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Pattern Generation and the Control
of Nonlinear Systems

Roger W. BrockettFellow, IEEE

Abstract—Many important engineering systems accomplish
their purpose using cyclic processes whose characteristics are
under feedback control. Examples involving thermodynamic

cycles and electromechanical energy conversion processes are

particularly noteworthy. Likewise, cyclic processes are prevalent
in nature and the idea of a pattern generator is widely used to
rationalize mechanisms used for orchestrating movements such
as those involved in locomotion and respiration. In this paper,

we develop a linkage between the use of cyclic processes and the

control of nonholonomic systems, emphasizing the problem of
achieving stable regulation. The discussion brings to the fore char-
acteristic phenomena that distinguish the regulation problem for

such strongly nonlinear systems from the more commonly studied
linear feedback regulators. Finally, we compare this approach to
controlling nonholonomic systems to another approach based on

derlying strongly nonlinear subsystem whose controlla-
bility depends on the nonintegrability of a family of vector
fields.

To obtain suitable tracking and regulation properties with
such systems, it is usually necessary to generate and shape
patterns, giving them the correct amplitudes, frequencies,
and relative phases. Although the basic shapes can be gen-
erated in an open-loop way, feedback is essential to ac-
commodate changing loads.

When attempting to solve feedback regulation prob-
lems in which nonintegrability is important, it is often
insightful to identify an appropriate output, relative to
which the system is lossless. Here, this means focusing

the idea of an open-loop approximate inverse as discussed in the

literature. attention on input—output systems taking the form of a

_ _ nonlinear integrator
Index Terms—inverse systems, Lie brackets, nonlinear control,

pattern generation, regulation, stabilization. i=G(x)u y=G"(r)x.
Such systems are lossless relative to the internal energy
functionz®z/2.
N THIS PAPER, the word “pattern” is used to denote a col- Common control problems ranging from the control of in-

I lection of periodic, or nearly periodic, vector valued functernal combustion engines to the regulation of respiration in
tions of time. The choice of words is inspired by language usstammals are profoundly nonlinear. In many cases of interest,
in neuroscience and biological motor control where approx®ne can linearize about a steady state, usually a periodically
mate periodicity is common and true periodicity rare. In fact, fofarying solution, and get some insight into the dynamics. How-
the applications we have in mind it is only the qualitative progever, this sort of analysis provides no explanation as to why
erties of the functions that matter; successive cycles need titg system was designed to use periodic motion in the first
have exactly the same waveform and/or the same period as Iptrce. For example, it has long been recognized that provision
as they possess the appropriate general shape. We will artfuiepattern generation is an important part of the neural cir-
that the need for, and use of, patterns is closely related to nenitry used to generate and control various animal movements
linear controllability and that the operation of important class&sich as walking, breathing, blood circulation, peristalsis, etc.,
of such systems is entirely dependent on nonlinear effects.yet linear theory is silent about the need for this mode of con-
the literature this effect is associated with phenomena suchte®. Parametric amplifiers and switched capacitor filters provide
Berry’s phase [1], rectification and area rules, [2], etc. We adoptamples from electrical engineering in which pattern genera-
a point of view that unifies and explains these problems in terrtign is essential. Applications of particular technological signifi-
of concepts from geometric nonlinear control. cance include rotating electrical machinery [3] and the use of or-

The main points to be developed are as follows. chestrated periodic switching to transform direct current at one

system depends on cyclic motion, there is often an ufif mechanics, vibratory motors [2] provide a class of highly
nonlinear examples. Recently, interest has been focused on this

, . , area because of robotic applications involving wheeled vehi-
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momentum, etc. and theybernetic point of viewplacing em- u; {15 ] @ Y
phasis on the flow of signals necessary for stabilization, motion é)x 5

planning, etc. The first of these is exemplified by the equations Us D— s | y3
of an electrical machine, relating the amplitude of the field cur- Un Té :

rent and the angular velocity of the shaft and the equations of 2 : ~ yz

motion for a satellite being controlled by momentum wheels.
The second point of view is more prominent in neuroscien&&- 1. Block diagram for the basic input-
where pattern generators are often studied without considering
the dynamics of the elements being controlled. However, evEee Fig. 1). As remarked before, this system is lossless in the
in this literature important experiments, such as those of [Sense that1/2)(d/dt)z"x = (y,u). If we considerz; as
show a strong link between physics and pattern generation. Tdefining a skew-symmetric matrix via
development here is closely tied to the physical point of view.

X(t) = [ 0 ﬂ

output systemifoe= 2.

