving numerical approximation methods, such as the finite-
element method. Based on these considerations, exploration of alternative, more
robust optimization algorithms, such as simulated annealing and various forms of
genetic algorithms is an interesting direction for future investigation. While one of
the main drawbacks of such methods is their slow convergence, these limitations
may be partially addressed with faster hardware and parallel architectures. The
simulated parallel algorithm within a neighborhood (SPAN) proposed by Higginson
et al. (2005) [58] is a promising optimization approach, which is designed to minimize
inter-processor communication and closely retain the heuristics of the conventional
serial simulated annealing algorithm. This optimization method is appealing for
computational problems in biomechanics, as the authors demonstrate linear scaling
of the algorithm with the number of processors in parallel architectures.



Chapter 6

Conclusion and Future Work

This work provides methods and techniques for image-based mechanical charac-
terization of soft tissue by combining methods from computational biomechanics and
nonrigid image registration.

6.1 Image-based Mechanical Characterization of

Soft Tissues

Image based methods are an emerging approach to in vivo tissue characterization.
One of their advantages is the ability to measure the in vivo boundary conditions,
which can then be properly accounted for in the modeling process. Furthermore,
image-based methods provide full-field experimental data, which offers much richer
information about the material response. Devising proper methods for processing
volumetric data and estimating the deformation fields is essential for future advances
of these methods.

There are numerous challenges associated with these methods, such as being able
to acquire, process, and analyze the massive amounts of image data obtain from fast
3D imaging, such as 3D ultrasound.

6.2 Nonrigid Image Registration for Image-Guided

Surgery

The methods developed within this thesis show much potential in nonrigid image
registration for image-guided procedures. In such applications, the material con-
stitutive law and parameters must be known a priori. If a good tissue model and
properties are available, the understanding of the tissue’s mechanical response may
be directly incorporated into the nonrigid-image registration process and use a finite-
element biomechanical model as a mechanical regularizer (smoother) of the estimated
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deformation field between the reference and deformed (intra-operative) image.
This is an area of research with potentially very high impact. One of the aspects

that should be further investigated is the role of the individual parameters and their
effect on the accuracy of the resulting deformation field. Recent work by Rohlfing
(2003) [105] has shown that enforcing the incompressibility constraint in registration
of breast imaged data significantly improves the accuracy of registration, suggesting
that the tissue’s bulk modulus (compressibility) parameter significantly affects the
final deformation fields and is consistent with our finding in chapter 4 as well in
Jordan et al. (2008) [64].

6.3 Future Directions

Robust Local Image Motion Estimation

The local image motion estimation methods employed in this work rely on the
differential approach to the estimation of optical flow. This approach offers good
accuracy, as shown in the performance analysis section, and is appealing to its com-
putational efficiency. This is an especially important consideration when processing
large 3D ultrasound data sets. The differential optical flow methods are derived from
the first order Taylor series approximation of the continuity equation of the image do-
main and are therefore not well-suited for image sequences with large frame-to-frame
displacements.

Alternative methods, such as exhaustive local search methods or the optical flow
methods proposed by Singh (1990) [115] offer much improved accuracy under large
frame-to-frame deformations. The challenge in potential application of these methods
with the characterization framework lies in fast implementation to make them feasible
when processing large data sets from real-time 3D ultrasound.

Robust Global Optimization

Robust optimization methods for material parameter estimation are an important
area of further investigation. As discussed in chapter 6, fast simulated annealing
methods, such as the simulated parallel algorithm within a neighborhood (SPAN)
proposed by Higginson et al. (2005) [58] is a promising optimization approach, which
promises excellent potential for parallelization.

Fast Implementations

Regardless of the specific form of the full 3D nonlinear visco-poroelastic model, the
computational complexity prevents real-time applications, which are currently limited
to spring-mass models [20], linear elastic models [54, 31], and simple nonlinear models
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[132, 103]. Investigation of a systematic simplification of the final liver model will
therefore be fundamental to its adoption by the simulation community.

The recent work Miller et al. (2007) [94] and Taylor et al. (2007) [122] has demon-
strated that fast nonlinear visco-elastic biomechanical models can be implemented at
real-time frame rates by combining the benefits of the total explicit Lagrangian for-
mulation and the massively parallel architecture of modern graphics processing units
(GPUs).

