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ABSTRACT 

Autonomous task performance is the ultimate goal of robotics.  To this end, 

enhancing robot perception, the ability of a robot to recognize and model its environment, 

is essential.  This thesis presents design tools for contact-based perceptual systems 

applicable to manipulation tasks which can be described by sequences of contact states 

between rigid objects.  The fundamental component of such systems is a contact state 

estimator.  This estimator uses sensor data collected as objects are manipulated to 

determine the sequence of actual contact states from a network of possible contact states.  

In the process, it also estimates the parameters, e.g., geometric parameters, of the 

individual contact state models. 

In this thesis, a rigorous approach to contact state estimator design is proposed which 

involves characterizing four properties of a given contact state network, set of sensors, 

and associated contact state models.  These properties are: (1) the distinguishability of 

contact states, (2) the observability of each contact state inside the state network, (3) the 

 iv



 v

identifiability of each contact state model’s parameters, and (4) the excitability of the 

sensor inputs to permit estimation of all the parameters associated with a contact state 

model.  The first two properties address the feasibility of contact state estimation, while 

the last two address the feasibility of estimating the parameters of the individual contact 

states. 

The major contribution of this thesis is the development of a unified analytic 

approach to testing the distinguishability of contact states and the identifiability of their 

parameters.  The testing method is applicable to any contact state model regardless of the 

chosen sensing modality.  The concept of contact observability is also introduced as a 

forward projection of the parameter history associated with the execution of the task.  

The effect of the sensor signals on the parameters is analyzed by studying the invertibility 

of an excitability matrix representing the relationship between the structure of the contact 

states and the sensor signals.  Finally, an implementation of a contact state estimator is 

presented using a hidden Markov model to combine a nonlinear least squares estimator 

with prior information from a contact state network. 
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Chapter 1  

Introduction 

 

 

 

Robotic systems are used in a variety of manipulation tasks ranging from computer 

chip assembly to undersea connector mating.  A vast majority of these systems can be 

classified into three categories: a) teleoperated systems, b) semi-autonomous systems, 

and c) autonomous systems, as illustrated in Fig. 1.1.  Each of these systems is defined by 

two capabilities.  The first is perception, which includes sensing and modeling the 

environment in which the robot operates.  The second is action, which includes planning 

the sequence of motor commands to accomplish the task and controlling their execution.  

The discriminating factor between these three systems is whether the human or the 

machine is in charge of perception and action.  Teleoperated and semi-autonomous 

systems are commonly used to perform manipulation tasks in poorly known 

environments since humans can adapt and react quickly to unplanned situations (e.g., 

space exploration, nuclear material handling, undersea oil development).  Autonomous 
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systems, on the other hand, are currently restricted to assembly tasks in well-modeled 

environments (e.g., part mating assembly) since machine perception is limited in poorly 

known environments. 
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Figure 1.1: Robot classification. 

 

A central goal of robotics research is the creation of robotics systems that can perform 

tasks autonomously in poorly known environments.  To this end, enhancing the ability of 

a robot to perceive and model its environment is essential.  In manipulation tasks, this 

level of perception depends on the fundamental ability of the system to detect and control 

contacts between manipulated objects.  At each step of task execution, motion planning 

and control involve moving from one contact state to another.  In these situations, the 

robot must be able to recognize and distinguish among all of the contact states involved 

in task execution.  Furthermore, in order to implement contact-based motion planning and 

control laws, it is necessary to estimate during contact the parameters (e.g., geometric 

parameters) describing the contact.  These two problems of contact state estimation and 

parameter estimation constitute the core of perceptual systems applicable to manipulation 
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tasks.  In such systems, a fundamental tool to solve this dual estimation problem is a 

contact state estimator.  This estimator uses sensor data collected as objects are 

manipulated to determine the sequence of actual contact states from a network of possible 

contact states.  In the process, it also estimates the parameters of the individual contact 

state models. 

The objective of this thesis is to provide design tools that assess the feasibility of 

implementing a contact state estimator given a set of sensors, a list of parameterized 

contact state models, and a contact state network representation of the task.  This research 

addresses four important properties required for the implementation of the estimator.  

These properties are: (1) the distinguishability of contact states, (2) the observability of 

each contact state inside the state network, (3) the identifiability of each contact state 

model’s parameters, and (4) the excitability of the sensor inputs to permit estimation of 

all the parameters associated with a contact state model. 

This chapter provides an overview of the construction of a contact state estimator.  In 

particular, it is shown that the design and implementation of an estimator requires the 

solution to nine sub-problems, seven of which are part of the design process.  The next 

section introduces and defines these sub-problems.  The following section lists the 

assumptions on the contact models utilized in this thesis and defines the concept of 

poorly known environments with respect to these assumptions.  An outline of the work 

presented in this thesis is described at the end of the chapter. 
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1.1 Contact State Estimator 

Manipulation tasks can be represented as collections of contact states that describe 

how the manipulated object is in contact with objects in the environment.  As an 

example, Fig. 1.2 illustrates a possible sequence of contact states associated with a planar 

peg-in-hole insertion task.  The number of contact states corresponds to the number of 

possible contacts between the features of the manipulated peg and its environment (e.g., 

vertices, edges).  In this example, the set of all possible states comprises all the one-point 

contacts, two-point contacts and line contacts between the peg and the hole.  Note that 

Fig. 1.2 shows one possible contact state sequence; however, other sequences exist.  

 

 
Figure 1.2: Peg-in-hole insertion decomposed into a sequence of contact states. 

 

The completion of the peg-in-hole insertion task shown in Fig. 1.2 requires a control 

algorithm that depends on the nature of the contact states as well as the parameters 

characterizing these contacts (e.g., location of the hole, dimension of the peg).  For 

example, different control laws must be applied whether the peg is inside or outside the 

pe
g 

ho
le

 
 

robot gripper 
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hole.  Similarly, the gains of the controller must be set differently if the hole is tilted or 

not.  In the context of poorly known environments; however, this information is partially 

known and needs to be accurately estimated using a contact state estimator.  As shown in 

Fig. 1.3, contact state estimation in a poorly known environment is a dual problem 

involving the estimation of contact parameters as well as contact states, given a task 

description and a set of sensors.  These two estimates can then be used in a control 

algorithm and a motion planner to achieve robot autonomy. 

 

 

 

Figure 1.3: Perceptual system applicable to manipulation tasks. 
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1.1.1 Design of a Contact State Estimator 

Given a manipulation task (e.g., pick-and-place, peg-in-hole insertion) and a list of 

contact states describing the possible geometric interactions among the objects in contact 

(i.e., contact topology), the goal of the design process is: 1) to encode the task into a 

network of states in which each node represents a possible contact state, and 2) to model 

each contact state as an equation that relates the sensors of the manipulating robot and the 

parameters of the objects in contact.  As illustrated in Fig. 1.4, seven problems need to be 

solved when designing a contact state estimator: 1) task representation, 2) contact state 

modeling, 3) task encoding, 4) contact state identifiability, 5) data excitation, 6) contact 

state distinguishability and 7) contact state observability.  Contact state modeling and 

task encoding constitute the outputs of the design process.  The last four problems of Fig. 

1.4 are used to verify that these two outputs satisfy the conditions of identifiability, 

excitability, distinguishability, and observability necessary to the implementation of a 

contact state estimator.  As noted in the figure, detailed descriptions of these seven 

problems are presented in various chapters of the thesis. Brief definitions of the problems 

are as follows: 

 
1) Task representation:  The objective of this step is to resolve the task into a sequence 

of contact states between the manipulated object and the fixed objects in the 

environment.  This procedure is divided into two parts.  First a list of elementary 

contact states (i.e., contact topology) representing the possible contact interaction 

between the objects in the task is chosen.  Then, these elements are used to 

decompose the task into a graph of possible contact state sequences.  
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2) Contact state modeling:  Mathematical models are needed for each contact state.  This 

modeling problem is addressed by finding constraint equations that are used to relate 

the sensor data, ( )s t , and the parameters p  characterizing the objects in contact. 

3) Task encoding:  The goal of the encoding phase is to find a mathematical way of 

representing the information associated with the task.  The proposed solution is to 

represent the contact state graph using a probability transition matrix in which each 

element corresponds to the likelihood of transition between states. 

4) Contact state identifiability:  The identifiability test verifies that the parameters 

associated with each contact state model can be estimated from the available sensing 

modalities. 

5) Data excitation:  Sensor data need to be sufficiently exciting to estimate all the 

parameters associated with a contact state model.  The objective of the data excitation 

step is to find sensor paths that can ensure the estimation of all the parameters 

associated with a given contact model.  

6) Contact state distinguishability:  Distinguishability tests if the proposed contact state 

models and associated sensors are sufficient to disambiguate each contact state from 

the others in a given list of elementary contact states.  For a given task, the result is to 

assemble contact states into subsets which are distinguishable from each other. 

7) Contact state observability:  Observability verifies that each state in a given contact 

state network is distinguishable using sensor and task information.  This implies that 

task information is sufficient to disambiguate the contact states within each 

distinguishable subset of states. 
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Figure 1.4: The seven design steps of a contact state estimator. 
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As illustrated in Fig. 1.4, the sub-problems associated with the design of a contact 

state estimator can be interdependent.  For example, distinguishability, identifiability, and 

data excitation use analytical techniques that are based on the equations provided by the 

modeling step of the design process.  Observability analysis requires distinguishability 

testing to investigate the distinguishability of every contact state inside a given contact 

state graph.  Similarly, the data excitation step utilizes contact state models that have 

been shown to be identifiable since the parameters associated with an unidentifiable 

contact models cannot be estimated regardless of the chosen sensor path. 

Contact state modeling and task encoding result in mathematical representations of 

both the contact states and the contact state graph that are then utilized in the 

implementation of the estimator.  As shown in Fig. 1.4, the design of the contact state 

models and the design of the contact state network are iterative processes that depend on 

the results of the identifiability test, data excitation test, and observability test.  For 

example, if contact models are shown to be unidentifiable, then they need to be 

remodeled (e.g., alternate sensing modality) or removed from the list of candidate contact 

states.  Similarly, an unobservable contact state network must be modified until it 

satisfies the observability property. 

 

1.1.2 Implementation of a Contact State Estimator 

Given a set of sensors, a list of parameterized contact state models, and a contact state 

network representation of the task, the implementation phase focuses on building a 

contact state estimator that generates the most likely sequence of contact states 
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corresponding to the data as well as the states’ associated parameters.  As illustrated in 

Fig. 1.5, this filter requires an estimation algorithm and a detection algorithm.  These are 

defined as follows: 

 

8) Multiple Model Estimation:  Given a sequence of sensor data points and a contact 

state network obtained from the design phase, a multiple model estimation algorithm 

is implemented to estimates the parameters and residual associated with each contact 

model of the state network.  The implementation of a multiple model estimation 

algorithm using sliding nonlinear least squares is presented in Chapter 6.  

 

9) Contact State Estimation:  The decision algorithm is built around a decision test that 

requires two inputs.  First, estimation residuals are used to judge how well a portion 

of the data stream fits the possible contact states.  Second, conditional probability 

theory is used to adjust these results to account for knowledge of prior and 

anticipated contact states as embodied in the task’s contact state network created in 

the design phase.  A decision test based on hidden Markov model is discussed in 

Chapter 7.  
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Figure 1.5: Implementation schematic of a contact state estimator. 
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1.2 Assumptions 

Without loss of generality, contact models are considered for pairs of objects.  One 

object, termed the manipulated object, is assumed to be gripped and manipulated by a 

robot. The second object is called the environment object.  The concept of a poorly 

known environment is defined by the following assumptions:   

 

 Objects are rigid polygons or polyhedrons of known shapes but unknown 

dimensions. 

 The manipulated object does not slip in the gripper. 

 The environment object is fixed with respect to a world coordinate frame.  

 In the most general case, the configuration (position and orientation) of the 

manipulated object with respect to the gripper is unknown and the configuration of 

the environment object with respect a world frame is unknown. The parameters 

associated with the objects’ configurations (6 for polygonal models and 12 for 

polyhedral models) constitute unknown parameters in the contact models. 

 Contact models are comprised of nonlinear equalities involving configuration 

parameters and sensor variables. Inequality constraints (e.g., overlap constraint and 

non-penetration constraint) are not considered. 

 Uncertainty in sensor variables (noise) is not considered in the design phase of the 

estimator; however, it is considered in its implementation phase. 
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These assumptions can be directly related to the four types of uncertainties typically 

considered in the literature: sensing uncertainty, manufacturing uncertainty (i.e., 

uncertainty in the shape and dimension), uncertainty in the location of the manipulated 

object inside the gripper, and uncertainty in the location of the static objects inside the 

environment (Rosell et al. 2001).  In this thesis, sensing uncertainties are implicitly 

considered in the implementation of the contact estimator but not in its design.  The effect 

of manufacturing on the shape of the objects is not considered (i.e., a flat surface is not 

considered as a curved surface due to manufacturing uncertainties).  The last two types of 

uncertainties are considered since the locations of the manipulated and fixed objects are 

assumed to be unknown. 

 

1.3 Outline of the Thesis 

Chapter 2 presents a literature survey on contact estimation and discusses its 

relevance to contact state estimation in poorly known environments.  First, prior work on 

contact state estimation is reviewed with respect to the nine sub-problems presented in 

Fig. 1.4 and Fig. 1.5.  Next, the limitations of the prior work in the context of poorly 

known environments are discussed and related to the contributions of this thesis.  

 

Figures 1.4 and 1.5 provide a map for the organization of this thesis and illustrate how 

the construction of a contact state estimator is analyzed throughout the chapters of this 

document.  Chapter 3 starts by reviewing the contacting topology used to describe contact 

states geometrically.  The second part of this chapter describes the modeling of contact 
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states using pose, velocity and force measurements.  In particular, it is shown how 

contact states can be modeled as homogeneous nonlinear algebraic equations 

parameterized by time-dependent sensor data and time-independent parameters 

representing the unknown locations and positions of the two objects in contact.  An 

illustration of the three modeling techniques is provided at the end of the chapter. 

 

Chapter 4 defines the problems of distinguishability and identifiability in the context 

of contact state estimation.  Both problems are based on finding sets of time-independent 

parameters that can satisfy the contact models simultaneously.  As one of the major 

contributions of this thesis, a unified solution to the two problems is proposed using 

Taylor series expansion.  In this framework, the structure of the contact models is 

decomposed as sets of algebraic equations given by the Taylor coefficients.  

Distinguishability and identifiability of contact state models are then analyzed by solving 

these sets of equations for the time-independent unknowns parameterizing the contact 

states.  This technique is implemented for several contact states modeled using kinematic 

sensing.  A complexity analysis, based on the structural properties of the kinematic 

equations is presented at the end of the chapter. 

 

Chapter 5 addresses the problem of task feasibility in poorly known environments.  To 

this end, the observability of the contact state graph representing the task is analyzed.  A 

solution to this problem is given by combining distinguishability testing with the 

information contained in the history of the estimated parameters associated with the 
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execution of the task.  Once the contact state graph is shown to be observable, the 

encoding of the task is addressed using a probability transition matrix. 

 

Chapters 6 and 7 focus on the implementation of a contact state estimator.  The 

realization of an estimation algorithm suited to parameter estimation in poorly known 

environments is discussed in Chapter 6.  First, the Levenberg-Marquardt, a nonlinear 

least squares technique shown to be robust to poorly known initial conditions is reviewed 

as well as the excitation condition necessary to its implementation.  Thereafter, an 

explicit estimation scheme based on multiple differentiations and nullspace analysis is 

presented.  This method proves to be fast, but too sensitive to noise to be practically 

implemented.  However, the analytical nature of the technique provides valuable insights 

on the type of exciting paths necessary for the estimation of the parameters associated 

with the contact state models. 

 

Chapter 7 focuses on the implementation of a contact state detection algorithm.  The 

assessment is performed by a Hidden Markov Model (HMM), which combines a measure 

of how well each set of contact equations fit the sensor data with the probability of 

specific contact state transitions.  The approach is illustrated for a three dimensional peg-

in-hole insertion using a tabletop manipulator robot.  Contact states are modeled by pose 

equations parameterized by time-dependent sensor data and time-independent object 

properties.  At each sampling time, multiple model estimation coupled with an HMM are 
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used to assess the most likely contact state.  Using only position sensing, the contact state 

sequence is successfully estimated without knowledge of nominal parameter values.   

 

Chapter 8 concludes the thesis by summarizing its contribution to the field of contact 

state estimation.  Suggestions for future research are also presented at the end of the 

chapter.  
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Chapter 2  

Prior Work  

 

 

 

Contact state estimation has been applied to a variety of applications, including 

model-based compliant motion (De Schutter et al. 1999, Lefebvre et al. 2003), fine 

manipulation (McCarragher and Asada 1996, Eberman 1997), task monitoring (McCar-

ragher and Asada 1993, Hannaford and Lee 1991), man-machine cooperation (Dupont et 

al. 1999, Debus et al. 2000) and robot learning (Pook and Ballard 1993, Skubic and Volz 

2000).  The contact state estimators used in these applications are designed and imple-

mented using analytical and numerical tools that can provide solutions to one or several 

of the sub-problems illustrated in Fig. 1.4 and Fig. 1.5.  This chapter presents an over-

view of these tools and discusses their limitations in the context of poorly known envi-

ronments.  

The first section reviews prior work on contact state estimation and its associated sub-

problems.  This section is divided into two parts.  First, a review of contact state estima-
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tors available in the literature is presented.  Then the most relevant techniques found in 

the robotic literature with respect to each of the sub-problems defined in Chapter 1 are 

reviewed.  The next section summarizes the limitations of the current techniques applica-

ble to contact state estimation.  Based on these limitations, the objectives of this thesis are 

presented at the end of the chapter. 

 

2.1 Contact State Estimator 

Using contact states to perform manipulation tasks is not a new concept.  The concept 

originated from work in fine motion planning and force control in which researchers 

quickly realized that a task is a contact-driven process that requires appropriate parame-

ter-dependent control laws at each of its contact phases.  One of the first papers to 

propose a solution to this problem is due to Asada and Hirai (1989).  Their work formal-

ized the concept of contact state estimation by reducing it to three components: symbolic 

representation of assembly processes (i.e., task representation in this text), contact state 

modeling, and contact state classification (contact state detection in this text).  This 

technique was implemented successfully to monitor ten contact states during a fric-

tionless quasi-static part-mating assembly task (Hirai 1994).  The approach was limited to 

tasks with a known geometry (i.e., object shape and size were known, the location of the 

object inside the gripper was known, the locations of the objects in the environment were 

known).  

Recent works on parameter-based contact state estimation are focusing on relaxing 

these constraints.  In this context, contact state estimation becomes a dual coupled 
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estimation problem in which both contact states and their parameters are estimated.  

Progress in contact state modeling and parameter estimation has been driven by research 

in model-based compliant motion (e.g., Bruyninckx 1995, De Schutter et al. 1999, and 

Lefebvre et al. 2003).  In Bruyninckx for example, twist and wrench measurement 

equations are utilized to model contact states as virtual mechanisms parameterized by the 

first and second order geometric properties of the contact surfaces.  These parameterized 

models are then used as the measurement equations of a Kalman filter (De Schutter et al. 

1999).  Contact transitions are detected by monitoring the consistency of the filter’s 

innovations using a statistical threshold.  In Eberman (1997), contact state estimation is 

performed using a statistical observer.  The observer uses maximum likelihood to esti-

mate the parameters associated with linear contact models, and then a sequential hy-

pothesis tester based on the estimation’s log-likelihood is utilized to detect contact state 

transitions.  This approach presents the advantage of using a common language (i.e., 

probability) to model and detect the contact states.  As a result, contact models can be 

easily augmented without changing the detection algorithm (e.g., add probabilistic impact 

model, add probabilistic vibration model).  

Both of these approaches assume relatively small uncertainty and good nominal val-

ues for the parameters.  Therefore, these techniques cannot be used in a poorly known 

environment; nevertheless, they provide a good foundation upon which to build a contact 

state estimator.  

Many of the concepts presented in this thesis have been defined in the context of fine 

motion planning in semi-structured environments.  The objective of the next sections is to 
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list the most relevant techniques with respect to the sub-problems defined in Chapter 1 

(i.e., task representation, contact modeling, task encoding, contact state identifiability, 

contact state distinguishability, contact state observability, data excitation, parameter 

estimation, and contact state estimation). 

 

2.1.1 Task Representation 

Two major approaches are commonly used to represent tasks: the explicit approach 

and the model-based approach (Park 1977).  In the explicit approach, the task is repre-

sented by the actions that are needed to bring it to completion (e.g., grasp, move, insert).  

In the model-based approach, the task is described in terms of the geometric objects 

involved in its completion (e.g., polygons, polyhedrons).  The lack of detail in the explicit 

approach can leave some flexibility in the representation that can lead to multiple repre-

sentations.  On the other hand, the model-based approach offers a level of detail that can 

be used to represent tasks uniquely and automatically (e.g., Lozano-Perez 1981, Asada 

and Hirai 1989).  This section only reviews prior work on model-based task representa-

tion.  Geometric and force representations are reviewed with an emphasis on geometric 

representation.  

 

Geometry-based Task Representation 

Two questions must be addressed when representing a task using geometry: what are 

the geometric ‘building blocks’ utilized in the representation?  How can they be used to 
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discretize the task?  These two issues are commonly defined in the literature as contact 

topology and task decomposition. 

 

Contact Topology 

In the context of motion planning, tasks are typically described using rigid concave or 

convex polygons or polyhedrons (e.g., Ambler and Popplestone 1975, Lozano-Perez 

1981).  This assumed geometry of the task allows for its natural decomposition into sets 

of primitive geometric constraints called contact states in Asada and Hirai (1989), 

elemental contacts in Desai and Volz (1989), or principal contacts in Xiao (1993).  

Several contacting topologies have been proposed in the literature to describe contact 

states in terms of contacting elements such as vertex, edge, and face (e.g., Lozano Perez 

1983, Desai and Volz 1989, and Xiao 1993).  The most complete topology is provided by 

Xiao (1993).  In this approach, contact states primitives are called principal contacts and 

are described as pairs of contacting elements which are not part of the boundaries of other 

contacting elements.  For example, a face-face contact is considered as a single face-face 

contact and not as a combination of vertex-face or edge-face contacts.  In this framework, 

Xiao showed that a task can be decomposed into contact formations that can be described 

by combining four principal contacts in the polygonal case and ten principal contacts in 

the polyhedral case.  

The contact state decomposition of manipulation tasks involving curved objects re-

mains an open problem.  Recent progress has been made by Luo et al. (2004). In this 
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work, the concept of principal contact has been extended to curved objects by segmenting 

their curvature into curve segments and surface patches. 

 

Task Decomposition 

While task topology deals with the problem of defining a set of possible contact states 

that can be used to describe a task, task decomposition looks at the possible connections 

between contact states.  This step is at the root of any motion planning approach since it 

provides a map of the possible strategies that can lead to task completion.  A common 

tool used in motion planning is the concept of configuration-space obstacles introduced 

by Lozano-Perez (1981, 1983).  In this representation, the configurations (i.e., positions 

and orientations) of the manipulated block in the Cartesian space correspond to points in 

the configuration space.  The end result of a configuration space obstacle is a manifold 

that corresponds to all the possible configurations that result in contacts between a 

manipulated object and its environment.  In a contact state point of view, this manifold 

can be partitioned into regions that correspond to the different contact states composing 

the task (e.g., C-surface in Mason 1981).  Computation of configuration spaces has been 

an important research topic in the motion planning community, and as a result many 

algorithms are available (e.g., gross motion planning survey by Hwang and Ahuja 1992).  

Nevertheless, the complexity of the computation is such that computing configuration 

spaces for complex 3D models remains an open problem.  

As an alternative to configuration spaces, contact state graphs can also be utilized to 

decompose tasks (e.g., Asada and Hirai 1989, Desai and Volz 1989, Hirukawa et al. 



 23

1994, and Xiao and Ji 2001).  This concept, introduced by Asada and Hirai (1989), 

reduces a task to a discrete representation given by a graph in which each node represents 

a contact state and each link represents a possible transition from a contact state to 

another.  In contrast to configuration space representations that result in a continuous 

representation of the task, contact state graphs result in a discrete representation of the 

task in the Cartesian space.  This discretization allows for fast computation even for 

complex 3D models.  This representation permits motion planning by searching paths in 

the graph that lead to a specified goal given a specified starting contact state.  Xiao and Ji 

(2001) have made a significant contribution to contact state graph computation.  In their 

approach, contact state graphs are built by merging subgraphs that are obtained by 

repeatedly decreasing the level of constraint associated with the desired final contact 

formation.  This method allows for fast and automatic generation of contact state graphs 

for complex 3D polyhedra.  

 

Force-based Task Representation 

Task representation using force analysis has been little studied in the literature.  Brost 

and Mason (1989) present a graphical method in which a line of force maps to point in 

the plane, a friction cone maps to a line segment and multiple friction contacts map to a 

convex polygon.  This mapping is defined as the force-dual space.  This space is built 

using three topological elements: the combination of the plane of positive moments, the 

plane of negative moments, and the line of zero moments.  This technique has been 

implemented as a contact distinguishability tool by Rosell et al. (2001) for analyzing 
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planar motion feasibility under uncertainty.  No extension to three dimensions is known 

to the author.  

A combined force and geometric representation of tasks is presented by Erdmann 

(1994).  In this approach, the concept of C-space is augmented by incorporating the 

constraints that represent the effect of the friction cone.  This approach is useful to 

determine the possible motions of an object subjected to force and torque. 

 

2.1.2 Contact State Modeling 

A considerable literature on deriving closed-form expressions to characterize contact 

states appears in the contexts of motion planning (e.g., Ambler and Popplestone 1975, 

Farahat et al. 1995a, Hirai and Asada 1993, McCarragher and Asada 1993, Xiao and 

Zhang 1997), grasping (i.e., Cai and Roth 1987, Montana 1988), and model-based 

compliant motion (i.e., Bruyninckx et al. 1995, De Schutter et al. 1999).  This section 

reviews how contact states have been modeled in the literature.  The first part of this 

section addresses prior work on physics-based representations of contact states, whereas 

the second part reviews the literature on probabilistic-based representations of contact 

states. 

 

Physics-Based Modeling of Contact States 

Three types of modeling techniques have been commonly used in the literature to rep-

resent contact states: kinematic models, quasi-static force models, and dynamic force 

models.  
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Kinematic Representation 

In terms of kinematic representation of the contact states, Popplestone et al. (1980) is 

an early reference in which configuration constraints between objects are extracted from 

the spatial relationships among the objects’ features (e.g., face, edge).  In Farahat et al. 

(1995a), the contacts between a polygonal workpiece manipulated by two or three active 

polygons are represented as a set of homogeneous kinematic equations parameterized by 

the configurations of the contacting objects.  Closed-form expressions for the possible 

configurations of the grasped object are then derived by solving the set of kinematic 

equations.  Xiao and Zhang (1997) extended the analysis of polygonal contact states by 

providing an exhaustive description of all the possible kinematic equality constraints, 

overlap constraints, and non-penetration constraints characterizing the contacts. 

The above kinematic representations only deal with objects defined using first order 

geometric properties (i.e., orientation of contact normals and location of contact points). 

The kinematic description of objects exhibiting second order geometric properties (i.e., 

curvatures) can be found in the grasp literature.  For example, a kinematic description of 

the relative motion of two bodies undergoing point contact is studied in the work of Cai 

and Roth (1987) and Montana (1988). 

 

Quasi-Static Force Representation 

Force representation of contact states has been extensively studied in a quasi-static 

point of view.  Whitney (1982) presents one of the earliest and most complete works on 
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the kinematic and force characterization of the three different phases associated with a 

chamfered peg-in-hole assembly task (i.e., chamfer crossing, one-point contact, two-point 

contact).  Desai and Volz (1989) use static equilibrium conditions to describe the contact 

forces associates with planar contact states.  The resulting equality equations are then 

transformed into inequalities to model the effects of sensing uncertainties.  Hirai and 

Asada (1993) utilize the concept of polyhedral convex cones to characterize the range of 

forces that satisfies the unidirectional constraints due to contacts between polyhedral 

objects.  The same reasoning is also applied to describe the range of admissible dis-

placement sets.  Moreover, Hirai (1994) showed that both cones are dual to each other 

when the constraints are unidirectional. 

The effects of friction have been extensively investigated in the task assembly litera-

ture (e.g., peg-in-hole insertion).  Two early and much-cited references on the effect of 

friction forces during a peg-in-hole insertion are Simunovic (1979) and Whitney (1982).  

In the context of contact state estimation, however, friction is often neglected. This 

simplification is due to the estimation complexity added by the nonlinear effect of 

friction.  An exception is the work of Farahat et al. (1995b) in which friction forces 

obeying Coulombs law are linearized and represented as an extra constraint on the quasi-

static equilibrium conditions that characterize the contact formations.  One way to avoid 

the modeling complexity of friction is to encode it as a probabilistic disturbance (e.g., 

Eberman 1995, De Schutter et al. 1999). 