Il. EXAMPLES —r3 0
There is a large literature on driftless, multi-input systentien these equations can be written more succinctly, and in a
of the form4 = G(x)u. Our starting point is the relatedform that generalizes to any number of dimensions
input—output system .
i=u X =azu" —uz” +U (the control system

=G y=G"(z)z. y=z— Xz Y =X (theoutputmap
A basic property of such systems is that they are lossless in tdS Input-output system, having input pair, {/) and output
sense that pair (y, Y), is passive relative to the internal energy function
(1/2)zTz + (1/4)tr(X"X) in the sense that
1d , T
——z z =z Gx)u=(y,u)
2 dt % (%ﬂx + iu«(x%)) = (y,u) + %(X, U).

and, thus, feedback controllers realized by connecjing «

via a passive system will result in a closed-loop system havingThe control equations involving just (X, «) were appar-

bounded trajectories. For the problems considered here, #mtly first singled out for study in [6] and [7]. Prior work jus-

structure ofG suggests decomposing the input space into twifies the point of view that this system is to first bracket con-

parts so that we may write trollable systems what linear systems are to linearly controllable
systems; see [7, Th. 1]. It is the prototype for first bracket con-

&= G(z)uy + Go(z)us y1 = GlT(a;)g; Yo = fo(:n)a:. trollable systems. The input—output system appearing here does

not seem to have been studied before.

If we apply partial feedback in the formn = —¢(y2), we get Rather than appearing in this elemental form, it often hap-

a system with a drift term pens that the basic model is embedded in a larger system that
incorporates additional feedback paths and/or complicating dy-

i = —Go(z)d (fo(w)w) +Gi(2)u; g = GT(2)x namical effects. A simple example of how this system might be

altered by feedback is to |1éf equal—X so as to get

which is still passive in tha; to y; channel. In the situations to . - - -

be discussed here, the systems are not only controllable using g=u X=-X+zu —ur.

(u1, u2) but are even controllable using alone. The problem

to be addressed is that of finding a control lawdgmnwhich will . . .

maintain the value ofj; at some desired value witly being B. Rotating Electrical Machinery

periodic with some specified average value. The conversion of energy associated with the flow of cur-
rentin a wire, into energy associated with the rotation of a shaft

A. Basic Model has been identified with nonholonomic systems since [3]. The

¢ Tt?]e mESt elementtar)k;, antd :jr.] a:jllrr]nltedhserlie qano:{cal,tn;o Eentral role. If one works in a coordinate frame that rotates
or tn€ phenomena to be studied here has he INput-to-state gkr e rotor of an electrical machine then in terms of the com-

scription ponents of the magnetic field,andy and the current through
the armature coilsy, v, the system satisfies

%oientz forcef = i x B from electromagnetic theory occupies

T1=u; I =1Us X3 =TiUs — TaUl + U3.
T = —ari1+ur T2 = —orrtur w = —kwtzius—T2us
We associate outputs with this system according to theyraie
G (z)z, ie., wherea characterizes the electrical resistance in the cails,
is the angular rotation rate ahdrepresents a coefficient of vis-
Y1 = T1 — T3Tz Yo = To + T3T1 Y3 = T3. cous friction. Obviously units have been normalized. The motor
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equations are obtained from the basic system by using feedb#wkir first brackets{[g:,¢2],[91, 93], -, [gm—-1,9m]}} Span

to replaceu; by u; — kx;, andU by —X. R™. Such systems will be calldist-bracket controllableAt a
generic pointrg, G(xo) will have a range space that is at most

C. Internal Combustion Engines m-dimensional. The number of additional linearly independent

The ability of an internal combustion engine to maintain a@irections coming from the bracket terms can not exceed the
angular velocity in the presence of an opposing torque deperfitgnber of linearly independent brackets whickign — 1) /2.
on a cyclic process of the type we are discussing fLaégnote Thus, we see that if the system is first-bracket controllable
the angular velocity of the crankshatft. Ligtdenote the pressuren < m(m + 1)/2.
of the gas acting on the piston and tetdenote the volume of  If the system is controllable in a neighborhoodagf then
this gas in the cylinder. In this case, the variabjds a periodic G(zo) must be nonzero. Using linear transformatiens: Px
function of the crank shaft angle Sayz, = ¢(6). Thus, the andu — Mu, we can arrange matters so that
equations must be augmented with an equatiofi.fdfe assume
that the pressure is directly controllable (through the supply of G(mg) = [é 8} .
fuel and air) and call this contral; . We further assume that the
load can be modeled by viscous friction. The equations can e, takes on values iR™ andw in R™ and ifn > m then

written as generically the identity matrix will ben by m so that
de -
—0
de G(Zl)o) = |:[:| .