Evaluating the computational efficiency of the proposed finite-element liver model
with the goal of real-time applications in surgical simulators and image-guided proce-
dures is an important next step towards applications of accurate models in the clinical
setting. A systematic approach to reducing the computational cost associated with
the current model may be devised, considering the following areas of potential im-
provements:

1. Simplified constitutive equations using the fast constituve model prototyping
methods developed in chapter 2, it is possible to evaluate the relative contribu-
tions of individual constitutive element in specific loading rates and deformation
modes. This approach suggests that a heuristic approach for potential simplifi-
cations of the constitutive form may be devised. Specifically, one can evaluate
accuracy vs. speed tradeoff of the full nonlinear visco-elastic model in compar-
ison to simpler constitutive configurations.

2. Simplified meshes the mesh density significantly affects the computational time
associated with the model preprocessing and solution. By pursuing a rigorous
mesh convergence study, analogously to the simple convergence study presented
in section 5.2.3, the dependence between numerical accuracy and mesh density
may be exploited for faster model run times. If the mesh accuracy limits are
well characterized for various loading histories, rates, and boundary interac-
tions, meshing guidelines may be developed to provide user-specified levels of
numerical accuracy while minimizing computational run time.

3. Preprocessing simplification of the constitutive form and pre-computation of
the model stiffness matrix using approximation techniques described by Gibson
and Mirtich (1997) [54] and Cotin et al. (1999) [31] may be investigated to
characterized the accuracy loss associated with such techniques.

4. Fast collision detection - fast collision detection algorithms are essential for effi-
cient surgical simulation and model interaction. It is an active area of research
with many potential avenues for improving the computation efficiency of tool-
tissue interactions, as well as tissue-tissue interaction, which are known to be
notoriously challenging. One of the potential avenues for improving the bound-
ary checking / collision detection is the use of novel analytical shape description
methods (in contrast to mesh-based methods), which would allows for fast and
potentially direct computation of model collisions.
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Other Applications

There are numerous opportunities and future directions for performing image-
based tissue characterization on other tissue types and organ systems. Furthermore,
the non-invasive nature of the image-based approach suggest that there are numer-
ous opportunities for image-based diagnostic applications. In addition, future efforts
should investigate the feasibility of applications on other scales (i.e. confocal mi-
croscopy and atomic force microscopy). The methods developed in this thesis are
independent of imaging modality as well as the length scale at which these methods
are applied. Confocal microscopy of cellular biomechanics is an emerging area of re-
search. In conjunction with atomic force microscopy, an experimental protocol very
similar to that described in this thesis may be devised and used to offer insight into
the cellular mechanical response and provide new mean for elucidating the structural
components and function of the cytoskeleton.

6.4 Final Words

This thesis work presented a general tissue characterization framework, which
relies on conventional indentation testing coupled with concurrent volumetric imag-
ing. The framework was applied to constitutive characterization of perfused porcine
liver, resulting in a visco-elastic noninear constitutive law and its finite-element im-
plementation capable of predicting mechancial response of the liver in situations rep-
resentative of surgical manipulation. Furthermore, the second chapter demonstrated
through incremental model improvements that the proposed eight parameter model
offers good trade-off between model simplicity (number of material parameters) and
accuracy under a wide range of applied strain rates. Because of the fast temporal
resolution of the volumetric imaging system, this tissue testing approach may be at-
tractive to visco-elastic image-based characterization of many other tissues and has
great potential for in vivo applications.
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Appendix A

Deriving Laplacian-Smooth Horn
& Schunck Optical Flow

First-Order Motion Field Smoothness

Traditionally, the Horn & Schunck algorithm [61] is implemented with a first-order
motion smoothness constraint. The corresponding functional to be minimized is

Φ(u, v, w) =

∫

Ω

(

(

∂I

∂x
u+

∂I

∂y
v +

∂I

∂z
w +

∂I

∂t

)2

+ αEs

)

dxdydz, (A.1)

where Es is the regularization term defined as

Es =

(

∂u

∂x

)2

+

(

∂u

∂y

)2

+

(

∂u
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)2

+

(

∂v
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)2

+

(

∂v
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)2

+

(

∂v

∂z

)2

+

(

∂w

∂x

)2

+

(

∂w

∂y

)2

+

(

∂w

∂z

)2

. (A.2)