Bruyninckx and co-workers present a systematic and unifying approach to contact 

state modeling in a series of papers on model-based compliant motion (Bruyninckx 1995, 
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Bruyninckx et al. 1995, De Schutter et al. 1999, Lefebvre et al. 2003).  In this approach, 

contacts between a manipulated object and the environment are modeled as virtual 

mechanisms parameterized by the first and second order geometric properties of the 

contact surfaces.  Motion freedoms and their dual sets of possible reaction forces are 

modeled up to second order using twist and wrench bases.  Finally, reciprocity and 

consistency equations for the measured twist and wrench are derived using kinematic 

chains and the properties of the objects in contact.  In a practical point of view, this 

approach is compelling since it eliminates the need for contact point sensors (i.e., no 

tactile sensing). 

 

Dynamic Force Representation 

The dynamic modeling of contact states has largely been overlooked in the contact 

state literature due to the assumed (and programmed) quasi-static nature of assembly 

tasks.  An exception is the work of McCarragher and Asada (1993, 1995a, 1995b) in 

which the dynamics of contact states are represented by linearized equations of motion 

constrained by Lagrange multipliers.  The multipliers are added to enforce the geometric 

constraints corresponding to the contact states.  Eberman (1995) proposed a slightly 

different approach in which the Hamiltonian is used to derive the dynamics equations.  

This approach resulted in two sets of first order differential equations as opposed to one 

in McCarragher and Asada.  In both works, the dynamics effect due to the impact be-

tween rigid bodies is considered by looking at the change of momentum created by an 

impulse representing the collision.   
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Probabilistic Modeling 

As an alternative to physic-based models, probabilistic models have also been used to 

describe contact states.  These techniques, although lacking the physical insights of 

model-based approaches, have proven to be very efficient in practice since the models are 

made from experimental training data.  For example, Hannaford and Lee (1991) model 

the map between force signals and the four phases of a peg-in-hole insertion task (i.e., 

move, tap, insert, and extract) using Gaussian probability density functions.  These 

models are then used in an HMM to monitor task progression in a teleoperated assembly.  

In the same context, Pook and Ballard (1993) use Learning Vector Quantization on finger 

tension signals to create four contact primitives for a tele-manipulation task (i.e., grasp, 

carry, press, slide).  In Eberman and Salisbury (1994), four contact signals (i.e., impacts, 

slip, no contact, and grasping contacts) are modeled using KL-expansion, a normal white 

noise process, and an auto-regressive model.  

 

2.1.3 Task Encoding 

In the contact state graph utilized to decompose a task, actions are not encoded, and 

as a result the graph is undirected.  An early approach to build directed graphs was 

proposed by Lozano-Perez et al. (1984).  In this approach, a directed graph, defined as a 

reachability graph, encodes the motions between the states using a computed pre-image 

of the desired goal.  Adding the a priori knowledge of the motion (e.g., velocity cone) 

augments the graph by partitioning the free space.  This technique is used in Eberman 

(1997) to represent the possible motions inside a 2D maze. 
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In Donald and Jennings (1991) the concept of R-R graph (reachability graph of the 

recognizable sets) is proposed to encode the reachability relationship between the recog-

nizability sets that partition the sensor space.  This type of graph can then be included 

inside a lattice structure to represent the variability of the task knowledge.  The bottom of 

the lattice is associated with small R-R graphs that represent the current limited knowl-

edge of the task whereas the top of the lattice is associated with large R-R graphs that 

represent the expected full knowledge of the task.  

Probabilistic approaches can also be used to encode the likelihood of transitions 

among the nodes of a contact state graph.  The most common representations are Markov 

chains (e.g., Hannaford and Lee 1991) and Petrie nets (e.g., McCarragher and Asada 

1995).  In a Markov chain, for example, the task is encoded inside a probability transition 

matrix in which each element represents the likelihood of transitioning from one state to 

another (including self transition).  The matrix can be obtained from training data 

(Rabiner 1989). 

 

2.1.4 Contact State Identifiability and Distinguishability 

Identifiability and distinguishability have been investigated in several fields under 

different names.  In this document, the notion of contact distinguishability is equivalent 

to the notions of contact recognizability (Erdmann 1986, Xiao and Liu 1998) or contact 

identifiability (Rosell et al. 2001) presented in the motion planning literature.  It is 

important to note that the concept of model identifiability presented in this thesis refers to 

the identifiability of the parameters used to describe the model structure and not to the 
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identification of the contact model.  These choices of notations are inspired by the well- 

established nomenclature used in the state-space model literature and presented at the end 

of this section. 

 

Distinguishability 

The concept of distinguishability is equivalent to the early notion of recognizability 

introduced by Erdmann (1986) in which a state is said to be recognizable if it can be 

distinguished from the other states using the robot’s sensors.  Donald and Jennings (1991) 

introduce the idea of perceptual equivalence classes as distinguishable sets that partition 

the world based on sensor measurements.  They propose an algorithm to compute the 

perceptual equivalence classes in the configuration space and show that the computa-

tional complexity is exponential in the dimensions of the space and polynomial in the 

number of points contained in the space.  

As discussed in Erdmann (1986), control history and sensor history can improve 

distinguishability by refining the partition of the sensor space.  Sensor fusion can also 

improve distinguishability (Donald and Jennings 1991).  In this context, Xiao and Liu 

(1998) investigate contact recognition (i.e., distinguishability) for position/orientation and 

force/moment sensing in the presence of uncertainties (i.e., force can disambiguate 

contact states when position is not able to and vice-versa).  They propose a fuzzy repre-

sentation of contact states to take into account the indistinguishability nature of contact 

states.  A recognition algorithm is discussed, but the authors do not report any implemen-

tation. 
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A few analytical approaches based on geometry and/or force have been implemented 

to test distinguishability (Xiao and Zhang 1997, Rosell et al. 2001).  The concept of 

contact equivalence presented by Xiao and Zhang (1997) is based on analytical deriva-

tions of the equations describing the relative motions between contacting polygonal 

objects.  This concept is used to characterize contact states that have equivalent structural 

equations (i.e., they are indistinguishable).  Another example is presented in Rosell et al. 

(2001) in which tools investigating the robustness of paths generated by gross-motion 

planners to model uncertainty are discussed.  In particular, the distinguishability of 

potential contact situations due to uncertainty is analyzed by computing the intersection 

of the generalized force domains corresponding to the possible contact states.  If the 

domains intersect, then force measurements cannot be used to disambiguate the two 

contacts.  

 

Identifiability 

While distinguishability is concerned with discriminating one contact state from an-

other based on sensor data, identifiability addresses the questions of what parameters in a 

particular contact state model can be estimated and, if so, how many solutions are possi-

ble.  In the robot calibration literature, an identifiable model corresponds to a minimal 

parameterization (Gautier and Khalil 1990).  In this literature, identifiability has been 

mostly addressed with numerical techniques (e.g., Atkeson et al. 1986, Sheu and Walker 

1989).  For example, analysis of the Jacobian matrix singular values (Sheu and Walker 

1989) can be used tests for identifiability.  Parameters are said to be unidentifiable if they 
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are associated with small singular values.  An exception to numerical techniques is the 

work of Gautier and Khalil (1990) in which symbolic computations are used to extract 

the minimum set of inertial parameters used to represent the dynamic model of serial 

robots.  

In the context of contact states, the notion of C-space equivalence defined by Eberman 

(1995) can be regarded as an identifiability test.  This technique is applicable only if the 

contact model can be written as a linear function of the sensor variables.  To prove 

identifiability, Eberman’s approach was to demonstrate the uniqueness of the mapping 

between the coefficients of the sensor variables (typically nonlinear functions of the 

parameters) and the parameter values.  In Bruyninckx et al. (1995), the identifiability of 

the geometric uncertainties parameterizing the wrench and twist Jacobians of the contact 

states is discussed qualitatively. 

 

Distinguishability and Identifiability in the State-Space Model Literature 

The concept of a priori testing of model distinguishability and identifiability is well 

established in the state-space model literature with applications related to control (Ljung 

and Glad 1994), biology (Chapell et al. 1990), and chemistry (Walter et al. 1985).  

Distinguishability has been treated in Raksanyi and Walter (1985) and Walter and 

Pronzato (1996) while identifiability has been examined in Chapell et al. (1990), Le-

courtier et al. (1982), and Ljung and Glad (1994).  In a series of papers published in the 

mid-eighties (i.e., Lecourtier et al. 1982, Walter et al. 1984, Walter et al. 1985) Walter 

and Lecourtier provided a uniform approach to testing the distinguishability and identifi-
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ability of state-space models.  Using models ( )iM p  as given in (2.1) in which X  is the 

state vector, p is a set of unknown time-independent parameters, U is the input vector, 

and Y is the output vector, Walter and Lecourtier defined distinguishability and identifi-

ability as follows: 

 

( ) ( )
( ) ( ) 0 0

( ) ( ), ( ), ,
, (0) , (0)

, ( ), ,i
i

X t f X t U t p t
M p X X U U

Y t p g X t p t
 == = = =

  (2.1) 

 

Two state space models 1( )M p  and 2 ( )M p  are distinguishable if (i) for almost any q 

there is no p such that ( )1 2, ( , )Y t p Y t q=  and (ii) for almost any p there is no q such that 

( )2 1, ( , )Y t q Y t p=  , for any input and time in (2.1).  Similarly, a state-space model ( )M p  is 

globally (locally) identifiable if for almost any q there is only one (a finite number of) p 

such that ( ), ( , )Y t p Y t q=  for any input and time in (2.1).  

Given these definitions, there exist a variety of techniques to solve for state-space 

model distinguishability and identifiability.  For linear models, these methods include 

equating transfer function coefficients (Walter et al. 1984) and similarity transformations 

(Vajda et al. 1989).  For nonlinear models, techniques include linearization (Grewal and 

Glover 1976), Taylor series expansions (Pohjanpalo 1978) and generating series (Walter 

et al. 1984). 
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2.1.5 Data Excitation 

When addressing the problem of parameter estimation, the question of data excitation 

needs to be addressed.  Is the input path sufficiently exciting to estimate all the parame-

ters associated with the model?  It is important to realize that this notion of sufficient 

excitation is different from the notion of identifiability presented in section 2.1.4.  Identi-

fiability has to do with the uniqueness of a solution while excitation has to do with the 

continuity of the solution on the data.  This distinction is important since both problems 

can result in a poor estimation.  In the case of unidentifiability the poor estimation is a 

result of a structural problem that requires an appropriate re-parameterization of the 

model, whereas in bad excitation the poor estimation is a result of a numerical problem 

that requires an appropriate re-selection of the sensor path.  

The problem of data excitation has been overlooked in the contact state estimation 

literature where it is traditionally assumed (empirically) that the data are sufficiently 

exciting (e.g., De Schutter et al. 1999, Lefebvre et al. 2003, 2005).  The problem, how-

ever, has been extensively investigated in the calibration literature.  In this context, the 

excitation problem is reduced to finding measurements that result in a low condition 

number of the parameter Jacobian (i.e., a condition number less than 100 (Schröer et al. 

1992)).  Hollerbach and Wampler (1996) show how regularization techniques, such as 

column and row scaling of the parameter Jacobian, can be applied to reduce the condition 

number.  Minimization of the condition number has been studied for kinematic as well as 

dynamic calibration.  For example, Khalil et al. (1991) select the measurement configura-
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tions for a simulated calibration of a TH8 robot by minimizing the condition number 

associated with the parameter Jacobian matrix.  

In contrast to kinematic calibration where the measurements can correspond to dis-

continuous ‘snapshots’ of the system’s configurations, dynamic calibration requires the 

continuity and smoothness of the input trajectories.  This problem was first studied by 

Armstrong (1989) who developed a constrained nonlinear optimization technique to 

generate optimal robot excitation trajectories.  In this approach, the condition number of 

an observation matrix derived from the dynamic model of the system is minimized using 

a Lagrangian optimization technique.  The outputs of the optimization are the points of a 

sequence of joint accelerations.  Joint velocities and joint positions are then obtained 

using numerical integration.  In Gautier and Khalil (1992), the minimization of a cost 

function based on the condition number of an observation matrix derived from the energy 

model of the system is performed using a gradient conjugate optimization method.  A 

discrete set of optimum position and velocity points is obtained and interpolated using a 

fifth-order polynomial.  Swevers et al. (1997) present a statistical approach in which the 

determinant of the covariance matrix derived from the dynamic model of the system is 

minimized using a sequential quadratic programming method.  The originality of the 

method comes from the use of a finite Fourier series to parameterize the robot trajecto-

ries.  

An interesting method presented by Ljung and Glad (1990, 1994) utilizes tools from 

differential algebra to extract a necessary excitability condition for arbitrary nonlinear 

state-space models.  This method, based on multiple differentiations, leads to the explicit 
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estimation of the time-invariant parameters of the model.  This closed-form solution 

allows for easy extraction of a necessary condition for data excitation.   

 

2.1.6 Contact State Observability 

Observability as defined in this thesis can be directly related to the concepts of reach-

ability and recognizability defined by Lozano-Perez et al. (1984) and Erdmann (1986).  A 

state is observable inside a task’s graph if it can be reached and recognized.  This is an 

important concept in task planning since reaching a goal without recognizing it does not 

result in task completion.  In Lozano-Perez et al. (1984), the notion of pre-image of the 

goal is introduced as a solution to this problem.  The central idea is that given the known 

geometry of the task and sensing uncertainty bounds, pre-images of local goals that can 

be reached and recognized using a single compliant motion can be computed in the 

configuration space.  Backward chaining of the local goals starting from the desired goal 

can then be used to develop a multi-move strategy that guarantees observability for 

motion planning with uncertainty.  The same problem is solved by Erdmann (1986) using 

backward and forward projections.  The backward projection solves the reachability 

problem while the forward projection ensures that the reachable states are also recogniz-

able using the local history of the task.  The history of the task helps to disambiguate 

states that are otherwise indistinguishable using only the current sensor information.  As 

an example of forward projection, consider the four states described in Fig. 2.1.  The 

states B and C are assumed to be distinguishable based on the current sensing, whereas 

the states A and D are assumed to be indistinguishable.  Storing the state sequence can 
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help distinguished A and D.  For example, if the current sensor measurement cannot 

disambiguate A from D, but if it is known that B was the previous reached state, then it 

can be concluded that A and not D was attained. 

 

 

Figure 2.1: Example of forward projection associated with a four-state graph. 
 

In the framework of contact state graph, reachability is simply reduced to path con-

nectivity while recognizability is equivalent to complete distinguishability (i.e., all the 

contact states are pairwise distinguishable).  In that regard, the reachable and recogniz-

able graphs defined by Donald and Jennings (1991) ensure that the contact states are 

observable.  

 

2.1.7 Parameter Estimation  

An extensive body of research on parameter estimation exists in the literature.  Ljung 

(1987), a classic reference on the subject, reviews the theory as well as many of the 

techniques used in parameter estimation.  

Parameter estimation has been extensively studied in the contexts of robot calibration 

(e.g., Hollerbach and Wampler 1996 for a good overview) and fine motion planning (e.g., 

A B

D C
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De Schutter et al. 1999, Lefebvre et al. 2003, 2005 for a recent overview).  Three popular 

estimation techniques are the Kalman filter and its variations (e.g., extended Kalman 

Filter), least-squares estimation and its variations (e.g., nonlinear least squares, total least 

squares, weighted least squares), and maximum-likelihood estimation.  

Parameter estimation has been largely utilized in fine motion planning to correct for 

small uncertainty errors in task assembly.  Simunovic (1979) is an early reference in 

which a position-based Kalman filter is utilized to estimate the relative position between 

two mating parts given a known contact state.  In the context of compliant robot motion, 

De Schutter and Van Brussel (1988) derive a closed-form estimate of the orientation 

errors between the physical and computational task frames using velocity and force 

measurements.  In De Schutter et al. (1999), the modeling approach introduced by 

Bruyninckx (1995) is used to estimate the first order geometric parameters (i.e., location 

uncertainties on the fixed environment object and the manipulated object) associated with 

a cylinder-on-plane experiment.  To this end, the closure-update equation as well as the 

wrench and twist reciprocity equations are used as the measurement equations of an 

extended Kalman filter.  Lefebvre et al. (2003) generalize this method to the estimation of 

geometrical parameters of rigid polyhedra objects.  In this approach, the geometry of the 

task allows for an automatic generation of the filter’s measurement equations.  This 

technique is then used to estimate all the grasping and environment uncertainties associ-

ated with the six contact states of a cube-in-corner placing task.  Eberman (1997) pro-

vides a statistical model-based approach to building a contact state estimator.  Contacts 

between the end-effector of a PHANToM© robot and a maze are modeled as linear 
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stiffness relationships between the robot configurations and the contact reaction forces.  

A maximum likelihood estimation technique is then used to estimate the stiffness projec-

tion matrix characterizing the contact states.  

Most of the literature on contact state estimation assumes good nominal parameter 

values and focuses only on the estimation of small errors.  This assumption allows for 

linearization schemes and reduces the computational difficulty of the estimation process.  

Solving for large initial parameter uncertainties in real time remains a difficult problem.  

Recent progress has been made by Lefebvre et al. (2005) in which a finite-dimensional 

Bayesian filter is proposed to estimate unknown parameters.  The filter is based on 

finding a non-minimal state vector in which the measurement model is linear.  A Bayes-

ian filter is implemented to estimate the statistics of this higher dimensional state space, 

and then an iterative extended Kalman filter is utilized to retrieve the states associated 

with the original model.  This technique is applied with good result to the cube-in-corner 

task presented in their earlier paper. 

 

2.1.8 Contact State Estimation 

Detection tests are often based on finding a threshold that can decide whether a con-

tact state is active based on some raw or processed sensor measurements. Two families of 

tests are often used in the literature: deterministic and probabilistic decision tests.  Prior 

work on both methods is presented in this section. 
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Deterministic Decision Test 

In Hirai and Asada (1993) the geometry of the contact state models is utilized to gen-

erate a minimal set of force-based discriminant functions that are then used as boolean 

rules to segment force measurements into contact states.  In the context of dynamic 

robotic assembly, McCarragher and Asada (1993) utilize quantitative reasoning to detect 

contact state transitions.  In this framework, the raw force signals are transformed into 

qualitative signals that are then used to recognize the contact states and their transitions.  

The approach is tested successfully for a dynamic dual peg-in-hole insertion.  Dupont et 

al. (1999) apply a similar technique by using a Boolean combination of thresholds force 

and motion signals to segment a pick place task. 

One of the first parameter-based approaches to contact detection was proposed by 

Farahat et al. (1995b).  In this research, a linear programming technique is used to 

recognize contact states.  A contact state is detected as active when it satisfies the linear 

program associated with its parameterized model and the collected force measurements. 

In the context of robot learning, Skubic and Volz (2000) use a fuzzy classifier to de-

tect contact state patterns built from force and moment signals.  The same experiment 

was also conducted successfully using a neural network.  

 

Statistical Decision Test 

In Eberman and Salisbury (1994), sequential hypothesis testing is used to detect and 

label contact events.  Six statistical hypotheses are derived to describe five contact 
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events.  The segmentation and identification of the events are performed by computing a 

generalized likelihood ratio test over a moving data window.  In the context of compliant 

motion, De Schutter et al. (1999) use the Gaussian innovations of a Kalman filter to 

monitor contact transitions during the placing of a cube inside a corner.  The sum over 

the normalized innovation squares (SNIS) is computed inside a window of fixed length 

and a threshold based on 95% confidence boundary 2χ -test is used to decide whether the 

innovations are consistent with the model.  If the SNIS exceeds the threshold, then a 

transition is detected.  

In the above examples, contact detection is solely based on the relationship (i.e., 

physics-based or probabilistic relationship) between the sensing and the contact states; 

however, task information can also be incorporated to improve the likelihood of contact 

state detection.  Task information is conveniently modeled using Petri nets, neural nets, 

and HMM.  These three techniques offer the double advantages of incorporating task 

knowledge and contact state knowledge in a same framework.  For example, Petri nets 

have been used by McCarragher and Asada (1995a, 1995b, 1996) to monitor and control 

robotic assembly tasks using polygonal and polyhedral parts.  Neural nets have been used 

in the context of robot learning by Asada (1990) and Skubic and Volz (2000).  In Asada, 

for example, neural nets are used to represent and learn compliances from force and 

velocity teaching data.  

HMM is a very popular technique in data segmentation. This stochastic technique, 

originally developed for speech recognition problem (Rabiner 1989), has been success-

fully adapted to monitor contact states in assembly tasks.  In this framework, the relation-
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ship between the observations and the states is usually represented using mixture of 

Gaussian signals, and the task information is encoded inside a state network defined by 

the likelihood of transitions among states.  One of the advantages of this technique is that 

both the Gaussian probability density function and the probabilities of transitions can be 

obtained from unsupervised training, e.g., Baum-Welch algorithm (Baum and Petrie 

1966).  One early example is found in Hannaford and Lee (1991), in which an HMM is 

used to extract four contact events from force/torque measurements.  In Hovland and 

McCarragher (1998), a multiple HMM approach is used to monitor the 11 contact events 

describing the robotic insertion of a 2D L-shape part.  The task is modeled as a discrete 

event dynamic system in which each event is represented by a HMM.  A recognition rate 

of 97% is achieved in 0.5-0.6 s.   

Eberman (1997) presents an alternate approach to HMM by building a contact state 

observer using stochastic parameter estimation and change detection theory.  Each 

contact state is represented by a linear parameterized model.  A prior distribution for the 

parameters is obtained from training data.  A maximum likelihood estimator is then used 

to estimate the parameters given force and velocity measurements. The estimator outputs 

the log-likelihood between the model and the measurements and also the residuals of the 

process.  The residuals are fed to a change detector that computed the log-likelihood of 

transitions among states.  These statistics are then sent to a single detection procedure 

that uses a beam search strategy over a given task network to determine the most likely 

path corresponding to the measurements.   
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2.2 Thesis Objectives  

The prior work presented in this chapter can be used to summarize the needs for con-

tact state estimation in poorly known environments: 

 There is no complete framework in the literature that discusses the problem of contact 

state estimation in poorly known environments.  

 The estimation of the contact parameters is usually limited to small uncertainties. 

 Contact state estimation has been mainly addressed as an implementation problem in 

the literature.  As a result, very few tools have been developed to investigate the a 

priori feasibility of contact estimation.  In particular, no testing strategy has been de-

veloped to test systematically the distinguishability, identifiability, observability, and 

excitability of contact states.  

 

Based on these limitations, the objective of this thesis is defined as follows: given a 

geometrical description of a task, a contact topology, and a set of sensors, the goal of this 

research is to provide design tools that can help generate contact state models and contact 

state networks that will permit the feasibility of contact state estimation in poorly known 

environments.  Given this objective, a design framework is provided for the implementa-

tion of contact state estimators in poorly known environments.  Its main contributions 

are: 

 The identifiability and distinguishability of parameterized contact models are ana-

lyzed using a unifying algebraic testing method based on Taylor series expansion.  
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The testing method is applicable to any contact state model regardless of the cho-

sen sensing modality. 

 Task feasibility in poorly known environments is reduced to a contact state ob-

servability problem.  The concept of forward projection on the parameter history 

is introduced as a solution to the observability problem.   

 The effect of the sensor signals on the parameters is analyzed analytically by de-

riving closed-form expressions for the contact parameters.  

 Task knowledge, encoded as a probability transition matrix, is derived from a di-

rect mapping between the contact state graph representing the task in a structured 

environment and a distinguishable state graph representing the task in a poorly 

known environment. 

 

In addition to the progress made in the design phase of the estimator, the following 

contributions to the implementation phase of the estimator are presented: 

 Large uncertainties (i.e., unknown parameters) are considered in the implementation 

phase of the estimator by using a nonlinear least squares algorithm. 

 An HMM is implemented as a contact state detector.  This approach provides a 

unifying probabilistic framework to combine the results from the estimation step with 

the a priori knowledge of the task.   
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Chapter 3  

Topology and Modeling of Contact States 

 

 

 

Manipulation tasks are readily described as a succession of contact states that de-

scribe how the manipulated object is in contact with objects in the environment.  The 

nature of a contact state is characterized by the geometric features that are used to model 

the contacting objects (e.g., vertex, edge, face).  As an example, Fig. 3.1 shows a planar 

manipulating robot placing a block in a corner.  A sequence of three contact states is used 

to complete the task: a vertex-edge contact, a double vertex-edge contact, and a double 

edge-edge contact. 

 

 
Figure 3.1: Sequence of three contact states used to place a block in a corner. 
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Contact states are naturally described geometrically; nevertheless, in order to be de-

tected, they also need to be described with respect to the available sensing information 

(i.e., robot sensing).  The objective of this chapter is to provide the background on 

contact topology and contact state modeling necessary to understand the next chapters of 

this thesis.  The first part of this chapter reviews the contact topology associated with 

polygonal and polyhedral objects.  Additional material on this topic can be found in a list 

of papers published by Xiao and her colleagues (Xiao 1993, Xiao and Zhang 1997, Xiao 

and Ji 2001).  The Second part of the chapter discusses the modeling of contact states 

using pose, velocity and force sensing.  As a result of this modeling, contact states are 

represented as homogeneous nonlinear algebraic equations parameterized by time-

dependent sensor data and time-independent parameters representing the unknown 

locations and positions of the objects in contact.  The velocity and force representations 

of contact states are discussed using wrench bases, twist bases, and screw transforma-

tions.  Additional background on this material can be found in Bruyninckx (1995) and 

Murray et al. (1994).  

 

3.1 Contact State Topology 

As shown in Fig. 3.1, each contact state is characterized by a geometrical description 

of the two objects in contact in terms of a finite number of contacting elements.  For 

polygons and polyhedra these elements are vertex and edge and vertex, edge and face, 

respectively. 
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3.1.1 Single Contact State 

Contact states describe the contact between a manipulated object and fixed objects in 

the environment.  As a result, the number of single contacts between the two objects is 

2
en  where en  represents the number of geometric elements (i.e., 2n =  in 2D, and 3n =  

in 3D), as summarized in Table 3.1 and 3.2. 

 

Notations for Table 3.1 and Table 3.2 

−m fa b : Contact between the element a  belonging to the manipulated object ( ma ) and 

the element b belonging to the shaded fixed object ( fb ). 

 

( ), ∈a b  { }, ,V E F  

V: Vertex 

E: Edge 

F: Face 

 

Table 3.1: Planar single contacts between a manipulated object and a fixed object. 

−m fV V  −m fV E  

 

 

−m fE V  −m fE E  
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Table 3.2: Spatial single contacts between a manipulated objects and a fixed object. 

−m fV V  −m fV E  −m fV F  

   

−m fE V  −m fE E  −m fE F  

   

−m fF V  −m fF E  −m fF F  

  
 

 

As discussed in Xiao (1993), several of these single contacts are limiting cases of 

other ones, and as such should be ignored.  In 2D for example, { }−m fV V  can be consid-

ered as a part of { }m fV E− , { }m fE V− , or { }m fE E− , and as such should be discarded 

to avoid any ambiguity.  Table 3.3 summarizes all the possible degenerate contact states. 
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Table 3.3: Degenerate contact states. 

2D −m fV V  

−m fV V −m fV E
3D 

−m fE V −m fE E
 

Note that these degenerate cases are also of limited interest due to implementation 

difficulty (e.g., a vertex-on-vertex contact is difficult to realize in practice).  One excep-

tion to these degenerate cases is the{ }−m fE E  contact.  This contact can be considered 

non-degenerate if the two edge elements are crossing. 

 

3.1.2 Multiple Contact States 

Situations involving multiple contact states can occur when concave objects are in 

contact or when the manipulated object contacts multiple fixed objects in the environ-

ment.  The possible number of combinations involving single contacts is given by the 

equation (3.1), where n represents the number of single contacts and k is the number of 

contact possibilities. 

= +n
km C n      (3.1) 

 

As an example, Table 3.4 enumerates all the possible pairs of contacts that constitute 

a double contact for 2D polygons ( 4=n , 2=k , 10=m ).  Only the upper triangular part 

of the table is considered since the lower part describes the same pairs of contacts (e.g., 

{ },− −m f m fE E V E is equivalent to{ },− −m f m fV E E E ). 
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Table 3.4: Double contacts for polygons. 

 −m fV V −m fV E −m fE V −m fE E  

−m fV V  X X X X 

−m fV E   X X X 

−m fE V    X X 

−m fE E     X 

 

It can be shown (Xiao and Zhang 1997) that many of the combinations given by (3.1) 

are in fact topologically equivalent to lower combinations of single contacts.  As an 

example, Fig. 3.2 shows that the double contact { },m f m fE E E E− − where the edges are 

parallel is equivalent to a single contact{ }m fE E− .  Moreover, Xiao and Zhang (1997) 

proved that multiple contacts composed of three or more single contacts are always 

equivalent to either a single contact or a limited combination of two or three single 

contacts.   

 

Figure 3.2: An edge-edge contact and its topologically equivalent single contact. 
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This notion of contact equivalence is essential when building a contact state estimator 

since it can directly reveal the distinguishability of two contact states (i.e., two topologi-

cally equivalent contact states are indistinguishable).  This concept of distinguishability 

will be investigated in details in Chapter 4. 

 

3.2 Contact State Modeling 

The implementation of a contact state estimator based on contact geometry requires 

knowing the dimensions and locations of the contact elements. In the context of poorly 

known environments, this information needs to be estimated, and as a consequence, 

higher level representations of the contact states, based on available sensor measure-

ments, are needed.  Several sensing modalities are commonly available with manipulat-

ing robots; examples include position, orientation, force and torque sensing.  Contact 

state modeling involves finding a map between the geometric constraints that character-

ize the contact states in the Cartesian space and the available sensors.  As a first step, 

coordinate frames and transformation matrices describing the unknown relative positions 

and orientations of the two objects in contact are developed.  Then, contact states are 

modeled by algebraic constraint equations parameterized by sensor data and time-

independent location uncertainties.  