j?l =Uuj j72 = Uy =
é = — 9 + u1xs. 0
Although this is less symmetrical than the rotating electrical ASSUMINg that the generic condition is satisfied and that the

machine example, the qualitative properties are essentially f#Propriate changes of coordinates have been used, we can ex-
same. pand they; in a Taylor series abouty. For the firstm coordi-

nates
D. Biological Phenomena

i(r) = e; + Ai(x — i(T), i=1,2,...,
In 1911, Brown [8] published a paper in tleoceedings of 9i(@) = ei + Ailw — o) + §(a) ' "

the Royal Societwith the wonderful title, “Intrinsic factors in \wheree; is theith standard basis element afyds O((z—¢)?).
the Act of Progression of the Mammal.” The substance of higyy the remaining coordinates
paper has to do with patterns associated with locomotion and
this topic has continued to be studied vigorously to this day. &1 = Gi(z)u  Gi(zo) = 0.
Of particular interest in this setting is the fact that both the fre-
quency and the amplitude of the oscillation is used in regul¥/ith some difficulty one can show (see the proof of [7, Th.
tion. For example, it is a familiar fact that as one walks fastdq) that through a redefinition of the variables one can arrange
both the length of the stride and the frequency of the steps atters so that the first rows of theA; are all zero and the
crease. Likewise, when faced with the need for a higher respgmaining rows are such that we have
ratory rate, humans both increase the volume of air processed
per breath and the number of breaths per minute. Data on the Ty =ui + Z¢ij(37)uj ¢ij = O(a?), I<i<m
locomotion problem is cited in [9] and breathing is discussed, . _ o e )
for example, in [10]. b= ) wpsgun ) i)y
i =0(%) m+1<i<n
[Il. GENERALITIES ON FIRST BRACKET

with the trilinear forms;;;, being skew-symmetric in the last
CONTROLLABLE SYSTEMS Sijk g Yy

two indexes. From this, we see that if we neglect the higher order
Let w be am-dimensional and let be n-dimensional and terms then locally the system can be identified with a subsystem
consider of

:J'::G(a:)u:Zgi(x)ui. it=u X =azu" —ux”
=1

) . . _obtained from it by (possibly) ignoring some of the equations
As is well known, when the vectoig are differentiable a suit- gefining the entries of.
able number of times, the controllability of such systems is bestthe yse of temporal patterns to achieve a desired form of
studied by thinking of the; as defining vector fields and fo- penavior for such systems can often be traced to the following

cusing attention on the way in which the Lie brackets situation. Consider a system
0 7] .
[91, 92] = —lg2, 91] = %gl - %92 i(t) = g1 (z(t)) ui(t) + g2 (z(t)) u2(t) 2(0)=0
enlarge the vector space spanned by vectergs,...,gm. With ¢1(0) = e; andgs(0) = es. It is clear that we can use

We limit our discussion to the situation in which thevectors the controls to adjust; andz, at will. However, it is usually
{g:} together with then(m — 1)/2 vectors generated by takingpossible to do more by means of an indirect procedure. If we
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useu; andus to takez; andz, around in a closed loop thenvalue forzs in the face of a “load.” More precisely, we want to
typically there will be some change in the remaining variablesiaintainz; at some specified value> 0 for the system

In fact, the procedure for computing this change is by now well ) ] ]

known. If we letu; (t) = a cos 27t andus(t) = asin(27t) then Ty =uy Ty =Up Ty =TIy DUy = Tl

a does not remain at the origin but is displaced This is typical in a situation wheres is, for example, a flow

a2 5 rate which is to be maintained at some specific positive value
=~ 91, g2llz + O(a”). in opposition to a resistance represented by-thg term. The

L . problem is that of findingu(z1,z2,23) and us(z1, z2,x3)
Qne can 9?‘ a gopd Intuition fqr the proof_by replacing thguch that the steady state solution of this system of equations
trigonometric functions by the simpler functions(t) = a -

. is a stable oscillation in ther(, z5) variables maintaining:
sgn(sin 27t) andw(t) = a - sgn(cos 2rt) and doing a careful () gs

| A . at the constant value Observe that if3, w ande are positive
(tedious) calculation, using repeatedly the fact that to secol%dal numbers, then the choices

order int the solutioni: = f(z) is
1 of u; = —wry — Bz — e)xy

2(t) = 2(0) + f (2(0) t + 5 5+ o f (@(0)) 2+ O(t). uy =wry — flws — €)a

z(1) — z(0)

will cause the £, x2) variables to traverse a circle and their
contribution to the right-hand side of the third equation will be
&ich as to offset the effect of thers term. The termgi(e —

On)'arl and (e — x3)xo serve to adjust the amplitude of the

. ) . . . : cillation unless the amplitude of{, x5) is exactly what is
trigonometric fqnctlons. Notice that if the mtegral over [0, 1 eeded to make; = e. The following theorem addresses the
of both« andw is zero, then the locus of points traced out for

guestion of stability.