First-order smoothness term results in a homogenous smoothing of the resulting
motion field and therefore blurs discontinuities, sinks, and sources in the motion
field. Other regularizers have been proposed in literature, including the Laplacian
[61], div-curl [30], and anisotropic flow-driven [128] operators.. Since the original
paper by Horn and Schunck does not derive the variational solution for the Laplace-
smooth regularization, it is derived in this document following the derivation of the
first-order smoothness solution.
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The minimization of the functional Φ(u, v, w) in Eq. A.1 can be achieved through
calculus of variations. The Euler-Lagrange equations are the essential tool in varia-
tional problems and are analogous to zero-slope estimation (setting partial derivatives
to zero) in calculus. The Euler-Lagrange equations for the functional in Eq. A.1 are

∇2u =
1

α

(

∂I

∂x
u+

∂I

∂y
v +

∂I

∂z
w +

∂I

∂t

)

∂I

∂x
(A.3)

∇2v =
1

α

(

∂I

∂x
u+

∂I

∂y
v +

∂I

∂z
w +
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∂t

)

∂I

∂y
(A.4)

∇2w =
1

α

(

∂I

∂x
u+

∂I

∂y
v +

∂I

∂z
w +

∂I

∂t

)

∂I

∂z
. (A.5)

To solve this variational problem in a finite-difference scheme, the Laplacian terms
can be approximated numerically as

∇2ψ ≈ ψ̄ijk − ψijk, (A.6)

where ψ̄ijk is a Gaussian-weighted spatial average around point (i, j, k). The Eqns.
A.4 can then be rewritten as

ūijk − uijk =
1

α

(

∂I

∂x
uijk +

∂I

∂y
vijk +

∂I

∂z
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(A.7)

v̄ijk − vijk =
1

α
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∂y
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w̄ijk − wijk =
1

α
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∂x
uijk +
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∂y
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∂I

∂z
wijk +
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∂z
. (A.9)

The iterative solution to this system of equation is solved by the Gauss-Seidel
iterative approach. Iterative techniques are preferable for large systems, such as this
one. Gauss-Seidel is prefered over the Jacobi method because it requires no vector
copying and additional storage. The Gauss-Seidel iterative technique for a system of
equations Aφ = b can be written as

φk+1
i =

1

aii

(

bi −
∑

j<i

aijφ
k+1
j −

∑

j>i

aijφ
k
j

)

. (A.10)

Therefore, the resulting set of iterative equations (after dropping the ijk subscript
for brevity) is

uk+1 = ūk −
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(A.11)
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vk+1 = v̄k −
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wk+1 = w̄k −
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Laplacian Motion Field Smoothness

Extending the Horn & Schunck algorithm to Laplacian-smooth regularization re-
quires reformulation of the functional Φ(u, v, w). While the overall form remains
as

Φ(u, v, w) =

∫

Ω

(

(

∂I

∂x
u+

∂I

∂y
v +

∂I

∂z
w +

∂I

∂t

)2

+ αEs

)

dxdydz, . (A.14)

The Es is in this case defined as

Es =
(

∇2u
)2

+
(

∇2v
)2

+
(

∇2w
)2
, (A.15)

where the Laplacian operator ∇2 is defined as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (A.16)

Minimization of Φ(u, v, w) is again performed by the Euler-Lagrane equations,
which in this case yield the following system of equations
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∇4w =
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where ∇4 is the biharmonic operator defined as

∇4 = ∇2∇2 =
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In two-dimensional problems, the numerical approximation of the biharmonic op-
erator can be obtained from 2D convolution of 5-point 2D Laplacian kernels

k =





0 1 0
1 −4 1
0 1 0



 , (A.21)

yielding the following differencing scheme:

∇4ψi,j = −20ψi,j + 8 (ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1)

− 2 (ψi+1,j+1 + ψi+1,j−1 + ψi−1,j+1 + ψi−1,j−1)

− 1 (ψi+2,j + ψi−2,j + ψi,j+2 + ψi,j−2) . (A.22)

Similarly, the biharmonic operator in 3D can be obtained by 3D convolution of
two 7-point Laplacian kernels (center-point weight is -6, 6 nearest neighbors have
weight 1), yielding the following finite-difference approximation

∇4ψi,j,k = −42ψi,j,k + 12 (ψi+1,j,k + ψi−1,j,k + ψi,j+1,k + ψi,j−1,k + ψi,j,k+1 + ψi,j,k−1)