 

3.2.1 Contact State Parameterization 

Contact states are characterized by the locations (i.e., positions and orientations) of 

the contacting elements (e.g., vertex, edge, face, etc).  Therefore, local coordinate frames 
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must be defined to represent the locations of each contact.  Additionally, global frames 

must be defined to represent the location of the manipulating robot and its gripper.  These 

frames are independent of the contact geometry.  Four frames are defined as follows:  

 

• ℜw is the world coordinate frame associated with the manipulating robot.  Fixed 

objects in the environment are located with respect to this frame.  The position and 

orientation of the robot gripper are expressed with respect to this frame. 

• ℜg is the coordinate frame associated with the robot gripper.  The fixed location and 

orientation of the manipulated object is defined with respect to this frame.  Force and 

torque are expressed with respect to this frame. 

• ℜm is the local coordinate frame associated with the contact element on the manipu-

lated object.  If the contact involves more than one contact element, multiple local 

frames must be defined (i.e., one for each contact element). 

• ℜ f is the local coordinate frame associated with the contact element on the fixed 

environment object.  If the contact involves more than one contact element, then mul-

tiple local frames must be defined. 

 

The positions and orientations of the local coordinate frames ℜm  and ℜ f  depend on 

the nature of the contacting element.  The following rules are developed to assign the 

local frames uniformly: 
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 Vertex:  the coordinate frame associated with a vertex is positioned at the vertex 

origin and has the orientation of the global frame associated with the object to which 

the vertex belongs.  

 Edge: the coordinate frame associated with an edge is positioned at one the two 

vertices bounding the edge such that the edge is oriented along the positive x -axis. 

The y -axis is oriented in the direction of the outward normal of the edge and it is 

perpendicular to the normal of the face from which the edge belongs to.  The remain-

ing z -axis follows the right hand rule. 

 Face: the coordinate frame associated with a face is positioned at one of the vertices 

bounding the face such that its z -axis points in the direction of the outward normal of 

the face.  The y -axis is oriented perpendicularly to the z -axis, toward the inside of 

the face.  The remaining x -axis follows the right hand rule. 

 

Figure 3.3 illustrates how global and local frames are assigned for three different con-

tact states.  In each case, the global frames, wℜ  and gℜ are assigned arbitrarily whereas 

the local frames are assigned following the methodology presented above.  Note that in 

practice, the global frames depend on the geometry of the manipulating robot and can be 

assigned using the Denavit-Hartenberg convention (Denavit and Hartenberg 1955).  
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Figure 3.3: Example of frames assignments for four different types of contacts. 

 

 

Transformation matrices 

To express the location of a frame ℜa with respect to a frame ℜb , the concept of a 

homogeneous transformation matrix is utilized.  A change of coordinate frames is given 

ℜw
 

ℜ f
 

ℜg
 

ℜm

ℜw

x -axis 
y -axis 
z -axis 

ℜg
 

ℜg

ℜw

1
fℜ  

2
fℜ

1
mℜ  

2
mℜ

a) { }m fV E−  

b) { }1 1 2 2,m f f mV E V E− −  

c) { }m fV F−  

ℜm

ℜ f
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by the transformation matrix b
aT  in equation (3.2); where b k k

aR ×∈  represents a rotation 

matrix and b k
aP ∈  represents a position vector.  

 

1

2 in 2D
,

3 in 3D0 1∗

  =
=   = 

b b
b a a

a
k

kR P
T

k
    (3.2) 

 

The yaw-pitch-roll convention is used to express the orientation matrix b
aR  in equa-

tion (3.3).  The yaw, pitch, and roll correspond to a θ y  rotation around the ax -axis, a θ p  

rotation around the ay -axis, and a θr  rotation around the az -axis, respectively. 

 

cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

θ θ θ θ
θ θ θ θ

θ θ θ θ

−   
   = −   
   −   

r r p p
b
a r r y y

p p y y

R  (3.3) 

 

Using this nomenclature, three homogeneous transformations, ( )g
wT t , ( )m

gT t , and 

( )f
wT t  are defined.  ( )g

wT t is a homogeneous transform matrix which relates the gripper 

frame to the world frame based on the geometry of the remote manipulator.  Similarly, 

( )m
gT t  relates the manipulated object to the gripper frame, and ( )f

wT t  relates the 

environment object to the world frame.  

These three matrices have the generic form given by equation (3.4) in 2D and equa-

tion (3.5) in 3D, where { } { }, , , ,∈a b w g m f  
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cos ( ) sin ( ) ( )
( ) sin ( ) cos ( ) ( )

0 0 1

θ θ
θ θ

 −
 

=  
 
 

a a
b

b a a
a b

t t x t
T t t t y t    (3.4) 

 

cos ( ) sin ( ) 0 cos ( ) 0 sin ( ) 1 0 0 ( )
sin ( ) cos ( ) 0 0 1 0 0cos ( ) sin ( ) ( )

( )
0 0 1 sin ( ) 0cos ( ) 0 sin ( ) cos ( ) ( )

0 0 0 1

θ θ θ θ
θ θ θ θ

θ θ θ θ

   −  
    −    =     −    
 
 

a a a a
r r p p b
a a a a
r r y y bb

a a a a a
p p y y b

t t t t x t
t t t t y t

T t
t t t t z t

(3.5) 

 

It is assumed that the location of the manipulated object and the location of the envi-

ronment object are unknown with respect to the gripper frame and world frame respec-

tively.  Moreover, it is also assumed that the manipulated object does not slip in the 

gripper, and that the environment object is static.  As a result, m
gT and f

wT  are unknown 

time-independent matrices.  In contrast, the matrix ( )g
wT t  is a known time-dependent 

matrix since the location of the gripper with respect to the world frame is assumed to be 

perfectly known. 

 

3.2.2 Pose Representation 

Contact states represent geometric constraints between the manipulated object and the 

fixed objects in the environment.  These constraints proscribe some of the poses (i.e., 

position, orientation) between the manipulated object and the environment object.  As a 

result, some components of the homogeneous transformation matrix between the frame 
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associated with the manipulated object and the frame associated with the fixed environ-

ment object must be zero (i.e., some components of m
fT  or f

mT  must be zero).  As an 

example, Fig. 3.4 shows a planar { }m fV E− contact.  Due to the contact geometry, no 

translation normal to the environment object’s edge is allowable, and therefore (2,3)m
fT  

must be zero in (3.4).  

 

   
Figure 3.4: Constraint configuration of a robot due to a planar vertex-edge contact. 

 

The number of components of the matrix m
fT  and f

mT  that can be zero depends on the 

nature of the contact state.  This number is limited to six in the 2D case, and twelve in the 

3D case, as shown in (3.6) and (3.7).  

 

2D case: 

(1,3) 0
(2,3) 0
(1,2) 0

(1,3) 0
(2,3) 0
(1,2) 0

m
f f

m
f f

m
f f

f
m m

f
m m

f
m m

No translation along x T
No translation along y T
No rotation around z T

No translation along x T
No translation along y T
No rotation around z T

 ⇒ =
 ⇒ =
 ⇒ =


⇒ =
 ⇒ =

⇒ =

   (3.6) 

wℜ

fℜ
mℜ

gℜ
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3D case: 

(1,4) 0
(2,4) 0
(3,4) 0
(3,2) 0
(3,1) 0
(2,1) 0

m
f f

m
f f

m
f f

m
f f

m
f f

m
f f

m

No translation along x T
No translation along y T
No translation along z T
No rotation around x T
No rotation around y T
No rotation around z T

No translation along x

⇒ =
⇒ =
⇒ =
⇒ =
⇒ =
⇒ =

(1,4) 0
(2,4) 0
(3,4) 0
(3,2) 0
(3,1) 0
(2,1) 0

f
m
f

m m
f

m m
f

m m
f

m m
f

m m

T
No translation along y T
No translation along z T
No rotation around x T
No rotation around y T
No rotation around z T












⇒ =
 ⇒ =

⇒ =
 ⇒ =
 ⇒ =
 ⇒ =

   (3.7) 

 

In both the 2D and 3D cases in (3.6) and (3.7), the constraints on the rotations can be 

found by analyzing the form of the transformation matrices m
fT  or f

mT .  In the 3D case, 

for example, the homogeneous transformation matrix m
fT  has the form given by (3.5).  If 

the constraint prevents any rotation around the fx -axis (i.e., the yaw angle is zero), then 

the rotation matrix of m
fT  can be written as in (3.8).  As a result, the absence of rotation 

around the fx -axis implies that (3, 2)m
fR is zero resulting in (3, 2)m

fT  being zero. 

 

cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 1 0

0 0 1 sin 0 cos 0 0 1

cos cos sin cos sin
sin cos cos sin sin

sin 0 cos

r r p p
m
f r r

p p

r p r r p

r p r r p

p p

R
ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

−   
   =    
    −    
 −
 

=  
 − 

  (3.8) 
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Since the homogeneous transformation between the manipulated object and the envi-

ronment object is not directly known, m
fT  or f

mT  must be computed in an indirect way 

using the available information of the problem (i.e., sensor data, time-dependent location 

unknowns).  In that effect, the kinematic closure equation (3.9) can be used to close the 

loop between the manipulated object and the environment object, as illustrated in Fig. 

3.5.  As a result, the transformation matrices m
fT  and f

mT  can be expressed using the 

kinematic measurements (i.e., ( )g
wT t ) and the parameterized location unknowns associated 

with the manipulated object and the environment object (i.e., m
gT  and w

fT ) as shown in 

equation (3.10).  

 
( )g m f w

w g m fT t T T T I=      (3.9) 

( )

( )

m w g m
f f w g

f g w f
m m g w

T T T t T

T T T t T

 =


=
     (3.10) 

 

   
Figure 3.5: Kinematic closure equation. 
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fℜ  

m
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As a final step, pose equations are created by expressing the constraints (3.6), (3.7), 

using the kinematic closure equations (3.10).  To make these equations algebraic, the 

unknown trigonometric nonlinearities inside the transformation matrices m
gT  and f

wT  are 

eliminated using the change of variables cosθ=i im , 1 sinθ+ =i im  ( 1i =  in 2D, and 

1,3,5i =  in 3D).  This change of variables reduces (3.4) to (3.11), and (3.5) to (3.12). 

Similar equations are obtained for f
wT  by replacing the variable m  by the variable f  in 

(3.11) and (3.12).   

 

 

1 2 3

2 1 4

0 0 1

− 
 =  
 
 

m
g

m m m
T m m m  where 2 2

1 2 1+ =m m   (3.11) 

 

1 3 2 5 1 4 6 1 4 5 2 6 7

2 3 1 5 2 4 6 2 4 5 1 6 8

4 3 6 3 5 9

0 0 0 1

− + + 
 + − =
 −
  
 

m
g

m m m m m m m m m m m m m
m m m m m m m m m m m m m

T
m m m m m m

 where 

2 2
1 2
2 2
3 4

2 2
5 6

1

1

1

 + =


+ =
 + =

m m

m m

m m

 (3.12) 

 

 

The final expressions of m
fT  and f

mT  are obtained in 2D by substituting (3.11) and 

(3.4) in (3.10), and in 3D by substituting (3.12) and (3.5) in (3.10).  The detailed expres-

sions of the matrices used to compute (3.6) and (3.7) are presented in Appendix A.  An 

example detailing the derivation of a pose equation for a vertex-to-edge contact is pre-
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sented in section 3.3.  The general form of the pose equation is given by the constraint 

equation (3.13) where p  represents the unknown geometric parameters characterizing 

the contact (e.g., ,i im f ) and ( )s t  represents the known kinematic configurations of the 

manipulating robot. 

( ), ( ) 0h p s t =      (3.13) 

 

3.2.3 Wrench and Twist Representations 

Contact states can also be described using force and moment constraints resulting 

from the physics of the contact.  For example, in order to maintain a { }m fV E− contact, 

the vertex of the manipulated object must exert a force normal to the edge of the fixed 

object at the contact point (assuming a frictionless contact).  Similarly, the same force 

and a moment preventing any rotation of the manipulated object must be exerted when 

maintaining a { }m fE E− contact.  Therefore, enumerating all the possible forces and 

moments necessary to maintain a contact is another way of characterizing contact states.   

Alternately, linear and angular velocities can also be used to represent contact states.  

In this context, contacts can be characterized by enumerating all the linear and angular 

velocities allowable by the contact.  For example, in order to maintain a 2D 

{ }m fV E− contact, the vertex of the manipulated object is allowed to slide along the fixed 

edge and rotate around the contact point.  Contrasting to the force representation and the 

kinematic representation of section 3.2.2., velocity representations use motion freedoms 

as opposed to motion constraints to describe a contact.  
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A large body of literature has been devoted to force and velocity representations of 

contacts as described in section 2.1.2.  As a general approach, wrench bases, twist bases, 

and screw transformation matrices are commonly used to express the effect of forces and 

velocities in a given coordinate frame (Bruyninckx 1995).  The wrench and twist defini-

tions and properties presented below can be found in several robotics textbooks, e.g., 

Murray et al. (1994).  

 

Wrench: A wrench i nF ∈  is a vector consisting of a force/moment pair [ , ]i TF f m=  

expressed in the frame iℜ  where kf ∈ , n km −∈ ,{ }3, 2n k= =  in 2D, and 

{ }6, 3n k= =  in 3D. 

Twist: A twist i nV ∈  is a vector consisting of a linear/angular velocity pair [ , ]i TV v ω=  

expressed in the frame iℜ  where kv∈ , n kω −∈ . 

 

Wrench basis: A wrench basis i n pG ×∈  is a matrix whose columns represent the inde-

pendent directions of the force/moment which produce no motion of the manipulated 

rigid body in the frame iℜ .  For multiple contacts, the total wrench basis is the union of 

the wrench basis of its individual contacts expressed in the same coordinate frame.  

Twist basis: A twist basis i n qJ ×∈  is a matrix whose columns represent the independent 

directions of the linear/angular velocity allowed by the contact in the frame iℜ .  For 

multiple contacts, the total twist basis is the intersection of the twist bases of its individ-

ual contacts expressed in the same coordinate frame.  
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Wrenches and twists are often referred to as wrench of constraint and twist of free-

dom in the contact literature (Duffy 1990).  Wrench and twist bases can be obtained by 

inspection when expressed with respect to a coordinate frame cℜ  located at the contact.  

This frame is positioned at the contact patch centroid and has the same orientation as the 

highest order contact element involved in the contact (e.g., an edge for a vertex-edge 

contact, a face for an edge-face contact).  For two contacting elements of the same type, 

the orientation of cℜ is chosen arbitrarily to be the same as the element associated with 

the fixed object.  

 

Wrench consistency-based equation:  i iF G φ=       (3.14) 

where pφ ∈  represents the intensity of the wrench.  

Twist consistency-based equation:   i iV J λ=       (3.15) 

where qλ∈  represents the intensity of the twist.  

 

Wrench screw transformation matrix: A screw transformation matrix F b
aS  is used to 

transform a wrench or a wrench basis from the frame bℜ  to the frame aℜ . 

 

In 2D:  2 10

(2) (1) 1

b
aF b

a b b b
a a a

R
S

P P R
× 

=  
 −        

(3.16)
 

In 3D: 3 30b
aF b

a b b b
a a a

R
S

P R R
× 

=  
 ×   

     (3.17) 
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where b
aP × is the skew-symmetric matrix represented by 

0 (3) (2)
(3) 0 (1)
(2) (1) 0

 −
 × = − 
 − 

b b
a a

b b b
a a a

b b
a a

P P
P P P

P P
    

The rotation matrix b
aR and the position vector b

aP were defined in 3.2.2. 

 

Twist screw transformation matrix: A screw transformation matrix V b
aS  is used to trans-

form a twist or a twist basis from the frame bℜ  to the frame aℜ . 

 

In 2D:  

1 2

(2)
(1)

0 1

b
b a
aV b b

a a

P
R

S P

×

  
  = −  
 
      

(3.18)  

In 3D:
3*30

b b b
a a aV b

a b
a

R P R
S

R

  × =  
  

     (3.19)
 

 

As mentioned in Murray et al. (1994, p.63), wrench transformation matrices can be 

used to represent a wrench with respect to a coordinate frame which is not inside the rigid 

body.  The obtained wrench represents the equivalent force/moment pair applied as if a 

lever arm were physically present between the coordinate frame and the rigid body. 

Therefore, care must be taken when applying a wrench transformation matrix to avoid 

creating artificial force/moment pairs. A similar comment applies to twist computation. 

 

Assuming a frictionless contact between rigid objects implies that no instantaneous 

power is dissipated when moving a rigid body through an applied force.  In this situation, 
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the wrench is said to be reciprocal to the twist and the inner product between the wrench 

and the twist is zero (Ball 1900): 

0i iF V⋅ =      (3.20) 

 

The reciprocity condition (3.20) can then be used with the wrench and twist consis-

tency equations (3.14) and (3.15) to show reciprocity between the wrench and twist 

bases: 

 

( ) 0
Ti iG J =      (3.21) 

 

In addition, equation (3.20) can be combined with the consistency equations (3.14) 

and (3.15) to produce reciprocity equations for the wrench (3.22) and twist (3.23) respec-

tively. 

( ) 0
Ti iJ F =      (3.22) 

( ) 0
Ti iG V =      (3.23) 

 

It is assumed that forces and moments are measured by a force sensor located at the 

gripper coordinate frame, and that velocity is computed with respect to the world frame. 

As a result, a wrench transformation matrix must be used to transform a wrench basis 

from the contact frame to the world frame and a twist transformation matrix must be 

defined to transform a twist basis from the contact frame to the gripper frame.  The 
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reciprocity equations for the measured wrench and measured twist are expressed as 

follows: 

( ) 0
TV c c g

gS J F =     (3.24) 

( ) 0
TF c c w

wS G V =     (3.25) 

 

The screw transformation matrices used in (3.24) and (3.25) are not directly known; 

however, they can be computed indirectly by applying the closure chain described in Fig. 

3.4 to screw transformations, as shown in (3.26). 

 

( )g m f w
w g m fS t S S S I=     (3.26) 

 

As illustrated in Fig. 3.5, there exist two possible paths to go from one frame to an-

other in a closed kinematic chain.  As a result, there are two ways of expressing the 

reciprocity equation for the measured wrench and measured twist, as shown in (3.27) and 

(3.28), respectively.  In practice, the path that most simplifies V c
gS or F c

wS  is chosen. 

 

( )
( )

0

( ) 0

TV m V c c g
g m

TV w V f V c c g
g w f

S S J F

S t S S J F

 =

 =

    (3.27) 

( )
( )

0

( ) 0

TF f F c c w
w f

TF g F m F c c w
w g m

S S G V

S t S S G V

 =

 =

   (3.28) 
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The final expressions of the reciprocity equations for the measured wrench and meas-

ured twist are obtained in 2D by substituting (3.18) in (3.27) and (3.16) in (3.28) respec-

tively, and in 3D, by substituting  (3.19) in (3.27) and (3.17) in (3.28).  As for the pose 

equation, these equations are made algebraic by replacing the trigonometric nonlinearities 

by polynomial expressions.  An example illustrating the concepts of the reciprocity 

equation for the measured wrench and measured twist is given in section 3.3. 

Equations (3.27) and (3.28) only hold when no power is dissipated during the motion.  

As a consequence, these equations generally do not apply during transitions between 

contact states since transitions almost always create impact forces (Eberman 1995).  

 

3.2.4 Relationship Between the Pose and Twist Equations 

The pose equations derived in section 3.2.2 represent constraints on the configura-

tions of the manipulator robot (e.g., { }( ), ( ), ( )x t y t tθ in 2D) imposed by the geometric 

nature of the contact states.  Given a geometric description of the manipulated object and 

the fixed object, the configurations that satisfy the pose equations associated with a 

contact state can be computed using (3.6) or (3.7).  The result is a set of configuration 

points that describe a surface in the configuration space (C-surface in Mason 1981).  This 

concept is illustrated in Fig. 3.6.  The pose equation derived in (3.33) is utilized to extract 

the { }( ), ( ), ( )x t y t tθ configurations associated with the given geometry of a vertex-edge 

contact.  Figure 3.6(a) shows one possible configuration in the Cartesian space; Fig. 

3.6(b) shows multiple configurations in the Cartesian space, and Fig. 3.6(c) shows the C-

surface associated with the contact.  
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Figure 3.6: Representation of a vertex-edge contact.  a) Representation of the contact in 
the Cartesian space for one configuration, b) Representation of the contact in the Carte-
sian space for multiple configurations, and c) Representation of the contact in the con-
figuration space. 
 

 

The geometric properties of the configuration space have been extensively studied in 

the literature, e.g., Arnold (1989).  The relationship between the kinematic equation and 

the twist reciprocity equation can be derived from the cotangent space of the C-surface.  

The cotangent space N  is the space of all the wrenches (Arnold 1989) as shown in (3.29).  
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From a geometrical point of view, the cotangent vector at a configuration s  is given by 

the normal of the C-surface at that point, as expressed in (3.30). 

 

wN G=       (3.29) 

( )
1 2

, ( )
T

n

h h hN h p s t
s s s

 ∂ ∂ ∂
= ∇ =  ∂ ∂ ∂ 

    (3.30) 

 

Using the chain rule, the time derivative of the pose equation is expressed in (3.31) as 

the product of the measured twist and the gradient of the pose equation.  As a result, the 

reciprocity equation for the measured twist is equivalent to the time derivative of the pose 

equation as shown in (3.32). 

 

( ) [ ]
1

, ( ) n
T w

i
i i

dh p s t hs h V
dt s=

∂
= = ∇

∂∑           (3.31) 

( ) ( ), ( ) Tw wdh p s t
G V

dt
=             (3.32) 

 

3.3 A Contact State Modeling Example 

To illustrate the modeling techniques presented in this chapter, a vertex-to-edge con-

tact between two polygons is considered in Fig. 3.7.  The pose equation, the reciprocity 

equation for the twist and the reciprocity equation for the wrench corresponding to this 

contact are derived in this section. 
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Figure 3.7: Single vertex-edge contact between two polygons. 

 

3.3.1 Pose Equation  

No translation normal to the environment object’s edge is allowable.  Therefore, 

(2,3)m
fT  must be zero.  Following Appendix A, the corresponding equation can be 

written as:  

( )2 3 1 4 2 1 2 3 1 4 1 3 2 4: cos ( )sin 0ph f f f f f x f y f m f m f m f mθ θ− − + + − + + + =  (3.33) 

 
 
3.3.2 Reciprocity Equation for the Measured Twist  

As shown in Fig. 3.7, the frame cℜ associated with the contact is located at the con-

tacting vertex and has the orientation of the frame associated with the fixed object (i.e., 

fℜ ).  As a result, the transformation matrix between the contact frame and the manipu-

lated object frame reduces to a rotation matrix.  

 

2 1

1 2

0
0 1

f
c m

m
R

T ×

×

 
=  
                

(3.34) 

wℜ  

gℜ

fℜ

cℜmℜ
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In this frame, the basis for the wrench can be written as follows:
 

0
1
0

cG
 
 =  
 
 

     (3.35) 

The wrench basis can then be expressed in the world frame using (3.28): 

 

( )w g F m F c c
w g mG R t S S G=        (3.36) 

where 2 1

1 2

( ) 0
( )

0 1

g
g w
w

R t
R t ×

×

 
=  
 

 

 

Note that for the sake of simplicity, the joints and links of the manipulated robot are 

not modeled in this example.  As a consequence, there is no physical link between the 

gripper frame and the world frame.  Thus, the last screw transformation matrix in (3.28) 

is replaced by a rotation matrix g
wR .  Using (3.16), the wrench basis can be expanded as 

follows:  

 

( ) ( )

2

1

2 3 4 1 3 4sin cos cos sin

w

f
G f

f m m f m mθ θ θ θ

− 
 =  
 + + − 

  (3.37) 
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As a final step, the reciprocity equation for the measured twist is expressed in (3.38) 

using (3.28).  One can easily verify that this equation corresponds to the derivative with 

respect to time of the pose equation presented in (3.33).  

 

( ) ( )( )2 1 1 3 2 4 2 3 1 4: cos sin 0t x yh f v f v f m f m f m f mθ θ ω− + + + + − =     (3.38) 

 

3.3.3 Reciprocity Equation for the Measured Wrench  

The basis for the twist can be written in the contact frame cℜ  by inspection, as shown 

in (3.39).  This basis corresponds to the motions allowable by the contact. 

1 0
0 0
0 1

cJ
 
 =  
 
 

      (3.39) 

The twist basis can then be expressed in the gripper frame using (3.27): 

g V m V c c
g mJ S S J=      (3.40) 

Using (3.18), the twist basis can be expanded as follows: 

1 2 4

2 1 3

cos sin
cos sin

0 1

g

f f m
J f f m

θ θ
θ θ
+ 

 = − − 
 
 

    (3.41) 

 

As a final step, the reciprocity equation for the measured wrench is expressed in 

(3.42) using (3.27).  
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( ) ( )2 1 1 2

3 4

cos sin cos sin 0
:

0
y x

w
y x

F f f F f f
h

F m F m

θ θ θ θ

τ

 − + + =


− + =
  (3.42) 

 

3.4 Summary 

This chapter discussed the representation of contact states.  In the first part of the 

chapter, the representation of contact states in Cartesian space was reviewed.  It was 

shown that rigid polygonal and polyhedral objects could be described using a limited 

number of geometric elements (i.e., vertex, edge, and face) which could then be com-

bined to form contact states.  This approach was utilized to derive lists of possible single 

and double contact states for tasks involving polygonal and polyhedral objects.   

In the second part of the chapter, the representation of contact states in the sensor 

space was presented.  Three sensor modalities were considered (i.e., pose, twist, and 

wrench) and techniques based on kinematic constraints and twist and wrench reciprocity 

were described to obtain the contact models.  As a result, contact states were modeled as 

homogeneous nonlinear algebraic equations parameterized by time-dependent sensor data 

and time-independent parameters representing the unknown locations and positions of the 

objects in contact. 

As shown in Fig. 1.4, the two sub-problems of contact topology and contact state 

modeling treated in this chapter affect all of the remaining design problems associated 

with the construction of a contact state estimator.  The next chapter discusses the distin-

guishability and identifiability of the contact models developed in this chapter.  These 

two properties are needed to ensure the feasibility of contact state estimation as well as 
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the feasibility of parameter estimation.  As discussed, the contact topology can be chosen 

to ensure contact state distinguishability in the Cartesian space (i.e., no degenerate 

contact states in Table 3.3).  Nevertheless, tools need to be created to investigate the 

distinguishability of contact states in the sensor space.  The next chapter presents a 

solution to this problem.  In addition, the identifiability of the parameters associated with 

each contact model is also investigated. 
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Chapter 4  

Identifiability and Distinguishability  

Testing 

 

 

 

This chapter addresses two fundamental questions that must be answered when 

formulating mathematical descriptions of contact states: are the contact states 

distinguishable from each other?  Can the unknown or imprecisely known parameters in 

these descriptions be identified?  An analytical method is presented for evaluating the 

distinguishability and identifiability of a set of contact state models described by 

nonlinear algebraic equations.  In contrast to the analytical techniques proposed in the 

literature that focus either on distinguishability or identifiability, the proposed approach, 

based on Taylor series expansion of the contact equations, presents a unified technique 

for the testing of both properties.  Moreover, it can be applied to any contact model that 
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can be written as homogeneous equations, regardless of the sensing modality (e.g., pose, 

wrench, twist) and dimensionality (e.g., planar, spatial) chosen to represent the model. 

This chapter starts by defining the concepts of identifiability and distinguishability in 

the context of contact state estimation.  In particular, it is shown that identifiability 

reduces to a uniqueness problem whereas distinguishability reduces to an existence 

problem.  Both problems require contact models to be compared and analyzed.  A method 

based on Taylor series expansion of contact models is utilized to test the capability of 

candidate models to estimate both the parameters and the states.  The technique is 

illustrated for several planar and spatial examples.  A complexity analysis of the method 

applied to pose equations is discussed at the end of the chapter..  

 

4.1 Contact State Distinguishability and Identifiability Definitions 

Given nonlinear algebraic models of contact states, parameterized by sensor 

variables, ( )s t , and time-independent configuration parameters, p  (e.g., any of the 

contact state models derived in 3.3), distinguishability and identifiability can be defined 

in the manner of Walter and Pronzato (1996) as follows: 

 

Definition 4.1. Two contact state models A and B, parameterized by a sensor path 

( )s t  and by configuration parameters ( p  for A and q  for B) are distinguishable if, for 

almost any  sensor path ( )s t  of sufficient length, there is no solution for the parameter 

set { },p q  such that the contact models are satisfied simultaneously.  
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Definition 4.2. A contact state model A is globally identifiable if, given almost any 

sensor path ( )s t  of sufficient length, there exists a unique solution for p  that satisfies 

model A.  If there are a finite number of solutions then contact model A is locally 

identifiable. 