Itis worth repeating that even though the average valug of
andus is zero, the pattern of variation about O gives rise to
definite displacement as revealed by a second order calculati

This result can be recast to avoid the specific role played

Osisl Theorem 1:If = andw are related by
t t
((z1(t), x2(t)) = /ul(a)da,/ug(a)da d | w
— | T2 = (5]
0 0 dt . .
I3 T1Ug — ToU1 — XT3

generates a closed curve m and this closed curve defip(_eswi h a > 0, then there exists € R such that for every positive
some area. We consider th_ls area to hgve a sign, posmvke5| nd every: > 0, the control law

the curve in §1, z2)-space is traversed in the counterclock-

wise direction. With this understanding we can assertthat u1]  [~wzs + B(e — w3)11

z(1) — x(0) is approximately §;, g2] evaluated atr = z(0) { ] N [ w1 + B(e — x3)x2

times the area defined by the closed curve given by the graphd%ffines a closed-loop system that admits a one-parameter famil
(z1, z2). Whenz; andz, are periodic, the curve iR? is traced Psy P y

out repeatedly. If it is circular, the average of the time derivativ%!c periodic solutions

U2

of x is the rate at whicha(;, z2) sweeps out area multiplied by 2€ cos(wt + ¢)
the bracket evaluated at 0. Many examples of “area rules” ap-  z,(¢) = T sin(wt + ¢) | 0<¢< 2.
pear in engineering, physics and mathematics; see [1] and [2]. “ e

We observe that the basic properties of the nonholonomic inte- oo . ) i

grator are qualitatively unchanged if we replace the equation foCh Such periodic solution is stable and all solutions starting

23 With i3 = ¢(x1, 2)u1 — (1, 2)us as long as the span- off the linex :2:172 j 0 approach the circle defined byoo =

ning condition(d¢/dxs) # (94 /d1) holds. {(z1, 22, 23)|(z7+25 = ae_/c_u; x3 = e} atan exponential rate.
The main point of this paper is to show how the oscillations  Pro0f: Letw be a positive number. The closed-loop equa-

needed to obtain the area can be generated spontaneously!iQf§ Of motion can be written as

in a stable way by feedback control laws of the general form d [ml] _ [/3(e — x3) —w } {xl}

- Ble — x3)

u=(Q+Q(x—x4)) Gz dt v
whereQ) = —QT andQ(x — z4) = QT (z — x4).

Z2 T2

T3 =w (:17% + :17%) — ax3.
Introducep = In(z? + x3) and observe that andz; satisfy
IV. OSCILLATIONS FORSET POINT CONTROL p=20(e — x3)

We now begin to address the main questions of interest, T3 = — axs + we’.
building toward a series of results on set point regulation using. . . .
temporal patterns. The results to be derived assert the existeﬁ%@'naﬂngxi” gives
c_Jf _feedback c_ontrol laws providing stable regula_tion 01_‘ a j+ ap + 2Bwe” = 2afe.
limit cycle for first bracket controllable systems. This section
considers the problem of establishing and regulating patteffisis equation has a single equilibrium poipg,= In(ae/w). It
in (z1, z2)-space suitable for maintaining a steady nonzeomrresponds ta; = e. The derivative ofi(p, p) = (1/2)p% +
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with s(z) = (1 + kx? + 22) defines a closed-loop system that
BASIC X admits a one-parameter family of periodic solutions of the form
SYSTEM £
X, m cos(wot + ¢)
| z,(t) = | msin(wot + ¢) |, 0<¢<2r
e
with

Fig. 2. Block diagram of the feedback controller of Theorem 1.

1 daek
2 e J—
2Bwe? — 2aBep along solutions of the differential equation is T ok ( L+yi+ w )

—ap? and thus the equilibrium solution of the equation for
is asymptotically stable. Observe that = ¢ — /24 and so and
ast approaches infinity4, «3) approachesl{ ae/w, ¢) from
allinitial values p(0), 23(0)]. However,(z1, x2) = (0,0) does o=@ <1 n /1 n 4aek‘)
not correspond to a finite value @fand, thus, it is excluded 07 2 w ’
from this analysis; see Remark 1. This concludes the proof.
A block diagram for this system is shown in Fig. 2. LinEach such periodic solution is stable and all solutions starting

earizing the equation fgr about the equilibrium solutiop =  off the linex; = z» = 0 approach the circle defined iy, =
In(ae/w) gives {(w1, 22, 23)|(2? + 22 = aejwy; x3 = e} at an exponential
rate.
6+ ab + 208 = 0. Proof: Let w be any positive number. The closed-loop

equations of motion are
The eigenvalues of this second-order equation are

i {wl} _ |:/8(6—.Z‘3) —s(z)w } [ajl}
= o1x 18P i s(x)wz g(e )L
i=5 o | i3 =s(z)w (2] + 73) — azs.
i _ 2 .2

The system is critically damped wheie = a. As before, introduce = In(z] + z3) and observe that
Remark 1: If the Lyapunov function used in this proof is ex- 5= 28(c — z3)
pressed in terms af instead ofp, it takes the form p= 3
i3 =— az3 + (1 + ke’ )we?.