− 2 (ψi+1,j+1,k + ψi+1,j−1,k + ψi−1,j+1,k + ψi−1,j−1,k)

− 2 (ψi+1,j,k+1 + ψi−1,j,k+1 + ψi,j+1,k+1 + ψi,j−1,k+1)

− 2 (ψi+1,j,k−1 + ψi−1,j,k−1 + ψi,j+1,k−1 + ψi,j−1,k−1)

− 1 (ψi+2,j,k + ψi−2,j,k + ψi,j+2,k + ψi,j−2,k + ψi,j,k+2 + ψi,j,k−2) . (A.23)

We can then proceed by expressing the biharmonic term as

∇4ψi,j,k = ¯̄ψi,j,k − ψi,j,k, (A.24)

where ¯̄ψi,j,k is defined as

¯̄ψi,j,k =
12

42
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Under this definition of ¯̄ψi,j,k the iterative Gauss-Seidel equations have a form identical
to the standard Horn & Schunck formulation:

uk+1 = ¯̄uk −
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(A.26)
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wk+1 = ¯̄wk −
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A.1 Euler-Lagrange Equations

The general form of the Euler-Lagrange equations for a functional L(x, f(x), ∂f
∂x
, · · · , ∂kf

∂xk )
is

∂L

∂f
− d

dx
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∂ ∂f
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d2

dx2
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∂ ∂2f
∂x2

− · · · − (−1)k dk

dxk

∂L

∂ ∂kf
∂xk

= 0. (A.29)

A.1.1 Gradient-Smooth Horn & Schunck

The Euler-Lagrange equations yield the following equations for the first-order smooth-
ing of the motion field:

∂F (x, y, z, u, v, w)

∂u (x, y, z)
− d

dx

∂F (x, y, z, u, v, w)

∂ ∂u(x,y,z)
∂x

−

− d

dy

∂F (x, y, z, u, v, w)

∂ ∂u(x,y,z)
∂y

− d

dz

∂F (x, y, z, u, v, w)

∂ ∂u(x,y,z)
∂z

= 0 (A.30)

∂F (x, y, z, u, v, w)

∂v (x, y, z)
− d

dx

∂F (x, y, z, u, v, w)

∂ ∂v(x,y,z)
∂x

−

− d

dy

∂F (x, y, z, u, v, w)

∂ ∂v(x,y,z)
∂y

− d

dz

∂F (x, y, z, u, v, w)

∂ ∂v(x,y,z)
∂z

= 0 (A.31)
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∂F (x, y, z, u, v, w)

∂w (x, y, z)
− d

dx

∂F (x, y, z, u, v, w)

∂ ∂w(x,y,z)
∂x

−

− d

dy

∂F (x, y, z, u, v, w)

∂ ∂w(x,y,z)
∂y

− d

dz

∂F (x, y, z, u, v, w)

∂ ∂w(x,y,z)
∂z

= 0. (A.32)

A.1.2 Laplacian-Smooth Horn & Schunck

In the second-order (Laplacian) regularization the Euler-Lagrange equations take the
form

∂F (x, y, z, u, v, w)

∂u (x, y, z)
+

d2

dx2

∂F (x, y, z, u, v, w)

∂ ∂2u(x,y,z)
∂x2

+

+
d2

dy2

∂F (x, y, z, u, v, w)

∂ ∂2u(x,y,z)
∂y2

+
d2

dz2

∂F (x, y, z, u, v, w)

∂ ∂2w(x,y,z)
∂z2

= 0 (A.33)

∂F (x, y, z, u, v, w)

∂v (x, y, z)
+

d2

dx2

∂F (x, y, z, u, v, w)

∂ ∂2v(x,y,z)
∂x2

+

+
d2

dy2

∂F (x, y, z, u, v, w)

∂ ∂2v(x,y,z)
∂y2

+
d2

dz2

∂F (x, y, z, u, v, w)

∂ ∂2v(x,y,z)
∂z2

= 0 (A.34)

∂F (x, y, z, u, v, w)

∂w (x, y, z)
+

d2

dx2

∂F (x, y, z, u, v, w)

∂ ∂2w(x,y,z)
∂x2

+

+
d2

dy2

∂F (x, y, z, u, v, w)

∂ ∂2w(x,y,z)
∂y2

+
d2

dz2

∂F (x, y, z, u, v, w)

∂ ∂2w(x,y,z)
∂z2

= 0. (A.35)