 

In these definitions, the sensor path must be at least of the minimum length corre-

sponding to the number of unknown parameters associated with the models.  The phrase 

“almost any sensor path” is meant to rule out unexciting paths.  In definition 4.2, local 

identifiability is equivalent to the model being minimal (i.e., a model in which 

unidentifiable parameters are eliminated or grouped into terms which are identifiable, 

Gautier and Khalil 1990).  Note that a model being minimal guarantees the existence of a 

solution but not its uniqueness.  

The following section develops a systematic method for evaluating these definitions 

for contact states modeled as homogeneous nonlinear algebraic equations.  

 

4.2 Taylor Series Testing of Distinguishability and Identifiability 

Distinguishability and identifiability testing is based on finding practical ways to 

analyze and compare equations.  In that regard, Taylor series expansion can be effective 

since it allows a nonlinear model to be written as a unique set of algebraic equations in 

which each equation corresponds to a coefficient of the series.  Thus, Taylor series reduce 

the distinguishability and identifiability testing to a comparison of the different 

coefficients of the series.  While there are an infinite number of coefficients, a decision 
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on distinguishability and identifiability can often be made based on comparing a modest 

number of coefficients.  As a result, no approximation is being made when using the 

series.  This technique was successfully applied to testing the identifiability and 

distinguishability of zero-input state-space models (e.g., Pohjanpalo 1978, Walter and 

Pronzato 1996).  In this approach, the Taylor series of the output vector is written as a 

succession of time derivatives evaluated at time 0t += .  These coefficients form a set of 

algebraic equations that must be solved for all the possible sets of parameters.  Although 

the sets of equations can be difficult to solve by hand, tools from commutative algebra 

can be used to simplify the equations (Raksanyi et al. 1985).  

In developing a Taylor series approach for contact models, the model M  is permitted 

to be nonlinear in the parameters p  as well as the sensor variables ( )s t , 

 

( ), ( ) 0
:

( ) 0
F p s t

M
H p

 =


=         
(4.1)

 
 

 

( )F ⋅  includes all the sensor-dependent equality constraints while ( )H ⋅  models any 

additional equality constraint on the parameters.  Assuming that the function ( ),F p s  is 

analytic, a Taylor series expansion of order k with respect to the sensor variables can be 

written as: 
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( ) ( )

( )

0

0
0

0

0

, ( , )
!

,
( , )

ik

i
i

i

i i
s s

s s
F p s a p s

k

d F p s
a p s

ds

=

=

 −
=



 =


∑
       (4.2) 

 

Note that each coefficient of the Taylor series (i.e., 0( , )ia p s ) is a function of the 

unknown constant parameters and the known sensor values.  If more than one sensor 

variable appears in the model, then partial derivatives with respect to all the sensor 

variables can be computed.  Equation (4.3) shows a second order expansion of a function 

of three variables { }1 2 3, ,s s s .  This expansion could be applied, for example, to planar 

contact states described using pose equations by substituting { }1 2 3, ,s s s  by { }, ,x y θ . 

 

{ }( ) ( ) ( ) ( ) ( ) ( )( )

{ }
{ }

0

0 0

23 3 3
0 0

0
1 1 1

1 2 3
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, ,
, , , ,

2!

, ,

, ,

=
= = == =

 − −∂ ∂
 = + − + +

∂ ∂ ∂

 =


=



∑ ∑∑ i i j j
i is s

i i ji i js s s s

s s s sF p s F p s
F p x y θ F p s s s

s s s

s s s s

s s s s

(4.3) 

 

Since the function ( ),F p s  is assumed to be infinitely differentiable with respect to its 

sensor variables, its mixed derivatives are equal.  With m as the number of sensor 

variables and k as the order of the expansion, the number of coefficients cn  of the series 

is given by: 

( )!
! !c

k m
n

k m
+

=          (4.4) 
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4.2.1 Distinguishability Testing 

Based on the uniqueness of the Taylor series expansion, two contact state models are 

equivalent if and only if all the coefficients of their expansions are equal, as given below:  

 

( ) ( )

0 0 0 0

1 0 1 0

0 0

1 2

( , ) ( , )
( , ) ( , )

, ,
( , ) ( , )
( ) ( )

n n

a p s b q s
a p s b q s

A p s B q s
a p s b q s
H p H q

=
 == ⇔ 
 =

=

      (4.5) 

This equality leads to the following test for distinguishability. 

 

Definition 4.3. Two contact state models A and B in the form of (4.1) are 

distinguishable if and only if for any 0s , (i) given any choice of p, there is no solution to 

(4.5) for q, and (ii) given any choice of q, there is no solution to (4.5) for p. 

 

To demonstrate that two models A  and B  are distinguishable, their Taylor coeffi-

cients (i.e., 0( , )a p s  and 0( , )b q s ) must differ in at least one equation of (4.5) for all 

choices of parameters. 

 

4.2.2 Identifiability Testing 

The identifiability of a contact model can be tested by considering how many sets of 

parameters yield the same Taylor series coefficients in (4.2).  This test can be performed 

by counting the number of solutions for p , given p̂ , in the equation below: 
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( ) ( )

0 0 0 0

1 0 1 0

0 0

1 1
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ˆ( , ) ( , )
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a p s a p s

A p s A p s
a p s a p s
H p H p

=
 == ⇔ 
 =

=

       (4.6) 

 

This test can be stated formally as follows. 

 

Definition 4.4.  A contact state mode A  is identifiable if and only if, for all 0s , given any 

p̂ , there  is a unique solution to (4.6), which is ˆp p= .  If a finite number of solutions for 

p  exist then A  is locally identifiable.  A  is unidentifiable if an infinite number of 

solutions exist. 

 

Since the Taylor series is developed around nominal sensor values, the approach 

appears to be local in the space of sensor variables.  It is important to note, however, that 

the solutions for the parameters are obtained without substituting numerical values for the 

sensor values 0s  and so the results are truly global in the sensor space.  Testing 

identifiability involves solving for the number of solutions for p  in (4.6).  Note that the 

solution ˆp p=  always exists. 
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4.3 Examples 

Four examples are presented to illustrate the Taylor series technique of testing the 

distinguishability and identifiability of contact models for polygonal and polyhedral 

objects.  The first two test the distinguishability and identifiability of a pair of polygonal 

contact models while the last two focus on the identifiability and distinguishability testing 

of a pair of polyhedral contact models. 

 

4.3.1 Example 1 – Distinguishability of Polygonal Vertex–Edge Contacts  

As a first example, the distinguishability of the models developed for the contact 

states of Fig. 4.1 is tested.  The pose equations for the contacts { }m fV E−  and 

{ }m fE V−  (i.e., contact A and contact B respectively) are obtained using the technique 

described in section 3.2.2.  The corresponding equations are shown in (4.7) and (4.8).  

 

    

Figure 4.1: Contact between two polygons. a) Contact between a vertex of the 
manipulated object and an edge of the fixed object, and b) Contact between a vertex of 
the fixed object and an edge of the manipulated object. 
 

gℜ

mℜ  fℜ

wℜ  

gℜ  

fℜ  
mℜ  
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(4.8) 

 

Series coefficients are given in (4.9) for contact A and in (4.10) for contact B.  Due to 

the cyclic nature of the derivatives of sine and cosine, derivative terms beyond second 

order do not generate independent equations. 

 

( ) ( ) ( )
( ) ( ) ( )
( )
( )
( ) ( ) ( )
( )
( )

0 0 5 2 3 1 4 0 1 3 2 4 0 2 0 1 0

1 0 1 3 2 4 0 2 3 1 4 0

2 0 2

3 0 1

4 0 2 3 1 4 0 1 3 2 4 0

5 0

6 0

7

, cos sin 0

, cos sin

,

,

, cos sin

, 0

, 0

,

a

a

a
x

a
y

a

a
x

a
y

a
xx

a F p s p p p p p p p p p p x p y

a F p s p p p p p p p p

a F p s p

a F p s p

a F p s p p p p p p p p

a F p s

a F p s

a F p s

θ

θθ

θ

θ

θ θ

θ θ

θ θ

= = + − − + + − =

= = − + − −

= =

= = −

= = − − + +

= =

= =

= ( )
( )
( )

0

8 0

9 0

0

, 0

, 0

a
xy

a
yy

a F p s

a F p s














 =
 = =

 = =

 (4.9) 



 84

( ) ( )
( ) ( )

0 0 5 1 4 2 3 2 0 1 0 0 1 3 2 4 1 0 2 0 0

1 0 1 3 2 4 1 0 2 0 0 1 4 2 3 2 0 1 0 0

2 0 2 0 1 0

3 0 1 0 2 0

4 0

( , ) cos sin 0

( , ) cos sin

( , ) cos sin

( , ) cos sin

( , )

b

b

b
x

b
y

b

b F q s q q q q q q x q y q q q q q x q y

b F q s q q q q q x q y q q q q q x q y

b F q s q q

b F q s q q

b F q s

θ

θθ

θ θ

θ θ

θ θ

θ θ

= = + − + − − + − − =

= = − + − − − − + −

= = +

= = − +

= = ( ) ( )1 4 2 3 2 0 1 0 0 1 3 2 4 1 0 2 0 0

5 0 2 0 1 0

6 0 1 0 2 0

7 0

8 0

9 0

cos sin

( , ) sin cos

( , ) sin cos

( , ) 0

( , ) 0

( , ) 0

b
x

b
y

b
xx

b
xy

b
yy

q q q q q x q y q q q q q x q y

b F q s q q

b F q s q q

b F q s

b F q s

b F q s

θ

θ

θ θ

θ θ

θ θ








 − − + − + + − −


= = − +
 = = +
 = =

 = =


= =

 (4.10) 

 

Applying Definition 3 to test the distinguishability of models (4.7) and (4.8) involves 

combining (4.9)-(4.10) in the form of (4.5).  It can be directly observed that the pair of 

equations below cannot be satisfied since they contradict 2 2
1 2 1q q+ =  in (4.8). 

 

5 5 2 0 1 0 2 2
1 2

6 6 1 0 2 0

0 sin cos
0

0 sin cos
a b q q

q q
a b q q

θ θ
θ θ

= = − + 
⇔ ⇒ + = = = + 

    (4.11) 

 

Since the equations have no solution regardless of whether p  or q  is given, the two 

contact state models are distinguishable.   

 

4.3.2 Example 2 – Identifiability of a Polygonal Vertex–Edge Contact  

The identifiability of the contact model representing the contact state of Fig. 4.1(a) is 

tested here.  To apply Definition 4, at least five independent equations are needed to 
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solve for the five parameters 1p - 5p .  The Taylor series coefficients expressed in (4.9) 

provide five equations which can be combined with the last equation of (4.7) to obtain a 

set of six equations in the form of (4.6).  
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+ = + =

(4.12) 

 

To obtain all possible solutions for p  given p̂ , it can be seen that the third and fourth 

equations define uniquely 1p  and 2p  and that this solution also satisfies the sixth 

equation.  Given 1p  and 2p , the remaining parameters appear linearly in the three 

remaining equations.  Consequently, equation (4.12) admits only one solution, given 

below.  

1 1

2 2

3 3

4 4

5 5

ˆ
ˆ
ˆ
ˆ
ˆ

p p
p p
p p
p p
p p

=
=
=

=
=

          (4.13) 

 

By Definition 4, contact state A is globally identifiable.   
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4.3.3 Example 3 – Identifiability of a Polyhedral Vertex–Face Contact  

To demonstrate the applicability of the approach to polyhedral models, this example 

considers the identifiability of the contact { }m fV F−  shown in Fig. 4.2. 

 

 

 

 

Figure 4.2: Vertex – Face contact state. 
 

Using the techniques described in section 3.2.2, the contact model can be written as 

follows:  

oR  

eR

gR

mR

Robot gripper 
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  (4.14)  

 

Here, [ ]1 2 3 4 5 6, , , , ,p p p p p p are used to parameterize the three unknown rotations used in 

e
oT  and  [ ]7 8 9, ,p p p  represent the unknown translations used in m

gT .  The parameter 10p  

represents the magnitude of the position vector between the world and environment 

object frames projected on the normal of the contact’s face.  The sensor variables 

{ }, , , , ,x y z α β γ  represent the position and orientation of the robot gripper.   

At least ten equations are needed to solve for the ten parameters.  Since six sensor 

variables are available, seven Taylor coefficients are provided through first order 

expansion.  These equations can be combined with the last three equations of (4.14) to 

obtain the desired number of equations.  Since 1p - 6p  are the only coefficients 

multiplying { }( ), ( ), ( )x t y t z t , the first order coefficients with respect to these sensing 
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variables can be combined with the last three constraint equations of (4.14) to produce 

the algebraic system of six equations: 
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This system admits an infinite number of solutions given in (4.16) with 5p  and 6p  as 

free parameters. Note that the choice of the free parameters is arbitrary; any pair 

{ }1 2,p p , { }3 4,p p  or { }5 6,p p  can be chosen to solve for the remaining parameters.  By 

Definition 4, the contact state is unidentifiable.   
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Equation (4.16) shows that two out of the three angles specifying the orientation of 

the environment object can be uniquely identified.  This can be explained geometrically 

by noticing that the contact state is invariant under rotations of the environment object 

about the face’s normal.  This suggests that the contact should be re-parameterized using 
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only two angles to model the orientation uncertainty of the environment object.  In this 

case, 5p  and 6p  can be selected arbitrarily giving a unique solution to (4.16).  Note that 

over-parameterization is often a result of applying general modeling techniques, such as 

the techniques presented in section 3.2.  To obtain a minimal representation, the 

unidentifiable parameters must be grouped to form identifiable parameters or eliminated 

(Gautier and Khalil 1990).  This reduction task can be difficult to implement analytically 

for arbitrary models.  The proposed identifiability test is a general tool for detecting the 

presence of unidentifiable parameters. 

Given that 1p - 4p  are identifiable, the identifiability of the remaining parameters can 

be investigated by looking at the four remaining first order Taylor coefficients of (4.14), 

as shown in (4.17). 
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  (4.17) 

 

In these equations, the variables , ,U V W  and their derivatives are nonlinear functions of 

the known variables 1 2, , , , ,K Kα β γ and 3K .  Moreover, it can be shown that these four 

equations are linearly independent.  As a consequence, 7 10p p…  can be uniquely 

identified given that 1 2,K K and 3K are known.  Therefore, the vertex-face contact model is 

said to be globally identifiable, as long as the orientation uncertainty of the environment 

object is parameterized by two angles.    



 90

4.3.4 Example 4 – Distinguishability of Polyhedral Vertex–Face Contacts 

This example examines the distinguishability of two contacts having the same 

topological form.  The two contact models consist of  a single vertex of the manipulated 

object in contact with either of two orthogonal faces of the environment object, as shown 

in Fig 4.3.  The equations characterizing the contacts { }1
m fV F− and { }2

m fV F−  are 

presented in (4.18) and  (4.19) respectively.  Note that (4.18) and (4.19) are minimal 

parameterizations obtained by selecting 5 5 1p q= =  and 6 6 0p q= = . 

 

    
Figure 4.3: Two vertex–face contact states in which the location of the contact point is 
the same on the manipulated object but on two orthogonal faces of the environment 
object. 
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 (4.19) 

   
 

Since the orientation of the contacting face is the only difference between the two 

contacts, distinguishability is analyzed by looking at the parameters defining the 

unknown orientation of the two faces, i.e., 1 4p p…  for contact C’ and 1 4q q…  for contact 

D.  As a consequence, the distinguishability problem reduces to the comparison of the 

first order Taylor coefficients with respect to the position sensing variables.  Definition 3 

is applied to the equations formed by combining the three first order coefficients of  
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(4.18) and (4.19) together with the final equations of  (4.18) and (4.19) in the form of 

(4.5). 
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The two solutions of  (4.20) for p given q  appear in (4.21).  The same solutions arise 

when the system is solved for q  given p .  These two solutions define the same 

orientation and thus constitute a single solution. 
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The final solution for (4.5) is given by (4.22).  
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This solution yields the anticipated result indicating the orthogonality of the two contact 

faces. By Definition 3, since a solution exists, the two contact states are indistinguishable.   

If, however, the orientation angle θ  of the environment object with respect to the normal 

of its front face is known then: 

 

3 3

4 4

cos
sin

p q θ
p q θ

= =
= =

         (4.23) 

 

Equation (4.23) contradicts (4.22); consequently the contact states are distinguishable.  

This result can be explained geometrically by noticing that a 90 degree rotation around 

the environment object’s front face of the contact depicted in Fig 4.3(a) leads to the 

contact pictured in Fig 4.3(b), making the two contacts indistinguishable.  On the other 

hand, if the rotation angle is known, then the two contacts are distinguishable since no 

transformation than can change Fig 4.3(a) to Fig. 4.3(b) exists. 

Recall that in Example 3, the vertex-face contact model used here was made 

identifiable by eliminating the parameter corresponding to rotation about the face’s 

normal. Example 4 reveals that distinguishability can further restrict the choice of 

parameterization (i.e., free parameters) beyond what is needed for identifiability. 

 

4.4 Computational Complexity Analysis 

The distinguishability and identifiability tests presented in this thesis reduce to 

solving the sets of algebraic equations in (4.5) and (4.6).  Determining the actual number 

of solutions to sets of nonlinear algebraic equations constitutes a challenge whose 
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difficulty increases with the number of equations, ν , in the set.  In this section, upper and 

lower bounds, minν  and maxν , are derived on the number of equations in the sets described 

by (4.5) and (4.6) for pose equations.  

 

4.4.1 Identifiability Testing 

The complexity of the proposed approach depends on the size of the system of 

equations in (4.6) used to test identifiability.  The goal of identifiability is to show that 

there is a unique set of parameters satisfying the system of nonlinear equations in (4.6).  

By construction, the system admits at least one solution.  Since exactly determined 

systems of nonlinear equations usually admit multiple solutions, additional equations 

may be needed to show uniqueness.  As a consequence, a lower bound on the number of 

independent algebraic equations needed to solve for the unknowns is given by n , the 

number of unknown parameters associated with the given contact equation.  

 

min nν =           (4.24) 

 

If ( )H ⋅  in (4.6) provides β  equations, then the number of Taylor series coefficient 

equations, cn , needed to achieve this lower bound is given by: 

 

        min≥ −cn ν β         (4.25) 
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This is a lower bound on cn  since there is no guarantee that the algebraic equations 

from the Taylor series are independent.  This bound on the number of coefficients can be 

related to the minimum order of the series, mink , needed to produce them by substituting 

the minimum value of cn  from (4.25) into (4.4). 

 

 min min1,2,3,

( )!min 0
! !k

k mk ν β
k m=

 + = − + >  
  …

     (4.26)  

 

An upper bound on the series order can be derived by noting that pose equations 

involve only cyclic and polynomial functions of the sensor variables.  As a consequence, 

the terms in the Taylor coefficients start repeating or go to zero after a finite number of 

differentiations.  The number of differentiations required for a variable to repeat or go to 

zero is defined here as the degree of cyclicity of the variable and is denoted ( )C ⋅ .  

The degree of cyclicity associated with the angular sensor variables as  (e.g., 

{ }( ), ( ), ( )=as t t tα β γ in 3D) equals four since, in every term (see e.g., (4.14)), the angular 

variables appear as linear trigonometric functions, e.g., sine or cosine.  The degree of 

cyclicity for the positional sensor variables ps  (e.g., { }( ), ( ), ( )=ps x t y t z t  in 3D) equals 

one since they appear linearly in the kinematic pose equations.  See (4.14) as an example.  

Since identifiability testing involves comparing sets of equations having identical 

structures, the signs of the repeating functions cancel, which reduces the cyclicity of the 

angular variables for identifiability testing from four to two: 

 
( ) 2=aC s   ( ) 1=pC s         (4.27) 
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For example, when testing (4.10) for identifiability, it can be seen that 3b  and 5b  yield the 

same equations when written in the form of (4.6).  As a consequence, the upper bound 

maxk on the series order is given by: 

 

( ) ( )max dim= ⋅a ak s C s         (4.28) 

  

in which ( )dim 1=as  in 2D and ( )dim 3=as  in 3D.  Therefore, the maximum number of 

equations available to test for identifiability is 

 

( )max
max

max

!
! !

k m
ν β

k m
+

= +          (4.29) 

 

While maxν can be large, many of these equations are either zero or redundant.  The subset  

*
max maxν ν≤  of nonzero independent equations can be obtained using a computer algebra 

package.  The number of equations used to solve for identifiability is bounded as 

*
min max maxν ν ν ν≤ ≤ ≤ .  This bound can related to cn , the number of Taylor coefficients, as: 

 

*
min max≤ + ≤cnν β ν         (4.30) 
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Table 4.1 presents the lower and upper bounds as well as the actual number of equations, 

actv , needed to test for identifiability in Examples 2 and 3, corresponding to equations 

(4.7) and (4.14).  In both cases, the actual number of coefficients needed corresponds to 

the lower bound. 

 

Table 4.1: Bounds on the number of equations needed for identifiability testing. 

= +cnν β  β  minν  *
maxν  maxν  actv  

Example 2: { }m fV E−  1 5 6 11 5 

Example 3: { }m fV F−  3 10 33 927 10 

 

 
4.4.2 Distinguishability Testing 

The goal of distinguishability testing is to show that there is no set of parameters 

satisfying the system of nonlinear equations in (4.5).  To do so, at least one contradiction, 

valid for all choices of parameters, must be found in these equations.  Assuming that a 

contradiction is not present in 1 2( ) ( )H p H q= , at least one Taylor coefficient is needed to 

establish distinguishability, resulting in the following lower bound: 

 

min1 1≥ ⇒ ≥ +cn ν β        (4.31) 
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In contrast to identifiability testing, the lack of structural similarities between the left 

and right sides of (4.5) prevent the simplifications presented for identifiability (i.e., 

elimination of the redundant and nonzero parameters).  Therefore, an upper bound on the 

number of coefficients for distinguishability testing is not easily established.  In practice, 

the Taylor coefficients are computed one by one until a contradiction is found.  If no 

contradiction is found after a large number of coefficients (i.e., 10=k  in (4.4)), then one 

gives up without drawing a conclusion on the distinguishability of the contact states. 

Note that when a contradiction can be found, the actual number of equations 

computed for distinguishability testing depends on the order in which the Taylor 

coefficients are computed.  In Example 1, the second order mixed derivatives xFθ  and yFθ  

are needed to prove distinguishability.  These derivatives correspond to the sixth and 

seventh coefficients, respectively, of (4.9) and (4.10).  This choice in the order of the 

coefficients is arbitrary (e.g., xFθ  could be computed before Fθθ ); however, it impacts the 

number of equations computed for distinguishability.  The worst possible ordering results 

in the computation of all the Taylor coefficients associated with the order of the 

expansion that yields a contradiction in (4.5).  This expansion’s order is labeled *k  and 

the number of equations corresponding to the worst ordering is given as follows: 

 

( )*

max *

!
! !
+

= +
k m
k m

ν β         (4.32) 
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Table 4.2 gives the bounds as well as the actual number of equations, actv , needed to test 

for the distinguishability of Examples 1 and 4.  A second order expansion and first order 

expansion were needed for Examples 1 and 4, respectively. 

 

Table 4.2: Bounds on the number of equations needed for distinguishability testing. 

= +cnν β  β  minν  maxν  actv  

Example 1 
{ }m fV E−  vs. { }m fE V−  

1 2 11 8 

Example 4 
{ }1

m fV F−  vs. { }2
m fV F−  

2 3 9 5 

 

 
4.5 Summary 

This chapter presented a method for determining the distinguishability and identifi-

ability of smooth nonlinear algebraic models describing contact states.  The Taylor series 

method provides a unified approach to testing the capability of candidate models to 

estimate both the parameters and the states.  The analytical nature of the approach is well 

suited for poorly known environments since no numerical value for the contact 

parameters is necessary for the testing.  The complexity of the method depends on the 

number of Taylor coefficients that needs to be computed.  For pose equations, it can be 

shown that this number is bounded above and below for identifiability testing and lower 

bounded for distinguishability testing.  For the examples considered, a modest number of 
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terms were needed for testing.  As a result, no approximation is being made when using 

the series for testing contact distinguishability and identifiability. 

In the context of contact state estimation, the proposed identifiability and distin-

guishability tools offer the following advantages.  First, the identifiability tool provides a 

useful method to redesign contact models by detecting and removing the unidentifiable 

parameters, as discussed in example 4.  Second, the distinguishability tool provides a 

practical way of analyzing the partitioning of the sensor space corresponding to the 

contact states.  As illustrated in examples 1 and 4, pose information is sufficient to 

distinguish between the two polygonal contacts { }m fV E−  and { }f mV E− , whereas it is 

not sufficient to distinguish between the two polyhedral contacts { }1
m fV F−  and 

{ }2
m fV F− .  As a result, the contacts { }m fV E−  and { }f mV E−  form two separate 

regions in the sensor space, whereas contacts { }1
m fV F−  and { }2

m fV F−  are lumped into 

the same region in the sensor space.   

While the examples presented here involved only elemental contacts based on pose 

equations, the methodology is equally applicable to more complex contacts using 

additional sensor modalities.  Additional work is needed to test the identifiability and 

distinguishability of all of the contacts associated with the polygonal and polyhedral 

objects presented in Table 3.1-3.4.  Moreover, the relationship among distinguishability 

in different sensor spaces remains to be investigated. 
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In this chapter, the distinguishability of contacts is based on the structure of the 

contact models and sensor information.  The next chapter discusses how additional 

information, such as parameter history, can be used to augment the distinguishability of 

contact states.  This augmented distinguishability is then used to investigate the 

observability of contact states in poorly known environments. 
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Chapter 5  

Contact State Observability and Task 

Encoding 

 

 

 

Given a geometric description of the objects composing a task and a contact state 

topology, a contact state graph representing all possible contact sequences that can lead to 

task completion can be generated.  This contact state graph can then be used for task 

planning, assuming that each state of the graph can be determined using sensor data.  The 

objective of this chapter is to investigate whether it is possible to distinguish each contact 

state from the others inside a contact state graph, given that the environment is poorly 

known.  This property, known as observability, is essential when testing the feasibility of 

a task. 

The first section of the chapter discusses task representation, and an example 

illustrating the construction of a contact state graph for a block placing task is provided.  
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The second section of the chapter analyzes the observability of the exemplified contact 

state graph in the context of poorly known environments.  To this end, the contact state 

graph obtained from task decomposition is reduced to account for the distinguishably 

constraints associated with poorly know environments.  Then, a forward projection from 

the observable reduced graph to the contact state graph using a finite history of the 

contact state parameters is presented as a solution to the observability problem in poorly 

known environments.  Once a contact state graph is shown to be observable, then it can 

be encoded to be used inside a contact state estimator.  The final section of this chapter 

addresses the problem of encoding a state graph in a form that is well suited for 

implementation purposes.  The approach employed here uses a probability transition 

matrix to mathematically represent the task and the likelihood of transitions between 

contact states. 

 

5.1 Task Representation 

Manipulation tasks involving geometrical objects are naturally decomposed into 

contact states.  Given a list of contact states (i.e., contact topology in Chapter3), several 

algorithms have been developed to automatically decompose a task into sequences of 

contact states (Xiao and Ji 2001).  These sequences are then assembled into a contact 

state graph in which each node represents a contact state and each link represents a 

possible transition from a contact state to another.  In this thesis, automatic 

decomposition of the task is not addressed; however, an example of manual 

decomposition of an assembly task requiring the placement of a block is considered. 
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5.1.1 Contact Topology  

As illustrated in Fig. 5.1, the task is defined by two polygonal objects.  The block is 

assumed to be rectangular, and the edges defining the corner are assumed to be infinite.  

As a consequence, the task involves two edges from the fixed corner (i.e., 1 2,f fE E ), and 

four edges and four vertices from the manipulated object (i.e., 1 4 1 4,m mE V… … ).  The block is 

assumed to be grasped (i.e., crossed circle) by a planar manipulating robot.   

 
 

 

Figure 5.1: Block-in-corner assembly task. 
 

 

By enumerating all the possible contacts, it can be seen that 25 contacts can occur 

between the edges and vertices composing the task.  As shown in Fig. 5.2, the task 

comprises one no-contact, eight vertex-to-edge contacts, eight edge-to-edge contacts, four 

double vertex-to-edge contacts, and four double edge-to-edge contacts.  The black wedge 

inside the crossed circle of the manipulated object indicates its orientation. 
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Figure 5.2: Contact state topology of a block-in-corner assembly task. 
 

5.1.2 Task Decomposition 

Using the contact topology presented in Fig. 5.2, the contact state graph associated 

with the block-in-corner task can be generated manually, as shown in Fig. 5.3.  This 

graph comprises 128 possible transitions between states.  The transitions between the no-

contact and the double contacts are not modeled since they are very unlikely.  The 

number of possible contact state sequences required to reach the corner position from the 

free motion position depends on the number of connections involved in the sequence.  It 

should be clear that this number becomes large very quickly. 
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Figure 5.3: Contact state graph representing a block-in-corner assembly task. 
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5.2 Contact State Observability 

For a task to be feasible, all the contact states composing a given contact state graph 

must be distinguishable.  For example, the goal of the task illustrated in Fig. 5.3 is to 

place the manipulated block in contact with the environment corner.  The task is 

completed when contact state 1C  is reached.  Therefore, contact 1C  needs to be 

distinguished from all the other contacts composing the graph since reaching a goal 

without recognizing it does not result in task completion.  The concept of 

distinguishability presented in section 4.1 tests the distinguishability of contact states 

based on current sensing information; however, this information may not be sufficient to 

recognize all the possible contacts composing the task.  The distinguishability of every 

contact state inside a contact state graph is discussed in this section by introducing the 

concept of observability.  By analogy with control theory, the concept of observability is 

defined as follows:   

 

Definition 5.1.  A contact state graph is said to be observable if, given a finite history of 

contact state transitions, the distinguishability of the contact models (as defined in 

Chapter 4) together with the task information are sufficient to determine the initial 

contact state.  