2 2 2 2 2 2
vi(z) = 26%(e — x3)° + 26w (27 + x3) — affeln (a7 + 13) In this case, the elimination af; yields the equation
which takes on its minimum value af + 22 = ae/w, 23 = e.
The derivative ig); = —4a%(z3 — e)2. If e = 0, this function
is well defined even fox? + 23 = 0. Thus, we observe that the,o equations(e? + ke2) = ae is quadratic in the unknown

null solution of the system defined in the theorem statementJs gqyying it for a positive root, we see that the equilibrium
asymptotically stable in the large for all> 0. This slight ex- condition is
tension of Theorem 1 will play a role in the later developments.
As mentioned before, in some applications the feedback con- -1 1 Adake
trol law is selected so that an increase in the load causes an in- e’ = 9% + % 1
crease in both the amplitude and the frequency of the oscilla-
tion. The following generalization of Theorem 1 incorporategorresponding ta:; = e. The derivative of the Lyapunov func-
this effect. It makes use of the control laws= —(1 + k(z? 4+ tion
73))wrs + Ble — x3)wy anduz = —(1 + k(z? + 23))wz; +

P+ ap + 2Bw(ef + ke?P) = 2afe.

w

ﬂ(e — 173):52. . _ 1 -2 o 2p
Theorem 2: If 2 andw are related by v(p,p) =507+ [ 2Bw(ef + ke™) — 20e du
Po
1
g | uy =—p + (2Bwe’ + Bwke® — 2a8ep)|’
E T9 = U 2 o

3 BERCEE L along solutions of this equationis= —a? and thus the equi-

librium solutionp = py is asymptotically stable. Linearizing

with a > 0, then there exists € R such that for any, &k > 0 ) TR Stal
the equation fop about the equilibrium point gives

and anye > 0 the control law

[ul] _ [—s(x)wxg + f(e — x3)Ty S+ab+p (4ae +Y_ w_j + 404£> §=0.
Ug s(x)wzy + Ble — x3)xo k k k
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P of Skew(m) thenwg denotes the orthogonal prjection which
projectsSkew () ontoF. If m is evenSkew(m) has a family
of (m/2)-dimensional subspaces with the property that any
two elements in one of these subspaces commute. There are
no subspaces of dimension greater thapi2 that have this
property. One such maximal commuting set is given by

}L1J 0 0
H=d H|H = 0 hed ... O hi € R
0 0 ... holJ
with J being
t 0 1
=[]

Fidg- 3. S?mpilue trfim(?ient reSpor&_SeS»m‘ vgitf%hk =0 (f_“;] frf]eolfuency If m is odd the maximal commuting subalgebra is of dimen-
adjustment) antt = requency adjustment). e system with the frequency. f . s
adjustment term produces the faster response. §|oq(m —1)/2 "?md th? given choice ¢ must bg mOd'f'?d_by
adding a one dimension 0 block at the lower right. This is one
of many such facts playing a role in the classification of simple

The Taylor series expansion abdut= 0 of the the coefficient Lie algebras. Reference [12] is a readable account and [13] de-

of 8 is scribes a number of applications of these ideas in control. In the
Bw doek 202ek literature on Lie algebras, maximal commuting subalgebras are
dafe + & 1—4/1+ = 2aBe + —,  t---- calledCartan subalgebrasCartan subalgebras are not unique
because i is a cartan subalgebra 8kew(m) and if © is an

If, for k = 0, the roots are complex then the effect of a small if2'thogonal matrix, the®HOT is also a Cartan subalgebra. In
crease irk is to increase the resonant frequency, thus increasifdgt ll Cartan subalgebras $itew(m) can be generated from
the speed of response as shown in Fig. 3. the particular block diagonal one given above using this rela-

Remark 2: The particular choice of the frequency adjustmeritonship. Adopting this language, we may say that Theorem 3
term s(z) in Theorem 2 is not significant. Work in the biolog-91VeS c_ond|t|ons under which it is p035|b!e to af:h|eve perfect
ical literature suggests that a function that grows linearly witiggulation ofX' on a Cartan subalgebra while forciagto have
amplitude, such as(z) = 1 + k+/22 + 22 might better fit ex- & Z€r0 average value on its orthogonal complement.
perimental data. The use efr) = 1+ k+/z? + 22 in place of Finally, we introduce one nonstandard definition isolating an
s(z) = 1+ k(z? + 22) results in a cubic elquati20n fon2 but ideathat plays animportant role here. By-dimensionabasic

does not change the qualitative properties of our analysis. cOnein H we understand any subsetldfconsisting of all ele-
ments expressible as