 

This problem of observability can be related to the problem of recognizability 

introduced by Erdmann (1986) and Donald and Jennings (1991) (i.e., see section 2.1.6).  

In this context, the notion of task information represents the task based knowledge that 
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can be utilized to augment the distinguishability of the contact states obtained from the 

current sensing. 

The objective of this section is to investigate contact state observability in poorly 

known environments.  To this end, the observability of the contact state graph illustrated 

in Fig. 5.3 is discussed.  First, it is shown that only groups of contact states can be 

distinguished inside the contact graph when assuming that the environment is poorly 

known.  As a result, a reduced graph containing only groups of distinguishable contact 

states is extracted using distinguishability testing.  Second, task information, represented 

as a finite history of the contact state parameters, is presented as a way of augmenting 

distinguishability.  Finally, distinguishability testing and a forward projection of the 

parameter history are combined to show observability. 

 

5.2.1 Distinguishable State Graph 

As discussed in Chapter 4, every pair of contacts having the same topological form is 

indistinguishable without further information regarding the orientation of the edges or the 

location of the vertices.  Analyzing the contact state graph of Fig. 5.3, it can be observed 

that only five different groups of topologically different contact states are utilized to 

construct the graph: no contact, vertex-to-edge, edge-to-edge, double vertex-to-edge, and 

double edge-to-edge.  Using the distinguishability test presented in section 4.2.1, these 

groups of contacts can be shown to be distinguishable; however the individual contacts 

inside the groups are indistinguishable. (e.g., 13C  and 14C , 10C  and 12C ). 
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Figure 5.4 shows how the 25 contact states of Fig. 5.3 can be reduced to a five-state 

graph in which each state comprises an indistinguishable subset of the original states.  

This reduced state graph is defined as a distinguishable graph; it corresponds to a 

minimum representation of the task imposed by the current sensing of the system.  Each 

node in this reduced graph is distinguishable from the others. 

 

 

Figure 5.4: Distinguishable contact state graph. 
 

 

5.2.2 Observability Conjecture 

Planning in the distinguishable state graph shown in Fig. 5.4 does not have substantial 

value since each node represents a group of several contact states.  To be practical, 

planning has to be done in the contact state graph of Fig. 5.3.  This section investigates 
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how task information can be used to augment distinguishability and achieve contact state 

graph observability.  

In the context of poorly known environments, the observability problem can be stated 

as follows: how many transitions are needed in a distinguishable graph to determine a 

contact state in its associated contact state graph?  Based on current sensing information, 

the type but not the exact state can be determined; however, distinguishability can be 

augmented by using the information contained in the parameter estimates.  In fact, it can 

be noticed that parameter values can be used to ‘label’ contact states.  As an example, the 

topologically equivalent contact states 13C  and 16C  in Fig. 5.3 are considered.  The 

vertex-edge contact equation derived in (3.33) is satisfied when either contact 13C  or 16C  

is active.  The position of the top right vertex 1
mV  is estimated when 13C  is active, 

whereas the position of the bottom left vertex 3
mV  is estimated when 16C  is active.  As a 

result, storing the parameter history of the task can help to distinguish the contact states 

associated with the task.  This reasoning leads to the following conjecture: 

 

Observability Conjecture (2D): Given the label, but not the location of the closest 

manipulated object vertex to the gripper frame, the contact state path to determine the 

contact state history is one that permits estimation of all manipulated and environment 

object model parameters. 
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The idea of the conjecture is to extract all the object features (i.e., vertices and edges 

in 2D), with respect to a ground truth (i.e., the label of the closest manipulated object 

vertex to the gripper frame is known), that were used to build the contact state graph.  

Once this parameter information is known, then it can be combined with 

distinguishability testing to determine the contact states inside the state graph.  For 

example, if a vertex-edge contact is detected and the estimated parameters correspond to 

the location of the vertex 1
mV  and the orientation of the edge 2

fE , then it can be 

concluded that contact 13C  has been reached.   

To illustrate this conjecture, the parameter history associated with the sequence of 

states shown in Fig. 5.5 is analyzed.  The unknown grasp location of the manipulated 

object is represented by a crossed circle.  The vertex 2
mV  is assumed to be the closest to 

the gripper.  Starting from the vertex-edge contact 13C , the manipulated object is rotated 

clockwise four times then slid until it reaches the bottom edge of the fixed corner, 

resulting in the state sequence 13 11 20 9 17 23C C C C C C→ → → → → . 
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Figure 5.5: Example of a contact sequence that permits estimation of all manipulated and 
environment object model parameters. 
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Figure 5.6 shows the state sequence and the associated parameter history combined with 

the known geometry of the task.  First, the location of the vertex 1
mV  and the orientation 

of the edge 2
fE  are estimated.  Second, the orientation and part of the length of the edge 

1
mE  are estimated. Third, the vertex 2

mV  is estimated resulting in the complete 

identification of the length of 1
mE . Fourth, the orientation and part of the length of the 

edge 2
mE  are estimated.  Fifth, the location of the vertex 3

mV  is identified and combined 

with the parameter history and the a priori knowledge of the objects’ shape to estimate 

the remaining parts of the rectangular manipulating object.  Finally, the orientation of the 

edge 1
fE  is estimated.  At this point, the information obtained from the parameter values 

is sufficient to permit estimation of all manipulated and environment object parameters.  

As a result, contact state 23C  is determined in the contact state graph shown in Fig. 5.3, 

and recursively, all the contact states leading to 23C  are also determined.  By definition 

5.1, the contact state graph is said to be observable. 
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Figure 5.6. Forward projection on the parameter history.  a) Contact state sequence in 
which the block is rotated clockwise and then slid toward the bottom edge of the fixed 
corner, and b) The parameter history is combined with the knowledge of the 
objects’shape resulting in a 2D model of the manipulated object and its environment. 

a) b)
13C

11C

20C

9C

17C

23C

1
mE

2
fE

1
mV

1
mV

1
mV

2
mV

1
mE

1
mV

2
mV

1
mE

2
fE

2
fE

2
fE

2
fE

1
fE

2
mE

2
mV

1
mV

4
mV

3
mV

1
mE

2
mE

3
mE

4
mE

2
mV

1
mV

4
mV

1
mE 2

mE

3
mE

4
mE

3
mV

2
fE



 115

Ultimately, the concept of observability is goal dependent.  If the goal is to put the 

cube inside the corner regardless of its orientation, then the distinguishable state graph 

provides sufficient information.  However, the more specific the goal is, the more critical 

the problem of observability becomes.  Parameters were assumed to be perfectly 

estimated in this discussion.  Nevertheless, noise or poor excitation can result in an 

erroneous estimation of the parameters that can degrade the observability of the graph. 

The sequence of states presented in Fig. 5.6 results in a complete geometric 

construction of the objects used in the task; however, not every sequence of contact states 

results in a full model.  The question of the necessary number of steps needed to 

construct arbitrary polygons or polyhedrons is not addressed in this thesis.  A sufficient 

condition can be provided using forward projection on the parameter history.  The 

sequence proposed in Fig. 5.5 is one possible projection; however other sequences also 

exist.   

 

5.3 Task Encoding 

If a contact state graph is shown to be observable, then it means that enough 

information (i.e., sensing information, parameter history, and task structure) is available 

to disambiguate every contact state inside the graph.  As a next step, the observable 

contact state graph needs to be encoded in a mathematical form suitable for 

implementation in a contact state estimator.  The approach employed here uses a 

probability transition matrix to represent the probability of specific contact state 

transitions embodied in a task contact state network. 
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5.3.1 Contact State Network 

Probabilistic approaches can be used to encode the likelihood of transitions among 

the states of a contact state graph.  In this context, the contact state graph is transformed 

into a network structure in which each node corresponds to a contact state, and each 

transition among states (including self-transition) is weighted by its probability of 

occurrence.  As an example, the state network associated with the distinguishable state 

graph of Fig. 5.4 is presented in Fig. 5.7.  Grey connectors represent transitions that were 

not modeled in the state graph (i.e., infeasible transitions or highly unlikely transitions), 

and the ija ’s are used to label the possible transitions. 

 

 

Figure 5.7: Distinguishable state network. 
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The state network can be represented in a compact way using an n n×  probability 

transition matrix A , as described in (5.1).  Each element of the matrix, ija  in (5.2),  

corresponds to the probability of being in a state i  given the previous state j .  As an 

example, the probability transition matrix associated with the network described in Fig. 

5.7 is shown in (5.3).  In this example, the probabilities associated with infeasible or 

highly unlikely transitions are set to zero.  The selection of the remaining probabilities is 

discussed in the next section. 
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5.3.2 Selection of the Probability Transition Matrix  

This section presents a two-step method to assign values to the transition probability 

matrix.  As a first step, simple rules corresponding to the limited knowledge of the task 
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are used to assign the transition probabilities.  As a second step, these probabilities are 

weighted by counting how often each transition is used in the state graph. 

 

Step 1: Empirical Knowledge 

As a first step, a set of simple rules based on empirical knowledge of manipulation 

tasks is used to assign the transition probabilities.  These rules are as follows:  

 

• State transitions are short:  , 0 , 1ii ija a i j n> ≤ ≤ −  

• The no-contact to contact transition is more likely to occur with single contacts than 

with multiple contacts  (e.g., 01 02a a>>  in (5.3))  

• Once the manipulated block is in contact, it stays in contact:  0 0 , 1 1ia i n= ≤ ≤ −  

• Unconstrained transitions are set uniformly following the row constraint of  (5.1) 

 

The third rule is controller dependent and can be relaxed depending on the application 

(e.g., teleoperated manipulation task).  These rules are applied to the state network of Fig. 

5.7 resulting in the symbolic transition matrix shown in (5.4).  Numerical values can be 

assigned by setting the self-transition probabilities.  The self-transitions are set to 0.8 in 

this example (i.e., ii ija a> ) and the remaining probabilities are set uniformly following the 

row constraint of  (5.1), as shown in (5.5). 
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0 .8 .1 .1 0
0 .2 .8 0 0
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 =
 
 
  

          (5.5) 

 

Step 2: Adjacency Matrix Analysis 

As a second step, the probabilities of the non-zero off-diagonal terms are weighted by 

counting how often each transition is used in the state graph.  This computation can be 

done using the adjacency matrix associated with the state graph.  The adjacency matrix is 

simply a transition matrix in which each feasible transition is set to one and others 

(including self transitions) are set to zero (Wilson 1985).  One interesting property of this 

matrix is that its thk  power gives the number of paths of length k  between two states.  

For example, the element (1,2) of the third power 25 25×  adjacency matrix associated 

with the contact state graph of Fig. 5.3 corresponds to the number of paths having three 

connections between the contacts 0C  and 1C .  In this example, there exists four paths with 

three transitions as shown in (5.6).  
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0 13 5 1

0 15 6 1

0 16 6 1

0 14 5 1

C C C C
C C C C
C C C C
C C C C

→ → →
→ → →
→ → →
→ → →

     (5.6) 

  

Therefore, the adjacency matrix can be used to count all the transition occurrences in 

the contact state graph by computing all the possible sequences of lengths k  (i.e., 

1, 2,3k = …) between the initial and final contact states (i.e., the ‘start’ state and ‘goal’ 

state in Fig. 5.3).  For each k , the transition occurrences are sorted into a n n×  state 

transition matrix kD  with zero diagonal elements.  Summing the matrix kD  over a large 

range of k  (e.g., max 10k = ) indicates how often each transition occurs in the state graph.  

This number is then normalized to obtain the likelihood of transitions (excluding self-

transitions) associated with the state graph as shown in the matrix *A in (5.7).   
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As a final step, the transition probability matrix is obtained by setting the self-

transitions probabilities and using equation (5.8) for the off-diagonal terms. 

 

( )*( , ) ( , ) 1 ( , )A i j A i j A i i where i j= − ≠    (5.8) 
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This technique can also be used to assign the transition probabilities associated with 

the distinguishable state graph of Fig. 5.4.  To this end, the transitions of the contact state 

graph needs to be sorted according to the possible transitions of the distinguishable state 

graph.  For example, the twelve transitions (i.e., four sequences with 3k =  transitions) of 

(5.6) correspond to four 01a  transitions, four 13a  transitions, and four 34a  transitions in 

(5.4).  This result is written in a compact form in the matrix kH  in (5.9).  The 

computational complexity associated with the kH  matrix depends on the length of the 

sequence k and the size of the adjacency matrix. 

  

 3

0 4 0 0 0
0 0 0 4 0
0 0 0 0 0
0 0 0 0 4
0 0 0 0 0

H

 
 
 
 =
 
 
        

(5.9)  

  

For the block-in-corner example presented in Fig. 5.3, sequences staring at 0C  and 

ending at 1C  were computed for up to 10 transitions (i.e., max 10k = ) resulting in more 

than 70,000 transitions in the contact state graph.  These transitions were then sorted with 

respect to the distinguishable state graph and normalized according to (5.7), as shown in 

(5.10). 
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*
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    (5.10) 

 

As a final step, self-transitions are set to 0.8 and equation (5.8) is utilized to obtain 

the probability transition matrix associated with the distinguishable state network of Fig. 

5.7. 

 

.8 .14 0 .06 0
0 .8 .04 .16 0
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    (5.11) 

 

5.4 Summary 

The concept of observability is important in the design of contact state estimators 

since a task might not be feasible if the contact state graph is unobservable.  In the 

context of poorly known environments, observability was solved using a map between 

the distinguishable graph representing the task in the poorly known environment and the 

contact state graph representing the task in the structured environment.  This mapping 

was defined as a forward projection on the parameter history associated with the 

execution of the task.   
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The next two chapters focus on the implementation of a contact state estimator.  In 

particular, it is shown how the probability transition matrix presented in this chapter can 

be used inside a decision test to represent the task knowledge necessary to the 

segmentation of the contact states. 
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Chapter 6  

Parameter Estimation and Data 

Excitation 

 

 

 

Contact state estimation is a dual estimation problem involving the identification of 

contact state parameters as well as the estimation of the contact states corresponding to 

the sensor information.  As shown in Fig. 6.1, the first part in the implementation of a 

contact state estimator is the realization of a multiple model estimation algorithm.  This 

algorithm estimates the parameters and residuals associated with each contact model, 

given sensor data and a list of contact state models.  The second part of the contact 

estimator uses these results as inputs to a decision test that determines which one of the 

contact models is the most likely to correspond to the sensor data.  This chapter addresses 

the implementation of the estimation algorithm utilized during multiple model estimation.  

The next chapter will discuss the implementation of the decision test. 
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Figure 6.1: The two parts of the implementation of a contact state estimator: multiple 
model estimation and contact state estimation. 
 

The estimation algorithm of Fig. 6.1 needs to satisfy two important criteria when used 

for contact state estimation in poorly known environments: 1) the algorithm must be fast, 

and 2) the algorithm must be robust to a poor choice of initial estimates.  These two 

criteria are highly dependent on the excitation of the sensor path since a poor choice of 

excitation can result in slow convergence or erroneous estimates.  As an example, 
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consider a probe of unknown length L , moving on an edge of unknown slope β , as 

depicted in Fig. 6.2.  The position and orientation of the probe { }, ,i i ix y θ  are sufficient 

information to identify L  and β .  A bad choice of sensor excitation, however, can result 

in erroneous parameter estimates as illustrated in Fig. 6.2(a) and Fig. 6.2(b).  In the first 

case, the probe is pivoting around the contact point resulting only in the identification of 

the probe’s length L .  In the second case, the probe is sliding with a constant orientation 

resulting only in the identification of the edge’s slope.  Intuitively, a good excitation 

requires all but one sensor signal to be independently excited as depicted in Fig. 6.2(c).  

Finding an exciting path can be challenging since the contact constraint limits the 

possible configurations and reduces the possible sensor paths.  As a result, excitation 

conditions that can guarantee the estimation of all the parameters associated with the 

contact models are needed when implementing the estimation algorithm of a contact state 

estimator. 

 
Figure 6.2: Probe moving on an inclined line. a) The probe is pivoting around the contact 
point resulting in a poor exciting path. b) The probe is sliding with a constant orientation 
resulting in a poor exciting path. c) The probe is sliding and rotating resulting in an 
exciting path. 
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This chapter addresses the two problems of parameter estimation and sensor 

excitation.  Two estimations algorithms are presented: an implicit method and an explicit 

method.  The implicit method is used in the implementation of the contact state estimator, 

whereas the explicit method is utilized in the design of sensor paths.  The implicit method 

uses the Levenberg-Marquardt algorithm, a nonlinear least squares technique, to estimate 

the parameters.  This method is well suited for poorly known environments since no 

accurate nominal parameter values are needed to initialize the algorithm.  The explicit 

method uses multiple differentiations of the sensor signals to provide closed-form 

solutions for the parameters associated with the contact models.  Even though this 

method is far too sensitive to sensor noise to be used in practice, it provides an interesting 

basis to analyze the effect of sensor excitation on parameter estimation. 

 

6.1 Estimation Algorithm: Implicit Solution 

Parameter estimates and sensor excitation conditions can be explicitly characterized 

when a closed-form solution to the estimation problem is available.  Obtaining such a 

solution is relatively easy for linear algebraic systems (i.e., Gaussian elimination); 

however, it still remains a difficult challenge for nonlinear systems.  As a consequence, 

implicit solutions based on numerical optimization techniques are commonly used (e.g., 

Gill et al. 1981, Ljung 1987).  The objective of these algorithms is to find a solution that 

can minimize a given cost function.  For contact state estimation in a poorly known 

environment, the estimator needs to be robust to poor initial conditions and needs good 

convergence properties.  The Levenberg-Marquardt method, a least squares minimization 
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technique corresponding to these criteria, is reviewed in the next section (Gill et al. 

1981). 

 

6.1.1 The Levenberg-Marquardt Algorithm 

As shown in Chatper 3, contact states can be modeled as nonlinear homegeneous 

equations parametrized by sensor variables ( )s t  and unknown constant parameters p : 

 

( ), ( ) 0f p s t =       (6.1) 

 

The sum of squares function defined in (6.2) is used as a cost function to minimize (6.1) 

with respect to p .  This function is commonly chosen for its simplicity and algebraic 

properties (Gill et al. 1981). 

 

( ) ( ) ( ) 2

1

1 1 1, ( ) , ( ) ( ) ( ) ( )
2 2 2

m
T T

i i
i

F p f p s t f p s t f p f p f p
=

= ≡ ≡∑  (6.2) 

where ( ) ( ) ( )1 2( ) , ( ) , ( ) , ( )=   
T

nf p f p s t f p s t f p s t  

 

The goal of the minimization process is to find a search direction d , in the parameter 

space, that can result in a large reduction of ( )F p .  The direction is then used to update 

the estimate as shown in (6.3). 
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1+ = +k k kp p d       (6.3) 

 

If ( )F p  is linearly approximated, then a simple way of minimizing this cost function is 

to follow the direction of the negative gradient.  This direction is known as the steepest 

descent and is defined as follows:  

 

= −k kd g       (6.4) 

Steepest descent methods are easy to implement since they only require the computation 

of the gradient; however, they are not very efficient (i.e., slow convergence). A more 

efficient solution is to approximate the cost function by a quadratic: 

 

( ) 1
2

+ ≈ + +T T
k k k kF p d F g d d G d     (6.5) 

where g is the gradient and G is the Hessian.  

 

The minimum is achieved when the gradient vanishes, yielding the search direction that 

solves equation (6.6). This direction is known as the Newton direction (Gill et al. 1981). 

 

= −k k kG d g       (6.6) 

 

The nature of the least squares cost function allows for easy computations of the gradient 

and the Hessian matrix: 
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( ) ( ) ( )= Tg p J p f p      (6.7) 

( ) ( ) ( ) ( )TG p J p J p Q p= +     (6.8) 

 

Least squares methods usually assume that the first order term of the Hessian dominates 

the second-order terms (i.e., ( )Q p ).  This assumption is valid only if the problem has a 

small residual at the solution.  Since homogeneous equations are used to model contact 

equations, the assumption is satisfied for the contact state corresponding to the observed 

sensor data.  As a result, both the Hessian and the gradient can be computed using only 

( )J p , the Jacobian matrix of ( )f p .  Assuming that ( )Q p  can be neglected, the Newton 

direction (6.6) becomes: 

( ) 1−
= − T T

k k k k kd J J J f     (6.9) 

 

If the quadratic form is a bad approximation, the best thing to do is to utilize the steepest 

descent direction defined in (6.4) with the gradient equation (6.7). 

 

= − T
k k kd J f      (6.10) 

 

The Levenberg-Marquardt (L.M.) provides a method to switch between Newton’s 

method and the steepest descent method.  The idea is to use the steepest descent when far 

from the minimum and then switch to the Newton’s method when close to the minimum. 

The L.M. direction is given by (6.11), where kλ is non-negative scalar.  If kλ  is zero then 
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the L.M. direction reduces to the Newton direction, and if kλ tends to infinity then the 

L.M. direction reduces to the steepest descent direction. 

 

( ) 1T T
k k k k k kd J J I J fλ

−
= − +     (6.11) 

 

Several approaches can be implemented to compute kλ  (Numerical Recipes, p.684, 

1988).  The idea is to increase or decrease kλ  when the cost function at the current 

iteration is greater or smaller than the cost function at the previous iteration.  

The L.M. method is an unconstrained least squares technique.  As a consequence, the 

contact equations must be taken in their unconstrained forms.  As an example, the 

algebraic equation corresponding to a { }−m fV E contact is considered in (6.12).  This 

equation can be utilized with a least squares estimator if 1p  and 2p  are replaced by their 

trigonometric counterparts, as shown in (6.13). 

 

( ) ( )5 2 3 1 4 1 3 2 4 2 1

2 2
1 2

cos ( ) sin ( ) ( ) ( ) 0

1

p p p p p t p p p p t p x t p y t

p p

θ θ + − − + + − = + =
 (6.12) 

1 0

2 0

sin
cos

p p
p p
=−
=

     (6.13) 
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6.1.2 Estimator implementation 

As shown in (6.3), nonlinear optimization methods are iterative.  Therefore, the rate 

of convergence is an important factor when deciding on an optimization algorithm.  The 

Levenberg-Marquardt algorithm has been shown to have linear convergence during its 

steepest descent mode and quadratic convergence during its Newton mode (Gill et al. 

1981).  As a consequence, the rate of convergence of the algorithm depends on the choice 

of initial conditions.  A poor choice of initial conditions will mostly yield linear 

convergence while a good one will mostly result in quadratic convergence.  

The estimator can be implemented in a batch mode or in a recursive mode.  

Traditionally, batch techniques are used for estimating time-invariant parameters while 

recursive techniques are used for estimating time-varying parameters.  In the context of 

multiple model estimation, the parameters associated with all of the contact states must 

be estimated simultaneously, as shown in Fig. 6.2.  In this situation, parameters can be 

seen as ‘quasi time-invariant’ or ‘quasi time-varying’ since they are constant for the 

model associated with the active contact and ‘varying’ for the other contact models.  As a 

result, both recursive and batch techniques can be used with some modifications to 

estimate the parameters.  A recursive technique can be used with an added forgetting 

factor to limit the corruption of the good estimates when transitioning from one contact 

state to another.  Similarly, a batch technique could be used in a sliding window of fixed 

length as shown in Fig. 6.3.  In this research, the latter estimation technique is used since 

batch nonlinear least squares shows faster convergence and better robustness to noise 

than its recursive counterpart.  The selection of the moving data window length δ  is 
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determined by two considerations.  Its lower bound is provided by n, the number of 

parameters to be estimated in (6.1).  This is the minimum number of time steps needed to 

solve the over-determined set of equations representing the contact states.  Its upper 

bound corresponds to the minimum time interval a contact state is expected to be active. 

For a minimum time interval mT  and sampling frequency sF , the window length is 

bounded by:  

< < ⋅s mn F Tδ      (6.14) 
 

 

  

 
Figure 6.3: Estimation using a sliding window estimation scheme. 
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In practice, sliding nonlinear least squares can be computationally intensive, 

especially when poor initial conditions are chosen.  One easy solution is to set the speed 

of the manipulator robot such that it allows enough computational time.  A second and 

more elegant solution is to use the estimates associated with a detected active contact 

state to initialize all the contact models that share the same parameters.  This type of re-

initialization can be done after a contact transition has been detected.  Implementation of 

this technique will be discussed in section 7.2.3. 

 

6.1.3 Excitation Condition 

Ideally, contact states have the form presented in (6.1).  Realistically, however, small 

errors due to sensor noise and unmodeled disturbances result in a nonzero residual ε  in 

(6.15).  We make the assumption that these errors can be modeled as normally distributed 

random variables with zero mean and covariance 2σ .  As a result, the residual’s 

probability distribution (pdf), defined as pε  for a given contact state iC , is as follows: 

 

( )
( , )

/ i

f p s
p P Cε

ε
ε
=

=
     (6.15) 

 

Due to the nonlinear structure of ( )f ⋅ , the pdf of (6.15) is hard to characterize 

analytically; however, it can be estimated off-line using Monte-Carlo simulations.  As an 

an example, Fig 6.4 shows the result of a Monte-Carlo simulation corresponding to a 

vertex-to-edge contact.  First, given the dimensions of the polygons and the location of 
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the static object (i.e., filled rectangle), the configuration space corresponding to the 

contact state is computed (C-surface in Mason 1981).  The space is discretized, and 2,500 

configurations (i.e., , ,x y θ ) are computed. Fig. 6.4(a) shows one possible configuration.  

The configurations are then corrupted by adding a normally distributed noise of zero 

mean and variance 2σ  ( 2 2 2 0.5x x θσ σ σ= = =  for this simulation).  The residual is 

computed for each configuration and the residuals’ pdf is built by normalizing the 

residuals’ histogram.  The process is repeated for rectangles of variable sizes and 

locations.  The dimensions of both rectangles and the configuration of the fixed rectangle 

are chosen randomly inside a uniform distribution. Fig. 6.4(c) shows the pdf resulting 

from one hundred different rectangles (i.e., 2500 100× residuals were computed to build 

the pdf).  It is clear that the distribution can be well approximated using a unimodal 

Gaussian.  To be complete, this simulation should be run for every possible contact state. 
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Figure 6.4: Contact’s residual pdf by Monte Carlo simulation. a) A simulated 
configuration of a vertex-to-edge contact, b) Contact’s residual pdf corresponding to 
objects of fixed sizes and locations, and c) Contact’s residual pdf corresponding to 
objects of different sizes and locations. 

 

Using a linear approximation, the covariance matrix of the parameters K  can be 

expressed using the Hessian and the covariance of the error (Bates and Watts 1988): 

 

2ˆ ˆ( )G p Kσ =       (6.16) 
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Least squares techniques assume that the second order term of the Hessian can be 

neglected (i.e., (6.8)), and as a result (6.16) can be simplified as follows:  

 

( ) 1 2ˆ ˆ ˆ( ) ( )TK J p J p σ
−

≈     (6.17) 

 

The amount of uncertainty in the parameters is measured by the parameter covariance 

matrix K .  This uncertainty can be used to derive a confidence interval on the estimates:  

 

ˆ ˆ− ≤ ≤ +ii ii
i i i

K Kp t p p t
m mα α     (6.18) 

 
where tα  is the upper (1 ) 2α−  critical value for a student distribution with 1m −  

degrees of freedom.  For a 95% confidence interval, 0.05α = .  Tables of t-values can be 

found in statistics books, e.g., Dougherty (1990).  

 

Excitable paths should result in small intervals in (6.18).  Since the paths (i.e., sensor 

data) only affect the covariance matrix, excitation is directly related to the magnitude of 

diagonal terms of theK  matrix.  It is clear from (6.17) that good excitation should ensure 

that the Hessian matrix ( ) ( )TJ p J p  is invertible.  The Hessian matrix is well-conditioned 

if the Jacobian is far from singularity and badly conditioned otherwise.  The condition 

number κ  is commonly used to test for matrix conditioning (Lawson and Hanson 1974).  

In the literature, matrices with a low condition number are generally considered well 
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conditioned (Schröer et al. 1992).  Paths yielding a condition number ( )( ) 100≤J pκ  are 

typically considered as exciting paths.  Note that the Levenberg-Marquardt method 

already improves the conditioning of the Hessian inversion by adding a constant to the 

main diagonal of the matrix to be inverted.  

 

6.2 Estimation Algorithm: Explicit Solution 

Explicit methods provide closed-form solutions for the parameters associated with the 

contact models that depend only on the sensor variables.  Closed-form solutions are 

interesting since they are computationally efficient and provide insights on the type of 

sensor paths that need to be used to estimate the parameters (i.e., excitation conditions).  