V. HIGHER DIMENSIONAL SYSTEMS

d
Although the models of the previous section provide useful E= Z o by, a; >0

insight about how a system operates, more detailed models con- i=1
taining additional degrees of freedom, e.g., those needed to fgh the E; € H being linearly independent and of rank two.
scribe both the piston and the valve motion for an internal comotice that the definition requires that thebe strictly positive.
bustion engine, may be needed. For this reason, we now conwe will say that a functionf(-) taking on values irR" is
sider the extension of the previous results to higher dimensiog@asi-periodidf there exists a by » constant matrix’, a real
problems. This involves significant new aspects becalisew , by, matrix2 = —QZ and ar-dimensional vectot such that
typically takes on values in a space whose dimension is highgi) = Ce® 2. Such functions will be periodic if there exists
than the dimension of and it is only possible to achieve per-a3 number, such that all the eigenvalues @fare of the form
fect regulation on a lower dimensional subspace. As it happeRnsy,, with ther; being rational numbers.
it is possible to achieve perfect regulation in certain subspacestheorem 3: Suppose that:(t), u(t) € R™ and X(t) €
while ensuring that the average value is zero on a complemeRew(m) are related by
tary subspace. The model will be the+ m(m — 1)/2-dimen-

sional system introduced before i(t) = u(t) X(t) = z(t)ul(t) — ut)z? (t) — aX(t)
i=u X =xul —uz? +U with o > 0. LetH be a Cartan subalgebra $kew(m) and let
. E be ad-dimensional basic cone . Then, there exist@ € H
with U = —aX. having2d distinct nonzero eigenvalues such that for gny 0

Notation: Let Skew(m) denote the vector space of realand anyE € E, the control law
m by m skew-symmetric matrices. We regard this as an inner
product space withX, X») = tr(X{X,). If F is a subspace uw=Qu+ Qru(F — X)z



BROCKETT: PATTERN GENERATION AND THE CONTROL OF NONLINEAR SYSTEMS 1705

defines a closed-loop system which admits quasi-periodic soluLemma 4: LetH be a Cartan subalgebrasitew(m) and let
tions taking the form E be a basic cone of dimensidnn H. Then, there existQ € H
such that for eacli’ in E we can findz € R™ satisfying

d
_ Nt — oot 4~ _ AT
wp(t) = Voo Xp(t) = E + i’ Ae A A (22T Q + QuaT) + E = 0.
with (X)) = E. These solutions take the form Moreover, if(2 is such that there exists someproviding this
d representation then there isdat+ v-parameter family ofr’s
z,(t) = ePxy X,(t) = E+ EemAe—m A=—AT satisfying this equation whereis the dimension of the kernel
of Q.
with z a solution ofry (zozd Q+ Qroad ) + E = 0. Moreover Proof: We begin by showing that the claim is truefifis
1) each such solution is stable and i x 2. In this caseH = Skew(2) and the projectionry has no
Span {2(0), Qo Q™=1z0) = Range(E), then the effect. We only need to show that there exist¥asuch that it

corresponding trajectory approaches one such solutiort POSSible to solve

2) limr—oo(1/T) [y X,(t)dt = E; [xm l,m} [ 0 wl}
3) each such solution is periodic if the eigenvaluefa@fre | 4,7, 202y | | —w; 0
rational multiples of a single numbety. 0 ) 0 —
. . . w1 1Ty T1T2 €1
:3efore proving the theorem, we give a few preliminary re- + [—w1 0 } [hu zng [61 0 } =0
sults.

Lemma 1: If (z, X) satisfies for eachFE in the basic con&. There are essentially two pos-
sibilities. EitherE consists of the set of two-by-two skew-sym-

i =Qx + fQmu(E — X)z metric matrices whose 12-element is positive or else it consists

X =—227Q - Qua’ + - [mT7 Qmn(E — X)] —aX of the set of X2 skew-symmetric matrices whose 12-element

is negative. Lef2 be any skew-symmetric matrix that is a nega-
and if © is orthogonal, theny( = Oz, Y = ©X0OT) satisfies tive multiple of anE € E. Then,e; /w; is negative and there is
the same equation witf replaced by9QOT, E replaced by a one-parameter family of solutions of
OFEOT andH replaced byoHOT , . e
Proof: This can be verified directly by differentiating,. r] +z; — — =0.

and® XO7. The only point thatis notimmediate is to check that ) ) “
O(mn(X))OT = (roper (©XOT)), but this follows from the This establishes the lemma in the case that= 2. Now con-

definitions. sider the general case. As noted above, there exists an orthog-

Lemma 2: If Q andE are elements dfkew(m) then there Onal transformation that putd in block diagonal form. Thus,
exists unique skew-symmetric matricésind /' such thatz =  the basic cone has a block diagonal set of generators. We can
S+ [Q, F] with [S,Q] = 0 and F orthogonal to every matrix order the basis dfi such that the generators Bfoccur in the
commuting withe2. upper left2d-by-2d block of Skew(m). We take the upper-left

Proof: The identitytr(A[B,C]) = tr(|C, A]B) shows 2d-by-2d block of(} to.b'e a negative muItipIe_ of some.element
that the range of the operatad,(-) = [€2.] is the orthogonal Of E and let the remaining elements be arbitrary subject to the

complement of its null space. constrain} € H. To find 2, we need only work one block at a
Lemma 3: LetC(92) denote the set of all matrices commutindime. consistent with the solution found in the two-by-two case.
with €. Supposé2,Q € Skew(m). Then Of course, this will resultinz” Q+Qz2T being nonzero off the
diagonal but the projectiony will annihilate the off-diagonal
A elements and resultin a solutionaf (z27 Q+Qz2T)+E = 0.
/ e Qe dr = me(o) ()t + P(t) If Q is invertable this solution is unique to within choices previ-
o ously described. However §2 has av-dimensional kernel then
x is arbitrary in the kernel, leading to the formula in the lemma.
whereP(t) is quasi-periodic. Proof of Theorem 3:Using freely the commutivity im-
Proof: Expresst asinLemma 2F = S + [Q, F]. Now, plied by the hypothesis we can write the closed-loop equations
observe that of motion as
iGQTFe—QT — O7[Q, Flem 7. a; =Qz + fQmu(E — X)x
dr X =—22"Q - Quz” + -8 [z2", Qmy(E — X)] — aX.
Thus Assumingm is even, we can find an orthogonal matéixsuch
t t that after the change of coordinates» Oz; X — 0 X007, H
/eQTEe_QTdT = /eQTSe_QT + %(eQTFe_Qt)dT takes the form
b 0 ]L1J 0 PN 0
=St+ e Fe Y — | H={ H|H = 0 hod ... O h: € R

Clearly, the last two terms are quasi-periodic. 0 0 ... hnlJ
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as discussed in the definition of the Cartan subalgebra andtiene?»* is periodic and hence the solution is periodic and not
Lemma 1. We can order the basis such that whésexpressed just quasi-periodic.
in the same coordinate system itis nonzero only in the upper leftFinally, if m is odd the equations can be arranged as a set

2d x 2d block. of (m — 1)/2 blocks in the form just discussed but now with a
These equations have an important property that can be #ral equation which necessarily takes the faifyp = 0. The
pressed as variablez,,, does not enter the other equationsfand is neu-
trally stable as required by the theorem statement. It enters the
TH ([fw?T; Qmu(E — X)]) =0. equation forX but because,,, is a constant and multiplies only

. . ) ) . functions with average value zero, it does not affect the conclu-
To see this, notice that in a coordinate system in wiiands2

: : . _ sions reached above.
are block diagonal)m (X — F) is block diagonal with each

i _ . X ) Example 1: Let H be the set of 44 block diagonal matrices
two-by-two block being a multiple of the identity. Thus, if We, nd letE be the cone consisting of those elementdHothat
let X, = mu(X) then

have negative entries in the 12-element and the 34-element. Let
T =Qx+ BUE — X))z E € H be given by

X, = —mg(za’Q + Q) — a X, 0 -3 0 O
E_|3 0 0 0
The subsystem consisting of the upgédrequations can be ar- 1o 0 0 =2
ranged as a set of decoupled equations, eachldock taking 0 0 2 0
the form
and letQ2 € H be
d{a]| _[Buwle—rc) —w a 01 0 o
dt |[b] w Pw(e—c)| | b
. s s g—|-1 0 0 0
¢=w(a”+b%) — ac. =lo o0 o 2
As in the proof of Theorem 1, introduce new variabjlgs= 00 -20
In(a? + b7) and observe that; andc; satisfy The theorem asserts that there is a two parameter famiksof
. satisfyingzzTQ + Qzaz” + E = 0. The corresponding two
pPi = 2ﬂwi(ei - Ci) . .
parameter family of solutions can be expressed as
¢ = — ac; + we’t.
V3 cos(t + )
Differentiating the first equation and using the second to elim- 5 — V3sin(t + 6)
inatec;, we get =(t) = cos(2t + ¢)
sin(2t + ¢)