This section presents an explicit estimation technique for the parameters associated 

with the pose equation of (6.12).  Exploiting the structure of the kinematic equations, 

multiple differentiations of the contact equations are used to decouple the nonlinear 

estimation problem into two sub-problems.  First, the nonlinear mapping between the 

Taylor coefficients characterizing the contact model and the parameters is defined.  Then, 

the nonlinear relationship between the Taylor coefficients and the sensor variables is 

expressed using multiple differentiations of the contact model.  These two nonlinear 

maps are then combined to provide a closed-form solution for the parameters that 

depends only on the sensor measurements and their derivatives.   
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6.2.1 Estimation Through Differentiation 

As discussed in section 4.4, pose equations can be characterized exactly by a finite 

number of Taylor coefficients.  In that context, the goal of identifiability testing is to 

show that there exists a unique inverse mapping between the Taylor coefficients 

representing the contact equations and the parameters, as shown in (6.19).  In this 

equation, sf  is the finite vector of Taylor coefficients associated with the algebraic 

contact state model shown in (6.1). 

 

( )1 , ( )−= sp g f s t      (6.19) 

 

If the inverse of g  is unique, then the model is said to be globally identifiable.  The 

model is locally identifiable if a finite number of inverse mappings exist.  The feasibility 

of the inversion as well as its computation was the focus of the identifiability test 

presented in section 4.2.  This inversion can be difficult to solve by hand; however, tools 

from commutative algebra can often be used to obtain a solution (e.g., Gröbner bases).  

As an example, the inversion of the equations used to characterize the pose equations 

of the globally identifiable contact { }−m fV E  described in (6.12) is presented in (6.20). 

Note that for this example the inversion is easily done by hand. 
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 (6.20) 

 

To obtain an explicit solution for the parameters, the Taylor coefficients of (6.19) are 

expressed using the known sensor variables ( )s t .  The chain rule is used to express the 

exact differentials of the analytic function ( ), ( )f p s t  as a function of Taylor coefficients 

and exact differentials of the sensor variables.  Equation (6.21) shows the differentiation 

for three sensor variables { }, ,x yθ . 
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  (6.21) 
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The homogeneous system of equations represented by (6.21) can be written in a 

compact form as the product between the Taylor coefficient vector sf  and a matrix M  

which is function of the differentials of the sensor variables, as expressed in (6.22).  

Moreover, the special structure of the kinematic equations, expressed through the finite 

number of Taylor coefficients, can be used to reduce the matrix M  to a c cn n×  square 

matrix, where cn  represents the number of nonzero and linearly independent Taylor 

coefficients.  Equation (6.23) provides an iterative scheme to obtain the excitability 

matrix M . 

 

( )0 n n
sd f M d s f= =      (6.22) 
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k

n n s s
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s j n

M dM M T i n j n

T df f

 (6.23) 

 

As an example, (6.24)-(6.25) show the different steps that lead to the M  matrix for 

the example presented in (6.20).  As shown in Table 4.1, the pose equation associated 

with this contact possesses four independent Taylor coefficients, excluding the zero-order 
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coefficient.  These four coefficients are used to obtain the T  matrix of (6.23) by 

computing the total differentials of each Taylor coefficient: 

 

0 0 0
0 0 0 0
0 0 0 0

0 0 0

    
    
    =
    
        −    

x x

y y

T

df fd
df f
df f
df fd

θ θ

θθ θθ

θ

θ

    (6.24) 

As a final step, the iterative scheme of (6.23) is used to obtain theM  matrix shown in 

(6.25).  
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  (6.25) 

 

The effects of the sensor signals on the Taylor coefficients can be analyzed by 

investigating the nullspace of M.  It is important to notice that when a sensor path 

corresponds to an active contact state then the determinant of M  goes to zero since the 

Taylor coefficients cannot be all equal to zero.  Therefore, ψ , the dimension of the 

nullspace associated with M, must be greater than or equal to one.  As a result, −cn ψ  of 

the Taylor coefficients can be estimated as a function of the remaining coefficients (i.e., 

free parameters of the nullspace).  A unique solution for the Taylor coefficients can be 

computed if there exists ψ  remaining independent constraints on the Taylor coefficients 
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(i.e., equations that were not used to construct g  in (6.19) or M  in (6.22)).  Note that 

this number of remaining equations, defined as rv , is fixed and depends only on the 

structure of the pose equation, whereas the dimensionality of the nullspace, ψ , depends 

on the value of the sensor measurements.  The relationship between rv  and ψ  will be 

investigated in the next section when addressing the problem of data excitation.  

Assuming that there exist ψ  remaining independent constraints on the Taylor 

coefficients (i.e., rv ψ= ), then a nonlinear mapping Φ  between the nullspace of M  and 

sf  can be found: 

 

( )ker( )= Φsf M     (6.26) 

  

The nullspace can be computed analytically using the echelon form of the matrix M.  

As a result, each component of the nullspace can be written as a nonlinear function of the 

sensor variables and their differentials: 

 

ker( ) ( )nM d s= Γ     (6.27) 

 

As an example, the one-dimensional nullspace of (6.25) is combined with the 

remaining equation of (6.12) (i.e., 2 2
1 2 1p p+ = ) to obtain all the Taylor coefficients of 

(6.20) in (6.28).  The choice of the free variable fθθ  is arbitrary but does not change the 

end result.  
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As a final step, the contact state parameters of (6.20) are written in terms of the 

nullspace components of M  as shown in (6.29).  The nullspace components are 

computed analytically using the row echelon form of M, as shown in (6.30).  Each ijm  

represents the 3 3×  minors that corresponds to the ( , )thi j  element of M , as shown in 

(6.31).  Combining equations (6.29)-(6.31) result in the closed-form solution of the 

contact state parameters. 
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Equation (6.32) summarizes the four steps that are needed to characterize explicitly 

the parameters associated with a contact equation.  First, the model must be identifiable, 

and the inverse map 1g −  between the parameters and the Taylor coefficients needs to be 

characterized.  Second, multiple differentiations are used to obtain a linear map M  

between the Taylor coefficients and the derivatives of the contact equation.  As a third 

step, the Taylor coefficients are expressed using the nullspace of M .  Finally, the 

nullspace is computed using the minors of M  which are nonlinear functions of the 

differentials of the sensor variables.  
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6.2.2 Estimator Implementation 

As a result of (6.32), the parameters are an explicit function of the sensor signals and 

their differentials.  The number of sensor samples needed for the estimation depends on 

the maximum number of sensor signal differentiations and the numerical scheme used to 

compute these differentials.  For example, the computation of the third order sensor 

differentials in (6.31) (e.g., 3 3 3, ,d d x d yθ ) require five samples when using a second-

order central difference scheme.  Note that more samples are required if higher order 

central difference schemes are used.  

Theoretically, this method is interesting since it allows for fast computations without 

the need for initial conditions.  Unfortunately, this technique cannot be used in practice 

since it involves differentiation of potentially noisy sensor signals.  To illustrate this 

point, an implicit estimation and an explicit estimation are conducted for a simulated path 

noise-free path corresponding to a vertex-to-edge contact state modeled in (6.12), as 

shown in Fig. 6.5.  The implicit estimation is performed over a sliding window of length 

10 using the initial conditions described in (6.34).  The explicit solution is computed 

using (6.29)-(6.31).  Both estimations converge to the true values (6.33), as shown in Fig. 

6.6.  The implicit estimation was computed in 24 seconds whereas the explicit estimation 
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was computed in less than 0.3 seconds on a Pentium III running at 800 MHz.  Figure 6.7 

shows the estimations result when the simulated path of Fig.6.4 is corrupted by a 

normally distributed noise of mean and covariance described in (6.35).  It can be seen 

that the explicit estimation is extremely sensitive to the noise, whereas the implicit 

estimation still converges to the true values. 

 

[ ] [ ]1 2 3 4 5 0.64 0.77 15 55 47.42T Tp p p p p = − − −   (6.33) 

[ ]1 2 3 4 5 0.85 0.52 37.11 96.41 18.92
T Tini ini ini ini inip p p p p  = − − − −   (6.34) 

( )~ ,0.5X N x  ( )~ ,0.5Y N y   ( )~ ,0.5N θΘ   (6.35) 

 

 

Figure 6.5: Sensor path associated with a vertex-edge contact. 
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Figure 6.6: Noise-free explicit and implicit parameter estimations. 
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Figure 6.7: Noisy explicit and implicit parameter estimations. 



 149

Even though the explicit estimation scheme is not practical, the closed-form solution 

can give useful insights on the type of exciting paths that can be used for estimating the 

contact state parameters. 

 

6.2.3 Excitation Condition 

Assuming that a model is identifiable, a closed-form solution for the parameters can 

be found if the Taylor coefficients can be written as functions of the nullspace of M , as 

expressed in (6.26).  As mention is section 6.2.1, this is possible if the number *β  of 

constraints on the Taylor coefficients satisfies the following inequality:  

 
( )( )* dim Ker Mβ ≥     (6.36) 

 

The quantity *β  represents the number of constraints on the parameters (e.g., 2 2
1 2 1p p+ =  

in (6.12)) that were not already utilized to test for identifiability (i.e., equations not used 

to construct g  in (6.19)). 

The dimension of the nullspace depends only on the sensor path, whereas *β  is a 

fixed quantity which depends only on the structure of the contact model.  In addition, the 

dimension of the nullspace must be greater that one when the contact is satisfied since the 

Taylor coefficients cannot all be equal to zero.  As a result, an excitation condition 

requires sensor paths that can satisfy: 

 

( )( ) *1 dim Ker M β≤ ≤     (6.37) 
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Many sensor paths can solve this problem; a practical solution is to choose a path that 

is simple to implement (e.g., low order derivative path).  As an example, the vertex-edge 

contact illustrated in Fig. 6.4(a) and modeled in (6.12) is considered.  The inequality 

(6.37) is satisfied if the nullspace of M  is less or equal to one since *β  is equal to one 

for this contact (i.e., *β β=  from Table 4.1).  As a consequence, the sensor path must 

ensure that the nullspace is of dimension one.  Analyzing the matrix M  in (6.25), it can 

be seen that several paths can satisfy this criteria (e.g., paths such that 2d θ , dx , and 

dy are nonzero in (6.25)). 

It is also important to notice that even when (6.37) is satisfied, zero nullspace 

components can result in non-estimable parameters in the final closed-form solution.  For 

example, if a path is chosen such that 2N  is zero but 1N  and 3N  are nonzero in (6.29), 

then the parameter 1p  cannot be estimated even though (6.37) is satisfied.  As a 

consequence, an additional condition to obtain the full estimation of the parameters is to 

choose a path that produces non-zero nullspace components.   

 

The two excitations conditions associated with a full explicit estimation can be 

summarized as follows: 

 Sensor paths must be chosen such that (6.37) is satisfied. 

 Sensor paths must be chosen such that all the components of the nullspace of M  are 

nonzero.  
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These conditions can then be used as a design tool to create an input sensor path that 

will produce an explicit solution for all the parameters.  A partial solution can be found, 

however, if either one of these two conditions is not satisfied.  For example, it can be 

shown that a pure rotation (e.g., Fig. 6.1(b)) for the vertex-to-edge contact state modeled 

in (6.12) results in a nullspace of dimension two that does not satisfy (6.37); nevertheless, 

the parameters 3p  and 4p  can still be explicitly estimated in (6.12).  The proof is 

provided in Appendix B.  

The explicit method provides an interesting basis to analyze the effect of sensor 

excitation on parameter estimations; however, additional work is needed 1) to show that 

the sensor paths designed for the explicit method are also valid for the implicit method, 2) 

to show the sufficient and/or necessary nature of the two excitation conditions presented 

in this section and 3) to extend the technique to more complex contact states (e.g., spatial 

contact states). 

 

6.3 Summary 

This chapter investigated the implementation of an estimation algorithm for the 

multiple model estimation step of the contact state estimator.  As a result, a sliding 

nonlinear least squares method using the Levenberg-Marquardt algorithm was chosen due 

to its robustness to poorly known nominal parameters.  An explicit method was also 

proposed for pose equations.  This method, based on multiple differentiations of the 

contact model, was shown to be fast but too sensitive to noise to be practically 

implemented. The analytical nature of the solution, however, provided a good foundation 
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to investigate the effect of sensor excitation on parameter estimation.  In particular, two 

excitation conditions were derived and used as design tools to create sensor inputs that 

could ensure the estimation of all the parameters associated with a given contact model. 

The next chapter discusses the entire implementation of a contact state estimator.  

First, t the implementation of a decision test that combines the residuals of the multiple 

model estimation algorithm developed in this chapter with the task encoding discussed in 

Chapter 5 (i.e., probability transition matrix) is presented.  Then, the estimator is 

implemented and tested for a 3D peg-in-hole insertion task. 
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Chapter 7  

Contact State Estimation Using a Hidden 

Markov Model 

 

 

 

A final and essential aspect of contact state estimation is the implementation of a de-

cision algorithm to resolve which contact state is active and which set of property esti-

mates is valid.  The goal of this chapter is to provide a decision test based on the estima-

tion information coming from the multiple estimation algorithm described in Chapter 6 

and the prior information coming from the task knowledge described in Chapter 5, as 

illustrated in Fig. 6.1.  The approach employed here uses a Hidden Markov Model 

(HMM) to combine the residuals, representing how well the contact models fit the sensor 

data, with the probability of specific contact state transitions embodied in a task contact 

state network.  The HMM presents a convenient statistical framework in which all the 

information regarding the task is converted into probabilities.  Using this framework, a 
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Viterbi search algorithm is used to estimate the most likely path inside the task network 

corresponding to the given measurements. 

The first part of this chapter reviews the HMM framework, and the second part pre-

sents an application in which two HMMs are successfully utilized to segment the four 

contact states used to describe a peg-in-hole insertion task. 

 

7.1   The Hidden Markov Model Framework 

An HMM can be described as a probabilistic observer by which a stochastic hidden 

process can be observed using the probabilistic structure of the task state network and a 

probabilistic relationship between the states and one or several observable stochastic 

signals.  This section reviews the principal components that constitute an HMM and 

describes how they can be used to estimate contact states. 

 

7.1.1 HMM Structure 

The contact state network of an HMM is described by n , the number of states, ρ , the 

n -vector of initial state probabilities in (7.1), and A , the n n×  state transition probability 

matrix defined in (5.1) and (5.2). 

 

[ ]

( )

1 2
1

1

1

1

n
T

n i
i

i i

with

P c C i n

ρ ρ ρ ρ ρ

ρ
=

= =

= = ≤ ≤

∑
       (7.1) 

 

The probabilistic relationship between an observable signal sequence O , of length T , 
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and the different states that comprise the task network is given by the probability density 

function ( )i tB O  defined as follows: 

( ) ( )/i t t t iB O P O c C= =   (7.2) 

 

As a result, all the information relevant to the task is contained in the three probability 

measures: A , B , and ρ .  Using Rabiner’s notation (Rabiner 1989), HMM’s are ex-

pressed in a compact form as: 

( ), ,A Bλ ρ=           (7.3)   

 

In order for an HMM to be mathematically practical, the following assumptions are 

made: 

 Markov assumption:  the current state only depends on the previous state.  

 Stationarity assumption: the state transition probabilities are independent of the 

time at which the transitions occur.  

 Statistical independence of the observations: the current observation is statisti-

cally independent of the previous observation. 

 

7.1.2 HMM Based Segmentation 

The HMM representation is appropriate to solve segmentation problems (e.g., speech 

recognition).  In the HMM context, the segmentation problem can be posed as a decoding 

problem (i.e., uncovering the hidden states of the model).  The objective is to find the 
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best sequence of states that maximizes the probability ( )/ ,P Q O λ  (i.e., the probability of 

having the state sequence Q  given the observations O  and the model λ ).  The probabil-

ity of maximizing ( )/ ,P Q O λ  with respect to Q  is equivalent to maximizing ( ), /P Q O λ  

with respect to Q  as shown in (7.4). 

 

( ) ( )
( )

, /
/ ,

/
P Q O

P Q O
P O

λ
λ

λ
=         (7.4) 

 

The joint conditional probability ( ), /P Q O λ  can be expressed as in Rabiner (1989): 

 

( ) ( ) ( )
1 1 1 2 2 2 3 11 2, / / , / ( ) ( ) ( )

T T Tc c c c c c c c c c TP Q O λ P O Q λ P Q λ ρ B O a B O a a B O
−

= = …  (7.5) 

where the c’s symbolize the states at time it  (i.e., 1 2 3 TQ c c c c= ) 

 

Maximizing (7.5) with respect to Q  requires the computation of (7.5) for all the pos-

sible state sequences.  This number is exponential in the number of observations.  For 

example, a problem with only three observation samples and two states has a maximum 

of eight state sequences (i.e., 111 - 222 - 112 - 221 - 211 - 122 - 121 – 212).  If the 

number of observations increases to 100, then 1002  possible state sequences must be 

computed.  To solve this optimization problem efficiently, a dynamic programming 

technique known as the Viterbi algorithm is employed (Viterbi 1967). 
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The Viterbi Algorithm 

The Viterbi algorithm is a technique that reduces the optimization of a global problem 

to a sequential optimization of simpler sub-problems.  This technique can be applied to 

the optimization of (7.5) since the problem can be broken into a sequence of optimal sub-

problems.  In effect, it can be noted that for each observation, the optimal path ending in 

each state can also be part of the final optimal path obtained for the full observation 

sequence.  As an example, a three-state Viterbi optimization is illustrated in Fig. 7.1.  

There exists nine possible state sequences between time 1t  and 2t .  The Viterbi algorithm 

computes the probability (7.5) for each sequence and then keeps the most likely path 

ending in each state.  This result is then used by induction to compute the most likely 

sequences between times 2t  and 3t .  As a result, the overall optimization problem is 

broken into T  optimal sub-problems.  As a final step, the state corresponding to the last 

observation is uncovered and then used to back estimate the complete state sequence 

maximizing (7.5). 

The Viterbi algorithm reduces to 2n T  the number of computations of the joint prob-

ability (7.5), making the algorithm a practical solution for problems with a limited 

number of states.  
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Figure 7.1: Implementation schematic of the Viterbi algorithm. 
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7.1.3 HMM Implementation 

The implementation of an HMM requires the computation of the probabilistic quanti-

ties ρ , A  and B  introduced in (7.3).  Two methods are commonly used in the literature: 

unsupervised training and supervised training.  In unsupervised training, a learning 

algorithm is used to extract the three probability measures from unlabeled data sets.  

Several learning algorithms, such as the Baum-Welch method (Baum and Petrie 1966), 

are frequently used with HMMs.  Unsupervised training methods are well-suited for 

applications possessing a large number of states (e.g., speech recognition).  When the 

number of states is limited, supervised training techniques using labeled data can be more 

practical.  These methods offer more control to the user and allows the decoupling of the 

learning problem: the task knowledge (i.e., ρ  and A ) can be set using one method, and 

the observation knowledge (i.e., B ) can be set using another one, as described below. 

 

Task knowledge:  

The initial state probability vector ρ  is generally known for a manipulation task 

since it is often assumed that the task starts in a non-contact state (i.e., free motion).  As 

for the probability transition matrix, it can be obtained using the techniques described in 

5.3.  The elements of the matrix are computed by counting the number of occurrences of 

each transition given a large number of contact state sequences (i.e., large k  in (5.7)). 
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Observation knowledge: 

The observation probability distribution, B , represents the probabilistic map between 

the observations and the states.  Several choices of observations can be used to character-

ize the states (e.g., raw signals, processed signals).  The observations that provide the 

most direct map to the contact states should be chosen.  In the context of parameter-based 

contact state estimation, raw sensor signals (e.g., position, orientation, force and torque 

measurements) can be used to characterize the contact states; however, estimation 

residuals are better suited since a direct correspondence between a contact being active 

and the size of the residual exists.  In effect, for each contact state, the residual of the 

estimation process is a scalar which depends only on sensor inputs ( )s t  and the estimated 

time-independent parameters p̂ .  As shown in equation (7.6), the residual corresponds to 

the sum of squares of the estimated nonlinear contact function ( )ˆ , ( )f p s t  computed 

inside an estimation window of length δ . 

( )2

1

ˆ , ( )p
t

f p s t
δ

ε
=

=∑        (7.6) 

 

The objective of the estimation phase is to find the parameter estimates that minimize 

(7.6).  Thus, the magnitude of the residual is an indication of the goodness of the fit, 

assuming a well-conditioned data window (i.e., rich excitation).  As a result, contact state 

models associated with small residuals are more likely to correspond to the actual state 

than models associated with large residuals.  

In the HMM literature, the observation probability distribution is commonly ap-
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proximated with mixtures of multivariate Gaussians (Rabiner 1989) as shown in (7.7).  In 

this context, the distribution is characterized by its mean and covariance matrix.  Since 

the residuals are nonlinear functions, these statistics can be difficult to obtain.  However, 

they can be approximated analytically using first-order Taylor series, or they can be 

extracted using Monte Carlo simulations (Breipohl 1970). 
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=

∑

∑
(7.7) 

where, k  represents the maximum number of components of the signal O . Also, im  and 

iU  are a 1k ×  vector of means and a k k×  covariance matrix, respectively. 

 
7.2   Experimental Contact State Estimation 

In this section, the implementation of the contact state estimator illustrated in Fig. 6.1 

is utilized during a manipulation task.  As an example of a common assembly task, a peg-

in-hole insertion is considered, as shown in Fig. 7.2.  The expected sequence during the 

task can be reduced to four steps.  First, the peg is slid towards the hole on the planar 

surface (Contact 2).  As the peg enters the hole, it pivots on the rim of the hole (Contact 

3) and typically maintains this contact until the other side of the hole is reached.  It then 

stays in double contact with the rim and the inside of the hole (Contacts 3 and 4) until the 

peg is inserted far enough that the task can be easily completed. 
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No Contact (C 1 ) Contact 2 (C 2 ) Contact 3 (C 3 ) Contact 3,4 (C 4 )   

Figure 7.2: Possible sequence of contact states during peg-in-hole insertion 
 

The goal of the experiment is to implement an HMM to estimate the sequence of con-

tact states composing the task.  The HMM presented in this experiment is based on an 

empirical selection of the HMM variables.  A possible improvement of the approach is 

discussed at the end of the section.  

 

7.2.1 System Configuration 

A PHANToM haptic device, as shown in Fig. 7.3, is used as the manipulating ro-

bot.  The positions of the system’s six joints are measured using high-resolution optical 

encoders.  The kinematics of the robot are known, and a closed loop calibration technique 

(Hollerbach and Wampler 1996) is used to improve the absolute accuracy of the system. 

A cylindrical peg is attached directly to the tip of the manipulator robot.  The hole is 

drilled perpendicular to the surface of a rectangular aluminum block that is mounted on a 

three degree of freedom vise (roll-tilt-pan).  The insertion is performed manually, using 

the manipulating robot to record the kinematic data.  
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Figure 7.3: Experimental apparatus - PHANToM 1.5, cylindrical peg and orientable hole. 
 

7.2.2 Contact State Equations 

Pose equations are utilized to describe the contact states associated with the task.  The 

technique developed in section 3.2.2 is used to represent the kinematic constraints 

associated with the contact state.  Additional nonlinear constraints are needed to represent 

the position of the contact point on the peg’s rim and hole’s rim.  Equation (7.8) corre-

sponds to the pose equation associated with Contact 2.  Equations for Contact 3 and 

Contact 4 takes similar form and can be found in Debus et al. (2004). 

 
2 sin cos sin cos cos

cos cos sin cos sin

cos cos cos sin cos sin

sin cos cos sin cos sin

p 14 24 34

33 23 13

31 21 11
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2 z
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p 2 1 2 1 2 2

K β β β β β

L β β β β β

R α β β β β β

R α β β β β β

1 2 2 2 1cos cos - sin - cos sinx yH Hβ β β β β













  (7.8) 

 

The bolded variables in this equation are the identifiable unknown parameters which 
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are listed in Table 7.1.  Note that the terms forming 2K  are not individually identifiable 

since they do not multiply any input.  In this case, they depend on the hole’s center 

coordinates, which clearly cannot be identified in Contact 2.  The ijq  are known functions 

of the robot’s kinematic parameters and joint angles. 

 

Table 7.1: Identifiable parameters. 

pR  Peg radius 
pL  Peg length 
hR  Hole radius 

, ,x y zH H H  Hole’s center coordinates 
1β , 2β  Orientation (pitch and yaw) of the plane 

iα  Angular coordinates locating the contact point on the rim of the peg for 
contact i 

iδ  Angular coordinates locating the contact point on the rim of the hole for 
contact i 

 

7.2.3 Excitation Analysis 

To investigate input excitation, the residuals for experimental data corresponding to 

the expected state sequence 1C  through 4C  of Fig. 7.2 are plotted in Fig. 7.4(a).  While 

not depicted, the magnitude of the condition numbers corresponds to that of the residual 

values.  Contact 2C  experiences a small residual 
2pε  when active and possesses the 

lowest condition number.  In contrast, the residual 
3pε  for 3C  is large and poorly 

conditioned regardless of whether the contact state is active.  The reason for this, as 

shown in Fig, 7.2, is that the possible robot configurations corresponding to contact 2C  

are not as limited as the ones corresponding to contact 3C , since the robot pitch and yaw 

angles associated with 2C  are not constrained by the dimension of the hole. 
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Figure 7.4: Multi-pass estimation. a) Initial estimation residuals, b) Estimation residuals 
computed using parameter estimates propagated from 2C . 
 

A possible approach for improving the conditioning of poorly excited contact 

equations is to remove the parameters multiplying low-excitation inputs from the 

estimation process.  Such elimination can be carried out by substituting parameter 

estimates from previously identified contact states into the estimation residuals to be used 

to estimate subsequent contact states.  The assumption inherent in this approach is that 

the contact states occurring early in a task are less constrained and so experience high 

excitation and consequently exhibit low condition numbers.  When this assumption is not 

met, an alternative method is multi-pass estimation.  In this approach, the system first 

estimates those contact states for which high input excitation is most likely.  After these 
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states are identified during task execution, their parameter estimates are used to estimate 

contact states occurring both prior to and subsequent to these states.  If the well-

conditioned states occur early in the task, then most of the estimation can be performed 

on line.  If these states occur near the end of the task, then multi-pass estimation corre-

sponds to post processing in its estimation of the early contact states.  An example of the 

multi-pass technique is illustrated in Fig. 7.4.  In the first pass, the parameters associated 

with the well-conditioned state 2C  are estimated (i.e., 1 2,β β , pR  and pL  ).  Then, in a 

second pass, the parameter estimates from 2C  are used to re-estimate the residuals for 

contact states occurring both before and after 2C .  While the residual of 4C  is modestly 

affected, the residual of 3C  decreases substantially as shown in Fig. 7.4(b). 

 

7.2.4 Contact State Network 

As shown in Fig. 7.5(a), a state network can be used to model the sequence of contact 

states 1C - 4C  illustrated in Fig. 7.2.  Connections between states are labeled with their 

state transition probabilities ija .  As a second example, an alternate two-state network 

appears in Fig. 7.5(b).  It is comprised of contact state 2C  and contact state 0C , 

representing all other possible contact states.  These two networks can be used for the 

multi-pass approach described in the previous section.  In the first pass, the state network 

of Fig. 7.5(b) is used to estimate the contact state 2C .  Then, in a second pass, the four-

state network of Fig. 7.5(a) is employed with the re-conditioned residuals obtained from 

the knowledge of 2C  to estimate the entire state sequence. 
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Figure 7.5: Contact state networks. a) Four-state network based on the contact states of 
Fig. 7.2, b) Two-state network for distinguishing contact state 2C  from all other possible 
contact states. 
 

7.2.5 HMM Implementation 

The multiple model estimation approach illustrated in Fig. 6.1 is used to estimate the 

contact state sequence.  Orientation and position of the robot's tip are recorded at a rate of 

25Hz, and contact state residuals (7.6) are computed at each time step using a 20-point 

moving data window.  The residuals constitute the observation signal used as inputs to 

the HMM’s: 

2 3 4
( ) ( ) ( )

T

t p p pO t t tε ε ε =          (7.9) 

 

The two-state fully connected model of Fig. 7.5(b) is first utilized to estimate 2C  and 

its parameters.  Then, the four-state, fully connected model of Fig. 7.5(a) is used, together 

with the parameter estimates from 2C , to estimate the remaining states and parameters. 

The design of the HMM’s associated with these two contact state networks reduces to 

the computation of the three probability measures ρ , A , and B  defined in (7.3).  Here, 

the task is comprised of a maximum of only four states, and so the HMM parameters can 
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be assigned manually using supervised training.  The task knowledge and the observation 

knowledge associated with the experiment are described below. 

 

Observation knowledge (B) 

When a contact state is active, the associated residual is expected to be the smallest, 

given that the contact equations are well conditioned.  This pattern, illustrated in Fig. 

7.4(b), is encoded in a multivariate unimodal Gaussian distribution (i.e., equation (7.7) 

with 1 1is = ) for each state of the HMM.  The mean and covariance matrix associated with 

each distribution are determined empirically using a two-step process.  First, several 

contact sequences are manually segmented and the observations corresponding to the 

training sequences are gathered inside a training matrix 3gT
gM ×∈  for each contact 

state.  Then the sample mean im  and sample covariance iU  are extracted from gM  using 

(7.10) and (7.11), respectively. 

 

1

1 gT

i t
tg

m O
T =

= ∑            (7.10) 
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1

1
1
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T

i t i t i
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U O m O m
T =

= − −
− ∑        (7.11) 

 

As an example, the mean vector associated with the distribution of each contact state 

is described in (7.12).  The rows represent the mean of the residuals 2pε  through 4pε , 

while the columns correspond to the states 1C  though 4C .  For example, 3(1) 2m =  
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implies that the expected mean of 2pε  is 2 when contact 3C  is active.  Note that since 4C  

is composed of contacts 3 and 4, it is expected that both 3pε  and 4pε  are low when the 

state is active. 

1 2 3 4

10 0.5 2 2
90 , 40 , 1 , and 1
80 90 5 1

m m m m
       
       = = = =       
       
       

     (7.12) 

 
The same technique is used to extract the statistics associated with the two-state net-

work pictured in Fig. 7.5(b).  The same training sequences are utilized; however, a two-

state manual segmentation is performed instead of the four-state segmentation utilized to 

train the four-state network.  

 

Task Knowledge (ρ, A) 

To define A , the probability transition matrix, and ρ , the initial probability vector, the 

following task knowledge is used: 

• State 1C  (no contact) occurs first: 1 , 2,3,4.j jρ ρ> =  

•  State transitions are short: , 1 , 4ii ija a i j> ≤ ≤ . 

• Transitions between 2C  and 4C  are impossible: 24 42 0a a= =  

 

For the two-state model of Fig. 7.4(b), the selection of the probability transition 

matrix  is straightforward.  The values were chosen such that the probability of remaining 

in the current state is much higher than the probability of leaving the state. 
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0.99 0.01
0.01 0.99

A
 
 =   

          (7.13) 

 

Because there are only two states, this model does not encode any information about 

the likely sequence of contact states.  In contrast, the four-state model of Fig. 7.5(a) does 

permit the inclusion of such information and the selection of its A  affects what contact 

state sequences can be successfully estimated.  This topic is explored in the following 

subsection.  

 

7.2.6 Sensitivity of Contact State Estimation to Robot Path 

While the state transition probability matrix encodes the probability of each contact 

state transition, the particular robot path employed in task execution may or may not 

correspond to the most likely sequence of transitions described by A .  To be robust to 

variations in robot path, the matrix A  must accommodate variations in contact state 

sequence.  Such a matrix, fA  (f = flexible transition matrix), which was obtained empiri-

cally, is compared here with one which permits only the most likely state transitions, rA  

(r = rigid transition matrix).  

 

.7 .1 .1 .1
.15 .7 .15 0
.1 .1 .7 .1

.15 0 .15 .7

fA

 
 
 =
 
 
  

   (7.14)    

.99 .01 0 0
0 .99 .01 0
0 0 .99 .01

.01 0 0 .99

rA

 
 
 =
 
 
  

 (7.15) 
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These transition matrices are used to define two models, 2 fHMM  and 2rHMM , re-

spectively.  Employing two-pass estimation, a two-state model 1HMM  first estimates 

contact state 2 and provides estimates of its parameters.  In a second pass, 2 fHMM  and 

2rHMM  estimate their four contact states using residuals computed with the parameters 

estimated during the first pass.  For comparison, manual segmentation was performed by 

the operator who pressed a switch at each perceived state transition. 

Figure 7.6 depicts the results for the most likely sequence of contact states in peg inser-

tion, 1 2 3 4 1{ , , , , }C C C C C .  The two-state 1HMM  demonstrates agreement with manual 

segmentation.  For the most likely sequence of states in Fig. 7.6, the additional transition 

flexibility of 2 fHMM  produces two short time segments in which the state is falsely 

identified.  Nonetheless, both models successfully match manual segmentation for all 

contact states. 

Figure 7.7 shows the results for a state sequence including some unexpected transi-

tions, 1 3 2 3 4 1{ , , , , , }C C C C C C .  While the two-state model 1HMM  continues to perform well, 

the rigid state transition matrix of 2rHMM  introduces many false transitions to satisfy the 

state transition matrix.  For example, the first actual state change is from 1C  to 3C .  The 

rigid model must pass through 2C  in order to make this transition.  The next actual state 

change is from 3C  to 2C .  The rigid model can only make this transition by the three state 

changes, 3 4 1 2C C C C→ → → .  The flexible state transition matrix of 2 fHMM  avoids all of 

these false transitions and successfully identifies large portions of the active states.  It 

was found that this model was successful for a variety of state sequences.  In addition, 
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state estimation was robust to variations in the flexible state transition matrix (7.14).  

These results show that a flexible state transition matrix can successfully accommodate a 

broad range of robot paths during task execution. 
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Figure 7.6: State estimation of the most likely insertion state sequence. 
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Figure 7.7: Segmentation of an atypical state sequence. 
 

 
7.2.7 Alternate Formulation of the Observation Probability Distribution 

In the preceding implementation, it is important to recognize that some ad hoc as-

sumptions on the observation probability distribution were made that could limit the 

robustness of the approach.  The distribution was assumed to be Gaussian; however, the 

validity of this assumption was not verified.  A more satisfying approach, for example, 
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would be to identify the distribution using Monte Carlo simulations.  Another approach 

would be to approximate the distribution using a first-order Taylor series.  A sketch of 

this approach is presented below. 

The residuals in (7.6) correspond to nonlinear functions having both estimated pa-

rameters and sensor values as inputs.  Assuming a known Gaussian distribution of these 

inputs, the first-order linear approximation of the residuals is then also Gaussian.  The 

mean and the covariance matrix associated with each state iC , can be approximated as in 

Arras (1998).  For example, the covariance matrix associated with the observation vector 

(7.9) can be written as follows: 

 

2 2 3 2 4

3 2 3 3 4

4 2 4 3 4

2

2

2

, 1 4
p p p p p

p p p p p

p p p p p

T
i iU G G i

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

σ σ σ

σ σ σ

σ σ σ

 
 
 = = Σ ≤ ≤
 
 
 

   (7.16) 

where G  and iΣ  represent the Jacobian matrix and the input covariance matrix respec-

tively.  Both matrices can be expressed as follows: 

 

2 2 2 2

1 1

3 3 3 3

1 1

4 4 4 4

1 1

1 1ˆ ˆ

1 1ˆ ˆ

1 1ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

n m

n m

n m

p p p p

n mp p s s

p p p p

n mp p s s

p p p p

n mp p s s

p p s s

G
p p s s

p p s s

ε ε ε ε

ε ε ε ε

ε ε ε ε

 ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ 

 
∂ ∂ ∂ ∂ 

=  ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂ 

    (7.17) 
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1 1

1 1 1 1 1

1 1

2
ˆ ˆ ˆ ˆ ˆ

2
ˆ ˆ ˆ ˆ ˆ

2
ˆ ˆ
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ˆ ˆ

n m

n n n n m

n m

m m n m m

p p p p s p s

p p p p s p s
i

s p s p s s s

s p s p s s s

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

 
 
 
 
 Σ =
 
 
 
  
 

      (7.18) 

 

The input covariance matrix iΣ  represents the prior knowledge associated with the 

inputs (i.e., ˆ ,p s ).  This matrix can be difficult to obtain; however, several simplifications 

can be considered to facilitate the construction of the matrix (the validity of which must 

be tested empirically afterwards).  As a first simplification, independence of the inputs 

could be considered.  As a result, the off-diagonal terms of the input covariance matrix 

can be set to zero.  As a second (stronger) assumption, independence of the residuals 

could be considered.  As a result, the off-diagonal terms of the input covariance matrix 

and the Jacobian matrix can be set to zero.  This assumption would reduce the analytical 

complexity associated with the computation of the Jacobian matrix.  Finally, while the 

covariance associated with the estimated parameters was assumed, this knowledge is not 

known a priori.  To address this, covariance elements of small magnitudes can be as-

sumed for the parameters associated with the active contact state, whereas covariance 

elements of high magnitudes must be guessed for the parameters associated with the non-

active contact states. 
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7.3 Summary 

This chapter discussed the implementation of a contact state estimator.  The decision 

test was performed by a Hidden Markov Model (HMM), which combined a measure of 

how well each set of contact equations fit the sensor data with the probability of specific 

contact state transitions.  The approach was illustrated for a three dimensional peg-in-

hole insertion using a tabletop manipulator robot.  At each sampling time, multiple model 

estimation coupled with an HMM was used to assess the most likely contact state.  Using 

only position sensing, the contact state sequence was successfully estimated without 

knowledge of nominal parameter values. 
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Chapter 8 

Conclusion 

 

 

 

 

This thesis presents a complete and novel framework for achieving contact-based 

robot perception for manipulation tasks in poorly known environments.  As a first step, 

the general problem was decomposed into seven design problems and two 

implementation problems, as shown in Fig. 1.4 and Fig. 1.5.  An extensive literature 

review on contact state estimators pointed out the need for design tools.  As a result, 

several analytical tools were developed to improve the design of contact state estimators.  

This approach constitutes a contrast to the traditional method taken in the literature in 

which contact state estimators are first implemented with a limited design and then 

“tuned” to a specific application.  In this research, tools were developed to ensure the a 

priori feasibility of contact estimation in poorly known environments so that standard 

estimation and detection algorithms could be used during the implementation phase. 
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8.1 Thesis Contributions 

The major contributions of this thesis can be summarizes as follows:  

 

1) The feasibility of contact state estimation in poorly known environments has been 

reduced to four design problems: contact state distinguishability, contact state 

observability, contact state identifiability, and data excitation.  The first two problems 

address the feasibility of contact state detection, while the last two address the 

feasibility of the estimating the contact states’ parameters.   

 

2) The major technical contribution of this thesis is the development of analytical 

distinguishability and identifiability tools that can comment on the a priori 

implementation feasibility of a contact state estimator.  This method, based on Taylor 

series expansion, provides a unified approach to testing the capability of candidate 

models to estimate both the parameters and the states.  In this framework, 

identifiability is reduced to an existence problem while distinguishability is reduced 

to a uniqueness problem.  Both problems are solved by comparing sets of algebraic 

equations based on the Taylor coefficients used to represent the structure of the 

contact models.  In contrast to on-line, numerical methods presented in the literature, 

the Taylor series approach is an analytical method that replaces local results based on 

the sensor variable path with results which are global with respect to the space of 

sensor variables. Consequently, it can be used as a tool to select appropriate contact 

models and sensors in the design of a contact state estimator.    
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3) This thesis introduces the concept of contact state observability as a way of testing the 

feasibility of contact state estimation in a poorly known environment.  The 

observability question is solved using a map between the distinguishable graph 

representing the task in the poorly known environment and the contact state graph 

representing the task in the structured environment.  The mapping is defined as a 

forward projection on the parameter history associated with the execution of the task. 

 

4) This thesis presents a first attempt to solve the difficult problem of data excitation for 

contact state estimation.  A four-step estimation scheme is provided to solve 

explicitly for the parameters as a function of the sensor signals and their differentials.  

The central part of the procedure is based on finding a linear map between the Taylor 

coefficients characterizing the structure of the contact equation and the sensor 

variables.  The effect of the sensor signals on the parameters is then analyzed by 

investigating the invertibility of the linear map.  A necessary excitation condition on 

the sensor data is posed as a condition on the dimension of the nullspace associated 

with the linear mapping.   

 

5) The contact estimator proposed in this thesis uses a two-step procedure: in the first 

step, the geometric parameters characterizing the contact states are estimated using a 

multiple-model estimation approach based on nonlinear least squares.  In the second 
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step, the contact states corresponding to the sensor measurements are detected using 

HMMs.  This approach has two advantages:  

a. The nonlinear least squares algorithm is based on Levenberg-Marquardt, a 

technique shown to be robust to poorly known initial conditions.  As a result, the 

estimation algorithm does not need accurate nominal parameter values, and large 

uncertainties in the parameters can be considered (i.e., poorly known 

environment).  

b. The HMM presents a convenient framework to combine the estimation 

information coming from the multiple-model estimation and the prior information 

coming from the task knowledge (i.e., likelihood of transitions among the contact 

states).  As a result of this combination, the detection capacity of the estimator is 

enhanced.   

 

6) A collection of MATLAB® functions have been implemented to test the 

identifiability and distinguishability of arbitrary nonlinear algebraic models.  These 

functions use the MATLAB Symbolic Math Toolbox to compute symbolically the 

Taylor coefficients corresponding to the contact equations, to build the nonlinear 

system of algebraic equations needed for the testing, and to solve these sets of 

equations for the time-independent unknowns parameterizing the contact states.  

Existence and uniqueness of a solution is then analyzed to comment on the 

identifiability and distinguishability of the contact models. 
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8.2 Future Research Directions 

A thesis represents both a research ending point and a starting point.  For every 

problem solved, another must be left unattempted and yet a third is uncovered.  Several 

research directions that could enhance the design of contact state estimators in poorly 

known environments are described below: 

 

 Uncertainty due to sensing noise was ignored in the design phase of the estimator. 

Sensor noise is, however, always present in real applications and can impact the 

distinguishability, identifiability, and observability of the contact states.  Noise affects 

these three properties at different levels.  Identifiability, for example, is not directly 

affected by noise since sensing uncertainties do not change the structural form of the 

contact equation.  Nevertheless, noise can lower the quality of the estimation (i.e., 

large uncertainties on the estimates) and therefore reduce the benefit of the parameter 

history based observability technique presented in section 5.4.  Distinguishability is 

the property most affected by sensor uncertainties since noise typically “blurs” the 

sensor-space partition resulting from the distinguishability testing.  As a result, sensor 

noise cannot be ignored and additional design tools need to be built to take these 

uncertainties into consideration.  

 

 Distinguishability and identifiability are intrinsic properties of contact state models. 

Therefore, these properties need to be established only once, regardless of the 

method.  This thesis presents a general method to test for contact state 
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distinguishability and identifiability, and several examples were studied in section 

4.3.  A natural extension would be to use the developed method to create a contact 

database for polygonal and polyhedral contact states given different sensing 

modalities.  This database could then be used regardless of the chosen estimation or 

detection algorithm. 

 

 The problem of data excitation for contact state estimation has been introduced in this 

thesis.  An excitation condition was developed for a pose equation using an explicit 

estimation scheme that resulted in a closed-form solution for the parameters of the 

equation.  An interesting research direction would be to investigate the existence of 

optimal paths for contact state identifiability and distinguishability.  These paths 

could be derived for each contact state and implemented in a compliant motion 

control package.  As a direct application, a sequence of optimal paths could be run 

after each contact transition to facilitate the estimation and detection of the contact 

states and ultimately accelerate the task completion. 
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Appendix A  
 

 

 
This appendix illustrates the derivation of the homogeneous transformation matrices 

m
fT  and f

mT  used to express the pose constraints presented in equations (3.6) and (3.7).  

Using the kinematic closure equations presented in equation (3.10), the components of 

m
fT  and f

mT  are expressed for planar and spatial transformations respectively. 

 

A.1 Planar Pose Constraints 

As shown in the kinematic closure equations (3.10), the matrices m
fT  and f

mT  depend 

on the three homogenous matrices: ( )g
wT t , m

gT , and f
wT .  These three matrices can be 

written as follows in two-dimension: 

 

( )
( ) ( ) ( )
( ) ( ) ( )

cos sin
sin cos

0 0 1

g
w

t t x t
T t t t y t

θ θ
θ θ

− 
 =  
 
 

, 
1 2 3

2 1 4

0 0 1

m
g

m m m
T m m m

− 
 =  
 
 

, 
1 2 3

2 1 4

0 0 1

f
w

f f f
T f f f

− 
 =  
 
 

 

As a next step, these three matrices (and their inverse) are multiplied to obtain m
fT  

and f
mT . 
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A.1.1 ( )=m w g m
f f w gT T T t T  

The three pose constraints associated with the computation of m
fT  can be written as 

follows:  

 

 No rotation around the axis fz : 

( ) ( )2 1 2 1 1 2(1,2) sin( ) cos( ) cos( ) sin( ) 0m
fT f m m f m mθ θ θ θ= + + − =  

 No translation around the axis fx : 

( ) ( )2 4 3 4 1 3 3 4(1,3) sin( ) cos( ) cos( ) sin( ) 0m
fT f y f m m f x f m mθ θ θ θ= − + + + − + − =  

 No translation around the axis fy : 

( ) ( )1 4 3 4 2 3 3 4(2,3) sin( ) cos( ) cos( ) sin( ) 0m
fT f y f m m f x f m mθ θ θ θ= − + + + − + − + =  

 

A.1.2 ( )=f g w f
m m g wT T T t T  

The three pose constraints associated with the computation of f
mT  can be written as 

follows:  

 

No rotation around the axis mz : 

 ( ) ( )1 1 2 2 1 2(1, 2) sin( ) cos( ) cos( ) sin( ) 0f
mT f m m f m mθ θ θ θ= + + − + =  
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 No translation around the axis mx : 

( )
( )

2 3 4 3

1 3 4 4

cos( ) sin( ) cos( ) sin( )
(2,3) 0

cos( ) sin( ) sin( ) cos( )
f
m

m x y f f m
T

m y x f f m

θ θ θ θ

θ θ θ θ

+ − − + 
= =  − − + − + 

 

 No translation around the axis my : 

( )
( )

1 3 4 3

2 3 4 4

cos( ) sin( ) cos( ) sin( )
(1,3) 0

cos( ) sin( ) sin( ) cos( )
f
m

m x y f f m
T

m y x f f m

θ θ θ θ

θ θ θ θ

 
 
 

 − + − − +
=   =
 − − + − + 

 

 

A.2 Spatial Pose Constraints 

In three-dimension the three matrices ( )g
wT t , m

gT , and f
wT  can be written as follows:  

 

cos ( ) sin ( ) 0 cos ( ) 0 sin ( ) 1 0 0 ( )
sin ( ) sin ( ) 0 0 1 0 0 cos ( ) sin ( ) ( )

( )
0 0 1 sin ( ) 0 cos ( ) 0 sin ( ) cos ( ) ( )

0 0 0 1

g
w

t t t t x t
t t t t y t

T t
t t t t z t

α α β β
α α γ γ

β β γ γ

 −    
    −    =     −     
 

 

 

1 3 2 5 1 4 6 1 4 5 2 6 7

2 3 1 5 2 4 6 2 4 5 1 6 8

4 3 6 3 5 9

0 0 0 1

m
g

m m m m mm m mm m m m m
m m mm m m m m m m mm m

T
m m m m m m

− + + 
 + − =
 −
  
 

 

 

1 3 2 5 1 4 6 1 4 5 2 6 7

2 3 1 5 2 4 6 2 4 5 1 6 8

4 3 6 3 5 9

0 0 0 1

f
w

f f f f f f f f f f f f f
f f f f f f f f f f f f f

T
f f f f f f

− + + 
 + − =
 −
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A.2.1 ( )=m w g m
f f w gT T T t T  

The six pose constraints associated with the computation of m
fT  can be written as 

follows:  

 

 No rotation around the axis fx : 

( ) ( )
( ) ( )

( )
( ) ( )

3 5 2 4 5 1 6
3 6

1 4 5 2 6

3 5 2 4 5 1 6
2 5 1 4 6

1 4

cos( ) cos( ) cos( )sin( )sin( ) cos( )sin( )
(3, 2) 0

cos( ) cos( )sin( ) sin( )sin( )

sin( ) cos( )sin( )

cos( ) cos( )

m
f

f f f f f f f
T m m

f f f f f

f f f f f f f
m m m m m

f f

β γ γ α β α γ

α γ β α γ

β β α

α β

 
 
 
 
 
 

 
 
 

+ − −
= =

+ + +

− + −
+ − +

+ ( )

( )
( ) ( )

( )( ) ( )

5 2 6

3 5 2 4 5 1 6
1 5 2 4 6

1 4 5 2 6

cos( )sin( ) cos( ) cos( ) sin( )sin( )sin( )

cos( )sin( ) cos( )sin( )sin( )

f f f

f f f f f f f
m m m m m

f f f f f

β γ α γ α β γ

γ α α β γ

 
 
 
 
 
 

 
 
 
 
  
 

+

+ + −
+ +

+ − + +

 

 No rotation around the axis fy : 

( ) ( ) ( )
( ) ( )

( )( ) ( )

3 5 2 4 5 1 6 1 4 5 2 6 1 3

3 5 2 4 5 1 6
2

1 4 5 2 6

(3,1) 0 sin( ) cos( )sin( ) cos( )cos( )

cos( )sin( ) cos( ) cos( ) sin( )sin( )sin( )

cos( )sin( ) cos( )sin( )sin( )

m
fT f f f f f f f f f f f f m m

f f f f f f f
m

f f f f f

β β α α β

β γ α γ α β γ

γ α α β γ

 
 
 

 
 
 
 
  
 

= = − + − + +

+ + −
+
+ − + +

( ) ( )
( ) ( )

3

3 5 2 4 5 1 6
4

1 4 5 2 6

cos( ) cos( ) cos( )sin( )sin( ) cos( )sin( )

cos( ) cos( )sin( ) sin( )sin( )

m

f f f f f f f
m

f f f f f

β γ γ α β α γ

α γ β α γ

 
 
 
 
 
 

+ − −
−
+ + +

 

 No rotation around the axis fz : 

( ) ( ) ( )
( )( ) ( )

( )

1 3 3 6 2 5 1 4 6 1 5 2 4 6

3 6 2 5 1 4 6
2 3

1 5 2 4

(2,1) 0 sin( ) cos( ) cos( ) cos( )sin( )

cos( )sin( ) cos( )sin( ) cos( )sin( )sin( )

cos( )cos( ) sin( )sin( )sin( )

m
fT m m f f f f f f f f f f f f

f f f f f f f
m m

f f f f

β α β β α

β γ γ α α β γ

α γ α β γ

  
    

 
 
 

= = − + − + + +

+ − + − +
+

+ + +( )
( ) ( )

( ) ( )

6

3 6 2 5 1 4 6
4

1 5 2 4 6

cos( )cos( ) cos( ) cos( )sin( ) sin( )sin( )

cos( )sin( )sin( ) cos( )sin( )

f

f f f f f f f
m

f f f f f

β γ α γ β α γ

γ α β α γ

 
 
 
 
  
 

  
    

 
  
 

+ + − +
−

+ − +
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 No translation around the axis fx : 

( )
( )( )
( )

1 3 2 3 4 1 3 7 2 3 8 4 9

7 1 3 2 3 4

1 3
8

2 3 4

(1,4) 0

cos( ) cos( ) cos( )sin( ) sin( )
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cos( )cos( ) sin( )sin( )sin( ) cos( )sin( )

cos(
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m f f f f f

f f
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f f f
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9
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) cos( )sin( ) sin( )sin( )

cos( )sin( )sin( ) cos( )sin( ) cos( ) cos( )
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γ α β α γ β γ
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 No translation around the axis fy : 
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 No translation around the axis fz : 
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( ) ( )
( ) ( )

4 5 1 6
8

1 4 5 2 6

3 5 2 4 5 1 6
9

1 4 5 2 6

cos( )sin( ) cos( )sin( )sin( )

cos( ) cos( ) cos( )sin( )sin( ) cos( )sin( )
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f f f f
m

f f f f f

f f f f f f f
m

f f f f f

γ α α β γ
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−
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+
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A.2.2 ( )=f g w f
m m g wT T T t T  

The six pose constraints associated with the computation of f
mT  can be written as 

follows:  

 

 No rotation around the axis mx : 

( ) ( )

( )
( ) ( )

( )( )

3 6 3 5 2 4 5 1 6 1 4 5 2 6

3 5 1 4 5 2 6
2 5 1 4 6

2 4 5 1

(3, 2) 0 cos( ) cos( ) cos( )sin( ) sin( )

cos( ) cos( )sin( ) sin( )sin( ) cos( )cos( )

cos( )sin( ) cos( )sin( )sin( )

f
mT f f m m m m m m m m m m m m

m m m m m m m
f f f f f

m m m m m

β γ β γ β

α γ β α γ α β

γ α α β γ

 
 
 

 
 
 

= = + − − +

+ + +
+ − +

+ − + −( )

( )
( ) ( )
( ) ( )

6

3 5 1 4 5 2 6
1 5 2 4 6

2 4 5 1 6

cos( )sin( )sin( ) cos( )sin( ) cos( )sin( )

cos( )cos( ) sin( )sin( )sin( )

m m m m m m m
f f f f f

m m m m m

γ α β α γ β α

α γ α β γ

 
 
 
 
  
 

 
 
 
 
 
 

− + +
+ +

+ + −

 

 No rotation around the axis my : 

( ) ( )
( ) ( )

( )( ) ( )

4 3 5 2 4 5 1 6 1 4 5 2 6

3 5 1 4 5 2 6
1 3

2 4 5 1 6

(3,1) 0 cos( )cos( ) cos( )sin( ) sin( )

cos( )cos( )sin( ) sin( )sin( ) cos( )cos( )

cos( )sin( ) cos( )sin( )sin( )

f
mT f m m m m m m m m m m m m

m m m m m m m
f f

m m m m m

β γ β γ β

α γ β α γ α β

γ α α β γ

 
 
 

 
 
 
 
  
 

= = − + − − +

+ + +
+

+ − + −

( ) ( )
( ) ( )

3 5 1 4 5 2 6
2 3

2 4 5 1 6

cos( )sin( )sin( ) cos( )sin( ) cos( )sin( )

cos( )cos( ) sin( )sin( )sin( )

m m m m m m m
f f

m m m m m

γ α β α γ β α

α γ α β γ

 
 
 
 
 
 

− + +
+

+ + −

 

 No rotation around the axis mz : 

( ) ( )
( ) ( )

( )( ) ( )

4 3 6 2 5 1 4 6 1 5 2 4 6

3 6 2 5 1 4 6
1 3

1 5 2 4 6

(2,1) 0 cos( )cos( ) sin( ) cos( )sin( )

cos( )cos( )sin( ) sin( )sin( ) cos( )cos( )

cos( )sin( ) cos( )sin( )sin( )

f
mT f m m m m m m m m m m m m

m m m m m m m
f f

m m m m m

β γ β β γ

α γ β α γ α β

γ α α β γ

  
    

  
 
 

= = − − + + +

+ + − +
+

+ − + +

( ) ( )
( ) ( )

3 6 2 5 1 4 6
2 3

1 5 2 4 6

cos( )sin( )sin( ) cos( )sin( ) cos( )sin( )

cos( )cos( ) sin( )sin( )sin( )

m m m m m m m
f f

m m m m m

γ α β α γ β α

α γ α β γ


 
 
 
  
 

  
    

 
  
 

− + − +
+

+ + +
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 No translation around the axis mx : 

( )( )
( )

( )
( ) ( )

1 3 1 3 7 2 3 8 4 9

2 3

(1, 4) 0 cos( )cos( ) cos( )sin( ) sin( )

cos( )sin( ) cos( ) sin( )sin( ) sin( )

cos( ) cos( ) sin( )sin( )

cos( )cos( ) sin( ) cos( )sin( ) sin( )

cos(

f
mT m m x y z m m m m m m m m

x z y
m m

y x

z y x

α β β α β

γ α β α β γ

α γ β γ

β γ α γ β γ

= = − − + − − +

− + 
+  − + 

− − +
−

+ ( )( )
( )

( )
( )

4

9 1 3 2 3 4

1 3 2 3
8

4

7

) cos( )sin( ) sin( )

sin( ) cos( )sin( ) cos( )cos( )

cos( )sin( ) cos( )cos( ) sin( )sin( )sin( )

cos( )sin( )sin( ) cos( )sin( )

cos( )cos(

m
x y

f m m m m m

m m m m
f

m

f

α γ β γ

β β γ β γ

β α α γ α β γ

γ α β α γ

α

 
 
 

 
 
 
 
 
 

 
 
 − + 

+ − + −

+ +
+

− −

+
( )( )

( )
1 3 2 3

4

) cos( )sin( ) cos( )sin( )sin( )

cos( ) cos( )sin( ) sin( )sin( )

m m m m

m

β γ α α β γ

α γ β α γ

 
 
 
 
  
 

+ − +

− +

 

 No translation around the axis my : 

( ) ( )
( )( )

( )( ) ( )
( )

3 6

2 5 1 4 6

cos( ) cos( ) sin( ) cos( )sin( ) sin( )
(2, 4) 0

cos( ) cos( )sin( ) sin( )

cos( ) cos( ) cos( )sin( ) sin( )

cos( )sin( ) cos( ) sin( )sin( ) sin( )
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f
m

z y x
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x y
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x z y

y

β γ α γ β γ

α γ β γ

α β β α β

γ α β α β γ
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7
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cos( ) cos( )sin( ) sin( )sin( ) cos( ) cos( )

cos( )sin( ) cos(
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x
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f

γ β γ

β γ β β γ

α γ β α γ α β
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m m m m m m m
f

m m m m m
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 No translation around the axis mz : 

( ) ( )
( )( )

( )
( )

( )

( )

3 5

2 4 5 1 6

cos( ) cos( ) sin( ) cos( )sin( ) sin( )
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Appendix B  
 

 

 

This appendix shows that a pure rotation path for a planar vertex-edge contact model 

can result in the partial explicit estimation of the contact parameters even though the 

excitation condition associated with the model is not satisfied.  

 

B.1 Excitation Condition 

As discussed in section 6.2.3, the excitation condition associated with the planar 

vertex-edge contact model illustrated in (6.12) requires that the dimension of the 

nullspace of the excitability matrix M  is equal to one.  

 

2 2 2 2

3 3 3 3 2

4 2 2 4 4 3 2 2 4

0

3
6 4 3

d dx dy
d d x d y d

M
d d d x d y d d

d d d d x d y d d d d

θ
θ θ

θ θ θ θ
θ θ θ θ θ θ θ

 
 
 =
 −
  − + − 

  (B.1) 

 

The dimension of the nullspace of M  is path dependent.  For a pure rotation, as 

parameterized in (B.2), the dimension of the nullspace of M  is equal to two.   
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( )
( )

0 0

0 0

( ) cos ( )

( ) sin ( )

x t x r t

y t y r t

θ θ

θ θ

= + +


= + +
    (B.2) 

 
Proof: ( )dim ( ) 2Ker M =  

The determinant and the 3 3×  minors of M  are all equal to zero when substituting 

(B.2) in (B.1).  Therefore the dimension of the nullspace of M  is equal to two.  The 

explicit computations of the determinant and the minors are not shown in this document; 

however, they can easily be computed using a computer algebra package (e.g., 

Mathematica).   

 

B.2 Partial Explicit Estimation  

This section computes the closed-form solution for the parameters associated with the 

planar vertex-to-edge contact (6.12) using the four-step technique summarized in (6.32).  

The first two steps resulting in: 1) the expression of the model parameters as a function of 

the Taylor coefficients, and 2) the excitability matrix M  have already been presented in 

(6.20) and (6.25) respectively.  This section focuses on the two remaining steps. 

 

B.2.1 Step3 - Taylor coefficients as a function of the nullspace of M 

Since the nullspace of M  is of dimension two, two Taylor coefficients are 

independent of the nullspace components.  These two free variables are chosen arbitrarily 
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to be yf  and fθθ .  As shown in (B.3), the constraint equation on the Taylor Coefficients 

(i.e., 2 2
1 2 1p p+ = ) is used to constraint one of the free variables.  

 

11 12

21 22

2 2
21 22 222 2 2 2

1 2 2
22

1 0
0 1

(1 )
1 1

x
y

y

y y
x y

f N N
f N N

f f
f
f

f N N f N
p p f f f

N

θ

θθ

θθ

θθ

     
     
     = +
                   
 − ± − + = ⇒ + = ⇒ =


 (B.3) 

 

B.2.2 Step 4 – Nullspace of M as a function of the path variables 

Using rows and columns manipulations, the matrix M  can be rewritten in row 

echelon form as follows:  

 

13 22 12 23 14 22 12 24

22 11 21 12 22 11 21 12

23 11 21 13 24 11 21 14

22 11 21 12 22 11 21 12

1 0

0 1

0 0 0 0
0 0 0 0

M M M M M M M M
M M M M M M M M
M M M M M M M M

M
M M M M M M M M

− + − + 
 − + − + 
 − + − +
 − + − + 
 
  
 

∼ (B.4) 

 

The four components of the nullspace can be expressed using the row echelon form 

matrix (B.4), as shown in (B.5).  The path equation (B.2) and the matrix (B.4) are utilized 

to express the nullspace of M  as a function of the path variables. 



 194

( )

( )

( )

( )

13 22 12 23
11

22 11 21 12

14 22 12 24
12

22 11 21 12

23 11 21 13
21

22 11 21 12

24 11 21 14
22

22 11 21 12

cos

tan

tan

1
cos

o

o

o

o

M M M M rN
M M M M
M M M MN
M M M M
M M M MN
M M M M
M M M MN
M M M M r

θ θ

θ θ

θ θ

θ θ

− +
= = −

− +

− +
= = +

−
− +

= = − +
−

− +
= =

− +

    (B.5) 

 

B.2.3 Explicit estimation 

To obtain a closed-form solution for the parametersl, the Taylor coefficients obtained 

from the substitution of the nullspace values (B.5) into the Taylor coefficients (B.3) are 

substituted into the set of equations (6.20).  This final substitution results in the explicit 

estimation of the parameters 3p  and 4p  shown in (B.6).  The other parameters are not 

explicitly estimable since they depend on the unknown free variable yf .  

 

( )

2
1

2

12
3

22

12
4

22

2 2
22 22 22 21 22

5 2
22

1

cos sin

sin cos

1 ( 1) ( )

y

y

y y

p f

p f
Np

N
Np
N

f N N x f N N N y
p

N

θ θ

θ θ

 = ± −

 = −


− − =


− =


 − − − +
 =


   (B.6) 



 195

 

 

 

Bibliography 
 

 

 

Ambler, A. and Popplestone, R. (1975).  Inferring the Positions of Bodies from Specified 
Spatial Relationships.  Artificial Intelligence, Vol. 6, No. 2, pp.157-174. 

Armstrong, B. (1989).  On Finding Exciting Trajectories for Identification Experiments 
Involving Systems with Nonlinear Dynamics.  The International Journal of Robotics 
Research, Vol. 8, No. 6, pp. 28-48. 

Arnold, V. (1989).  Mathematical Methods of Classical Mechanics.  Springer-Verlag, 
New York. 

Arras, K. (1998).  An Introduction to Error Propagation: Derivation, Meaning, and 
Examples of Equation T

Y X X XC F C F= .  Technical Report EPFL-ASL-TR-98-01 R3.  Swiss 
Federal Institute of Technology. 

Asada, H. (1990).  Teaching and Learning of Compliance Using Neural Nets: 
Representation and Generation of Nonlinear Compliance.  Proceedings of the 
International Conference on Robotics and Automation, pp. 1237-1244. 

Asada, H., and Hirai, S. (1989).  Towards a Symbolic-Level Force Feedback: 
Recognition of Assembly Process States.  Proceedings of the 5th International 
Symposium of Robotics Research, pp. 341-346. 

Atkeson, C., An, C., and Hollerbach, J. (1986).  Estimation of Inertial Parameters of 
Manipulators Loads and Links.  The International Journal of Robotics Research, Vol. 5, 
No. 3, pp. 101-119. 

Ball, R. (1900).  A Treatise on the Theory of Screws. Cambridge University Press.  



 196

Bates, D., and Watts, D. (1988).  Nonlinear Regression Analysis and its Applications.  
Wiley, New York. 

Baum, L. and Petrie, T. (1966).  Statistical Inference for Probabilistic Functions of Finite 
State Markov Chains.  The Annals of Mathematical Statistics, Vol. 37, pp. 1554-1563. 

Breipohl, A., (1970).  Probabilistic Systems Analysis: An introduction to Probabilistic 
Models, Decisions, and Applications of Random Processes.  Wiley, New York. 

Brost, R, and Mason, M, (1989).  Graphical Analysis of Planar Rigid-Body Dynamics 
with Multiple Frictional Contacts.  Proceedings of the 5th International Symposium of 
Robotics Research, pp. 293-300. 

Bruyninckx, H. (1995).  Kinematics Models for Robot Compliant Motion with 
Identification of Uncertainties.  Ph.D Thesis, Katholieke Universiteit Leuven, Belgium. 

Bruyninckx, H., Demey, S., Dutré, S., and De Schutter, J. (1995).  Kinematic Models for 
Model-Based Compliant Motion in the Presence of Uncertainty.  The International 
Journal of Robotics Research, Vol. 14, No. 5, pp. 465-482. 

Cai, C., and Roth, B. (1987).  On the Spatial Motion of a Rigid Body with Point Contact. 
Proceedings of the International Conference on Robotics and Automation, pp. 686-695. 

Chapell, M., Godfrey, K., and Vajda, S. (1990).  Global Identifiability of Non-Linear 
Systems with Specified Inputs: a Comparison of Methods.  Mathematical Biosciences, 
Vol. 102, pp. 41-73. 

De Schutter, J., and Van Brussel, H. (1988).  Compliant Robot Motion I.  A Formalism 
for Specifying Compliant Motion Tasks.  The International Journal of Robotics 
Research, Vol. 7, No. 4, pp. 3-17. 

De Schutter, J., Bruyninckx, H., Dutre, S., De Geeter, J., Katupitiya, J., Demey, S., 
Lefebvre, T. (1999).  Estimating First Order Geometric Parameters and Monitoring 
Contact Transitions During Force Controlled Compliant Motion.  The International 
Journal of Robotics Research, Vol. 18, No. 12, pp. 1161-1184. 

Debus, T (2000).  Automatic Identification of Local Geometric Properties During 
Teleoperation.  Master Thesis, Boston University, Department of Aerospace and 
Mechanical Engineering.  

Debus, T., Dupont, P., and Howe, R. (2004).  Contact State Estimation using Multiple 
Model Estimation and Hidden Markov Models.  The International Journal of Robotics 
Research, Vol. 23, No. 4/5, pp. 399-414. 



 197

Debus, T., Stoll, J., Howe, R. and Dupont, P. (2001).  Combined Human and Machine 
Perception in Teleoperated Assembly.  Proceedings of the 7th International Symposium 
on Experimental Robotics, D. Rus and S. Singh (Eds.) Springer, New York, pp. 51-60. 

Denavit, J, and Hartenberg, R. (1955).  A Kinematic Notation for Lower-Pair 
Mechanisms Based on Matrices.  Journal of Applied Mechanics, Vol. 77, pp. 215-221. 

Desai, R., and Volz, R. (1989).  Identification and Verification of Termination Conditions 
in Fine Motion in Presence of Sensor Errors and Geometric Uncertainties.  Proceedings 
of the International Conference on Robotics and Automation, pp. 800-807. 

Donald, B., Jennings, J. (1991).  Sensor Interpretation and Task-Directed Planning Using 
Perceptual Equivalence Classes.  Proceedings of the International Conference on 
Robotics and Automation, pp. 190-197. 

Dougherty, E. (1990).  Probability and Statistics for the Engineering, Computing, and 
Physical Sciences.  Prentice Hall, Englewood Cliff, N.J. 

Duffy, J. (1990).  The Fallacy of Modern Hybrid Control theory that is Based on 
“Orthogonal Complements” of Twist and Wrench Spaces.  Journal of Robotic Systems, 
Vol. 7, No. 2, pp. 139-144. 

Dupont, P., Schulteis, T., Millman, P., and Howe, R. (1999).  Automatic Identification of 
Environment Haptic Properties.  PRESENCE: Teleoperators and Virtual Environments, 
Vol. 8, No. 4, pp. 392-409. 

Eberman, B. (1995).  Contact Sensing: A Sequential Decision Approach to Sensing 
Manipulation Contact Features. Ph.D Thesis, M.I.T, Artificial Intelligence Laboratory. 

Eberman, B. (1997).  A Model-Based Approach to Cartesian Manipulation Contact 
Sensing.  The International Journal of Robotics Research, Vol. 16, No. 4, pp. 508-528. 

Eberman, B., and Salisbury, J. (1994).  Application of Change Detection to Dynamic 
Contact Sensing.  International Journal of Robotics Research, Vol. 13, No. 5, pp. 369-
394. 

Erdmann, M. (1986).  Using Backprojections for Fine Motion Planning with Uncertainty.  
The International Journal of Robotics Research, Vol. 5, No. 1, pp. 19-45. 

Farahat, A., Graves, B., and Trinckle., J. (1995b).  Identifying Contact Formations in the 
Presence of Uncertainty.  Proceedings of the International Conference on Intelligent 
Robots and Systems, pp. 59-64. 

Farahat, A., Stiller, P., and Trinckle., J. (1995a).  On the Geometry of Contact Formation 
Cells for Systems of Polygons.  IEEE Transactions on Robotics and Automation, Vol. 11, 
No. 4, pp. 522-536. 



 198

Gautier, M, and Khalil, W. (1990).  Direct Calculation of Minimum Set of Inertial 
Parameters of Serial Robots.  IEEE Transactions on Robotics and Automation, Vol. 6, 
No. 3, pp. 368-373. 

Gautier, M. and Khalil, W. (1992).  Exciting Trajectories for the Identification of Base 
Inertial Parameters of Robots.  The International Journal of Robotics Research, Vol. 11, 
No. 4, pp. 362-375. 

Gill, P., Murray, W., and Wright, M. (1981).  Practical Optimization.  Academic Press, 
New York. 

Glad, S., and Ljung, L. (1990).  Model Structure Identifiability and Persistence of 
Excitation.  Proceedings of the 29th International Conference on Decision and Control, 
pp. 3236-3240. 

Grewal, M.S., and Glover, K. (1976).  Identifiability of linear and nonlinear dynamical 
systems.  IEEE Transactions on Automatic Control, Vol. 21, pp 833-837.  

Hannaford, B., and Lee, P. (1991).  Hidden Markov Modal Analysis of Force/Torque 
Information in Telemanipulation.  The International Journal of Robotics Research, Vol. 
10, No. 5, pp. 528-539. 

Hirai, S. (1994).  Identification of Contact States Based on a Geometric Model for 
Manipulative Operations.  Advanced Robotics, Vol. 8, No. 2, pp. 139-155. 

Hirai, S., and Asada, H. (1993).  Kinematics and Statics of Manipulation Using the 
Theory of Polyhedral Convex Cones.  The International Journal of Robotics Research, 
Vol. 12, No. 5, pp. 434-447. 

Hirukawa, H., Papegay, Y., and Matsui, T. (1994).  A Motion Planning Algorithm for 
Convex Polyhedra in Contact under Translation and Rotation.  Proceedings of the 
International Conference on Robotics and Automation, pp. 3020-3027. 

Hollerbach, M.., and Wampler, C. (1996).  The Calibration Index and Taxonomy for 
Robot Kinematic Calibration Methods.  The International Journal of Robotics Research, 
Vol. 15, No. 6, pp. 573-591. 

Hovland, G., and McCarragher, B. (1998).  Hidden Markov Models as a Process Monitor 
in Robotics Assembly.  The International Journal of Robotics Research, Vol. 17, No. 2, 
pp. 153-168. 

Hwang, Y., and Ahuja, N. (1992).  Gross Motion Planning – A Survey.  ACM Computing 
Surveys, Vol. 24, No. 3, pp. 219-291. 



 199

Khalil, W., Gautier, M., and Enguehard, C. (1991).  Identifiable Parameters and 
Optimum Configurations for Robots Calibration.  Robotica, Vol. 9, pp. 63-70. 

Lawson, C. L., and Hanson, R. J. (1974).  Solving Least Squares Problems.  Prentice-Hall 
Series in Automatic Computation, Englewood Cliffs, N.J. 

Lecourtier, Y., Walter, E., and Bertrand, P. (1982).  Identifiability Testing for State-
Space Models.  The 6th IFAC Symposium on Identification and System Parameter 
Estimation, pp. 794-799. 

Lefebvre, T., Bruyninckx, H., and De Schutter, J. (2003).  Polyhedral Contact Formation 
Modeling and Identification for Autonomous Compliant Motion.  IEEE Transactions on 
Robotics and Automation, Vol. 19, No. 1, pp. 26-41. 

Lefebvre, T.; Bruyninckx, H.; DeSchutter, J. (2005).  Polyhedral Contact Formation 
Identification for Autonomous Compliant Motion: Exact Nonlinear Bayesian Filtering.  
IEEE Transactions on Robotics and Automation, Vol. 21, No. 1, pp. 124-129. 

Ljung, L. (1987).  System Identification: Theory for the User.  Prentice-Hall, Englewood 
Cliffs, NJ. 

Ljung, L., and Glad, T. (1994).  On Global Identifiability for Arbitrary Model 
Parametrizations.  Automatica, Vol. 30, No. 2, pp. 265-276. 

Lozano-Perez, T. (1981).  Automatic Planning of Manipulator Transfer Movements.  
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 10, pp. 681-689. 

Lozano-Perez, T. (1983).  Spatial Planning: A Configuration Space Approach.  IEEE 
Transactions on Computers, Vol. 32, No. 2, pp. 108-120. 

Lozano-Perez, T., Mason, M., and Taylor, R. (1984).  Automatic Synthesis of Fine-
Motion Strategies for Robots.  The International Journal of Robotics Research, Vol. 3, 
No. 1, pp. 3-24. 

Luo, Q., Staffetti, E., and Xiao, J. (2004).  On the Representation of Contact States 
Between Curved Objects.  Proceedings of the International Conference on Robotics and 
Automation, Vol. 4, pp. 3589-3595. 

Mason, M. (1981).  Compliance and Force Control for Computer Controlled 
Manipulators.  IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 6, pp. 
418-432. 

McCarragher, B. (1996).  Task Primitives for the Discrete Event Modeling and Control of 
6-DOF Assembly Tasks.  IEEE Transactions on Robotics and Automation, Vol. 12, No. 
2, pp. 280-289. 



 200

McCarragher, B., and Asada, H. (1993).  Qualitative Template Matching Using Dynamic 
Process Models for State Transition Recognition of Robotic Assembly.  ASME Journal of 
Dynamic Systems, Measurement, and Control, Vol. 155, pp. 261-269. 

McCarragher, B., and Asada, H. (1995a).  The Discrete Event Control of Robotic 
Assembly Tasks.  ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 
117, pp. 384-393. 

McCarragher, B., and Asada, H. (1995b).  The Discrete Event Modeling and Trajectory 
Planning of Robotic Assembly Tasks.  ASME Journal of Dynamic Systems, 
Measurement, and Control, Vol. 117, pp. 394-400. 

Montana, D. (1988).  The Kinematics of Contact and Grasp.  The International Journal of 
Robotics Research, Vol. 7, No. 3, pp. 17-32. 

Murray, M., Li, Z., and Sastry, S. (1994).  A Mathematical Introduction to Robotic 
Manipulation.  Boca Raton: CRC Press. 

Park, W. (1997).  Minicomputer Software Organization for Control of Industrial Robots.  
Proceedings of the Joint Automatic Control Conference.  

Pohjanpalo, H. (1978).  System Identifiability based on the power Series Expansion of 
the Solution.  Mathematical Biosciences, Vol. 41, pp 21-33. 

Pook, P., and Ballard, D. (1993).  Recognizing Teleoperated Manipulations.  Proceedings 
of the IEEE International Conference on Robotics and Automation, Vol. 2, pp. 578-585. 

Press, W., Teukoleski, S., Vetterling, T., and Flannery, B. (1992).  Numerical Recipes in 
C: The Art of Scientific Computing, Second Edition.  Cambridge University Press. 

Rabiner, L. (1989).  A Tutorial on Hidden Markov Models and Selected Applications in 
Speech Recognition.  Proceedings of the IEEE, Vol. 77, No. 2, pp. 257-286. 

Raksanyi, A., Lecourtier, Y., Walter, E., and Venot, A. (1985).  Identifiability and 
Distinguishability Testing Via Computer Algebra.  Mathematical Biosciences, Vol. 77, 
pp. 245-266. 

Rosell, J., Suárez, R, and Basañez, L. (2001).  Path Validation in Constrained Motion 
with Uncertainty.  Proceedings of the International Conference on Intelligent Robots and 
Systems, pp. 2270-2275. 

Schröer, K., Uhl, L., Albright, S., and Huttenhofer, M. (1992).  Ensuring Solvability and 
Analyzing Results of the Nonlinear Robot Calibration Problem.  Proceedings of the 2nd 
International Symposium on Measurement and Control in Robotics, pp. 851-858. 



 201

Sheu, S., and Walker, M. (1989).  Basis Sets for Manipulator Inertial Parameters.  
Proceedings of the International Conference on Robotics and Automation, pp. 1517- 
1522. 

Simunovic, S. (1979).  An Information Approach to Part Mating.  Ph.D thesis, M.I.T.  

Skubic, M., and Volz, R. (2000).  Identifying Single-Ended Contact Formations from 
Force Sensor Patterns.  IEEE Transactions on Robotics and Automation, Vol. 16, No. 5, 
pp. 597-603. 

Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., and Van Brussel, H. (1997).  
Optimal Robot Excitation and Identification.  IEEE Transactions on Robotics and 
Automation, Vol. 13, No. 5, pp.730-740. 

Vajda, S., Godfrey, K., and Rabitz, H. (1989).  Similarity Transformation Approach to 
Identifiability Analysis of Nonlinear Compartmental Models.  Mathematical Biosciences, 
Vol. 93, pp 217-248. 

Walter, A., Lecourtier, Y., Raksanyi, A. (1985).  On the Distinguishability of Parametric 
Models with Different Structures.  Mathematics and Computers in Biomedical 
Applications, IMACS, J. Eisenfeld and C. DeLisi (editors), Elsevier Science Publishers 
B.V., pp 145-160. 

Walter, E., Lecourtier, Y., and Happel, J. (1984).  On the Structural Output 
Distinguishability of Parametric Models, and its Relations with Structural Identifiability.  
IEEE Transactions on Automatic Control, Vol. 29, No. 1, pp. 56-57.  

Walter, E., Pronzato, L. (1996).  On the Identifiability and Distinguishability of 
Nonlinear Parametric Models.  Mathematics and Computers in Simulation, Vol. 42, pp. 
125-134. 

Whitney, D. (1982).  Quasi-Static Assembly of Compliantly Supported Rigid Parts.  
Journal of Dynamic Systems, Measurement, and Control, Vol. 104, pp. 65-77. 

Wilson, R. (1985).  Introduction to Graph Theory.  Third Edition, Longman, Harlow, 
Essex, England. 

Xiao, J. (1993).  Automatic Determination of Topological Contacts in the Presence of 
Sensing Uncertainties.  Proceedings of the International Conference on Robotics and 
Automation, pp. 65-70. 

Xiao, J., and Ji, X. (2001).  On Automatic Generation of High-level Contact State Space.  
The International Journal of Robotics Research, Vol. 20, No. 7, pp. 584-606. 



 202

Xiao, J., and Lianzhong, L. (1998).  Contact States: Representation and Recognizability 
in the Presence of Uncertainties.  Proceedings of the International Conference on 
Intelligent Robots and Systems, Vol. 2, pp. 1151-1156.  

Xiao, J., and Zhang, L. (1997).  Contact Constraint Analysis and Determination of 
Geometrically Valid Contact Formations from Possible Contact Primitives.  IEEE 
Transactions on Robotics and Automation, Vol. 13, No. 3, pp. 456-466. 



 203

 

 

 

Vita 
 

 
 

Thomas Debus 
thomas.debus@gmail.com 
87 Waltham ST, Apt#4, Boston, MA 02118  
 
 
EDUCATION 
Boston University, College of Engineering, Boston, MA          May 2005 
Ph.D., Mechanical Engineering, Dynamics and Control 
Dissertation: “Modeling by Manipulation – Enhancing Robot Perception through Contact 
State Estimation” 
Advisor: Pierre E. Dupont 
 
Boston University, College of Engineering, Boston, MA     January 2000 
M.S., Mechanical Engineering, Dynamics and Control 
Thesis: “Automatic Identification of Local Geometric Properties During Teleoperation” 
Advisor: Pierre E. Dupont 
 
University of Versailles, Versailles, France            June 1996 
M.S., Robotics and Automation 
Thesis: ”Design, Realization and Control of a Light Manipulator Arm” 
Advisor: Nasser K. M’Sirdi 
 
University of Versailles, Versailles, France              June 1995 
B.S., Mechanical Engineering 
 
 
AWARDS and HONORS  
 Research Fellowship, Boston University, 2000-2005. 
 Teaching Fellowship, Boston University, 1998-2000. 



 204

RESEARCH EXPERIENCE 
Graduate Research Assistant, Boston University, Boston, MA         May 2005 

Developed a novel framework for achieving contact-based robot perception in 
manipulation tasks in a project sponsored by the National Science Foundation.  This 
framework is the most flexible and versatile for contact state estimation in poorly 
known environments. 
 Designed analytical tools to test the feasibility of robotic assembly tasks in poorly 
known environments. 

 Developed sensor-based algorithms for man-machine cooperation in unstructured 
assembly tasks. 

 Designed and implemented statistical estimators to identify object properties during 
tele-manipulation.  

 Tested the complete framework for a teleoperated connector insertion task. 
 Developed kinematic, velocity and force models of contact formations between 
manipulated objects.  

 Evaluated the effects of a multi-channel vibrotactile display for teleoperated assembly 
tasks.  

 
Research Assistant, Harvard BioRobotics Laboratory,   Summer, 1998 – 2001 
Harvard University, Cambridge, MA  
Responsible for the design and implementation of several teleoperation control schemes.  

 Developed a C library for the control of a Barrett Whole Arm Manipulator robot.  
 Implemented a force reflecting controller for a teleoperation system composed of 
two PHANToM robots. 

 
Teaching Assistant in Control Theory and Mechanics of Materials          1998 to 2001 
Boston University, Boston, MA 

 Taught a half-semester of graduate state-space control theory.  
 Tutored undergraduate students in control theory and mechanics of materials. 

 
Control Engineer, Naval Institute Laboratory ENSIETA, Brest, France   1996 to 1997 

 Designed a multivariable sliding mode controller for an autonomous underwater 
vehicle.  

 
 
 
 



 205

Mechanical Engineer Intern, Robotics Laboratory of Paris,    Summer 1996 
Velizy, France  

Responsible for the design, realization, and control of a three-link serial robotic arm 
with flexible distal joint. 
 Built the arms using carbon fiber parts. 
 Implemented a gravity compensator, motion controller, and feedforward dynamic 
compensator. 

 Developed the robot-human interface using Matlab/Simulink under Dspace 
environment. 

 
Mechanical Engineer Intern, Robotics Laboratory of Paris,    Summer 1995 
Velizy, France  

 Kinematic and dynamic analysis of a climbing robot using a solid dynamic package 
(SDS from Solid Dynamics). 

 
PUBLICATIONS 
 
1. Thomas Debus, Pierre Dupont, and Robert Howe (2005). "Distinguishability and 

Identifiability Testing of Contact State Models,” Advanced Robotics, Special Issue on 
Compliant motion, to appear June 2005. 

2. Thomas Debus, Pierre Dupont, and Robert Howe (2004). "Contact State Estimation 
using Multiple Model Estimation and Hidden Markov Models," The International 
Journal of Robotics Research, Vol. 23, no. 4-5, pp. 399-413. 

3. Thomas Debus and Pierre Dupont (2004). "Distinguishability and Identifiability of 
Contact States," Proceedings of the IEEE International Conference on Robotics and 
Automation, New Orleans, pp. 1135-1140. 

4. Thomas Debus, Pierre Dupont, Tae-Jeong Jang, and Robert Howe (2004). "Multi-
channel Vibrotactile Display for Teleoperated Assembly," International Journal of 
Control, Automation, and Systems, Vol.2, no.3, pp. 390-397. 

5. Thomas Debus, Pierre Dupont, and R. Howe (2003). "Contact State Estimation using 
Multiple Model Estimation and Hidden Markov Models," Experimental Robotics VIII, 
Springer Tracts in Advanced Robotics, Vol. 5, B. Siciliano and Paolo Dario (Eds.), 
Springer, New York, pp. 517-526. 

6. Thomas Debus, Pierre Dupont, Tae-Jeong Jang, and Robert Howe (2002). 
"Multichannel Vibrotactile Display for Teleoperated Assembly," Proceedings of the 
IEEE International Conference on Robotics and Automation, Washington D.C., pp. 
592-597. 

 
 



 206

PUBLICATIONS (Continued) 
 
7. Thomas Debus, Theresia Becker, Pierre Dupont, Tae-Jeong Jang, and Robert Howe 

(2001). "Multichannel Vibrotactile Display for Sensory Substitution During 
teleoperation," Telemanipulator and Telepresence Technologies VIII Conference, 
Proceedings of the SPIE Vol. 4570, Newton, MA, pp. 42-49. 

8. Thomas Debus, Jeff Stoll, Robert Howe, and Pierre Dupont (2000). "Cooperative 
Human and Machine Perception in Teleoperated Assembly," Experimental Robotics 
VII, Lecture Notes in Control and Information Sciences, Vol. 271, D. Rus and S. Singh 
(Eds.), Springer, New York, pp. 51-60. 

9. Thomas Debus, Pierre Dupont, and Robert Howe (2000). "Automatic Identification of 
Local Geometric Properties During Teleoperation," IEEE International Conference on 
Robotics and Automation, San Francisco, pp. 3428-3434. 

10. Robert Howe, Thomas Debus, and Pierre Dupont (1999). "Twice the Fun: Two 
Phantoms as a High-Performance Telemanipulation System," Proceedings of the 
Fourth Annual PHANTOM Users Group Workshop, Dedham, MA, pp. 56-58. 

11. Thomas Debus, Pierre Dupont, and Robert Howe (1999). "Automatic Property 
Identification via Parameterized Constraints," Proceedings of the IEEE International 
Conference on Robotics and Automation, Detroit, MI, pp. 1876-1881. 

12. Robert Howe, Thomas Debus, and Pierre Dupont (1998). "Haptic Identification of 
Remote Environment Properties," SPIE International Symposium on Intelligent 
Systems and Advanced Manufacturing, Proceedings of the SPIE Vol. 3524, Boston, 
MA, pp. 123-130. 

 


	A_title_page.pdf
	B_Approval page_sign.pdf
	C_acknowledgement2.pdf
	D_abstract.pdf
	E_Toc.pdf
	F_Lot.pdf
	G_Lof.pdf
	H_chapter1.pdf
	I_chapter2.pdf
	J_chapter3.pdf
	K_chapter4.pdf
	L_chapter5.pdf
	M_chapter6.pdf
	N_chapter7.pdf
	O_chapter8.pdf
	P_AppendixA.pdf
	Q_AppendixB.pdf
	R_bibliography.pdf
	S_VITA.pdf