i + ap; + 2Bwie’ = 2afwe;. ] ) o . .
In biological systems, synchronization might relate to main-
The properties claimed far and7y(X) now follow from the taining a particular phase relationship between the action of
analysis done in the proof of Theorem 1. (What is caietlere muscle groups used for breathing. In an electrical power grid,
is now to be identified withu; 3.) Note that the equations jrare  synchronization might be necessary to coordinate the frequency
asymptotically stable but the equationszirare only neutrally and phase of various generators. Clearly, the maintenance of
stable because of the neutral stability of the relative phases. correct phase relationships can be of critical importance. Of
To complete the proof in the case is even we need to usecourse synchronization is only meaningful in cases whenas
Lemma 3 to establish the appropriate properties for the projéepeated eigenvalues. If part of the goal of the feedback control
tion of X onto the complement 4. If the eigenvalues df are  system is to synchronize various modes, it is essential that we
unrepeated theG(Q2) = H and lemma three applies directly.choos&? appropriately. Theorem 3 allows repeated eigenvalues
On the other hand, id < m then the eigenvalues may be rein © only when the coné is of dimension less tham — 1.
peated. As noted in the proof of Lemma 4, if the eigenvalud$ie following example illustrates the simultaneous regulation
of Q are all nonzero the solutions efy(z2l' Q + Qzozl’) + of amplitude and the relative phase of two modes.
E = 0 will be zero except for the firsd entries. This im-  Example 2: Let . = 4 and letH be the linear span of the
plies thatX,, will be zero outside the upper lefti-by-2d block two commuting matrices
and Lemma three implies thaf, has the desired properties

within the 2d-by-2d block. The fact thatX,, is quasi-periodic (1) _01 8 8 _01 (1) _01 (1)
is established by Lemma 3 together with the remark that theH; = 0 0 0 -1 Hy = 0o 1 0 1
input—output stable linear system = —X + U(t) will have 0 0 1 0 10 -1 0

a unique quasi-periodic solution for each quasi-periddidf

x(0) is a cyclic vector for2 then none of the blocks can have_et E be the positive multiples aff,. Because the elements of

a zero initial condition vector, necessary for the application & are only of rank two, we can limif2 to one pair of distict
Theorem 1. Thus there exists stable solutions ) with the eigenvalues. Le2 = wH;. Theorem 3 asserts that there is only
given properties defining a quasi-periodic solution. If the eigem-one parameter family afs satisfyingzz” Q+ Q2T +E =0
values of(2 are rational multiples of a single imaginary numbeand that there is a periodic solution of the feedback equations.
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The corresponding one-parameter family of periodic solutionsintroducep; = In(a? + b?) and observe that; andc; satisfy

IS
pi =20(e; — ¢;)
cos(wt + 6) w
1| sin(wt+46 ) .
= — i =—ac;+ |1+ k Pi el
x(t) o | cos(wt + 0) ¢ ac ;e wie
sin(wt + 0)

. ) The first equation implieg; + ap; = —5(é + ac;) + 2a0e;
so thatr; andx3 are necessarily synchronized. and using the second to eliminate we get
As might be expected, there is an adjustable frequency ver-

sion of Theorem 3 that stands in relationship to Theorem 3 as 1
Theorem 2 stands to Theorem 1. In the theorem statement we  j; + ap; +20w; | 1 + k Z efi | e = 2afe;.
use’ to denote the Moore—Penrose inverse. j=1

Theorem 4:Suppose that:(¢),u(t) € R™ and X(¢) €

Skew(m) are related by Dividing by w; and then summing ovérwe see that in equilib-

rium

i(t) = u(t)  X(t) = a(t)u” (1) - u(t)z? (1) - aX (1) 3 3 3
with @ > 0. LetH be a Cartan subalgebra $few(m) and let
E be ad-dimensional basic cone if. Then there exist® € H

having2d distinct nonzero eigenvalues such that for gng >  Solving this quadratic equation for the sum implies that in equi-
0 and anyE € E, the control law librium

u=s(x)Qr+ Qru(E — X))z U=-aX

with s(z) = (1 + kaTz), defines a closed-loop system which
admits ad-parameter family of quasi-periodic solutions,( Having solved for the sum, the individuaj can be determined

Xp)i as
d m -t
:I?p(t) _ ert:EO Xp(t) =E+ EertAe—Qot A= —AT i — ae; 14 ki:epi
. Wi =1
with
11 and, thus
Qo = <§ + 5 1+ dak tI‘(Qi‘E)> Q =
pi — .
andme(o) (zord Qo + Qozord) + E = 0. Moreover Lrk ; R R i
1) each such solution stable;
2) limr_oo(1/T) [ X,(t)dt = E; However
3) each such solution is periodic if the eigenvalueS a@re m
rational multiples of a single numbety,. tr(Q7'E) = Z S
Proof: Note that becaude and(2, are proportionak, € =1 Wi

H. The closed-loop equations of motion are Notice that if the eigenvalues 6fare unrepeated and is even,

& = 5(2)Q + BQrn(E — X)a then( is necessarily i_nver_tible(,)T = 07!, and thus we have

. T T the expression fofl, given in the theorem statement.
X == s(a)(va” Q + Qaa™) The fact that the frequency adjustment term couples all the
— B [zz", Qru(E — X)] — aX. second-order oscillators together complicates the analysis. In
order to prove local stability of this equilibrium solution, we lin-
earize the equation fgrabout the equilibrium solutiofp, p) =
p(l(é.dﬁ). This gives a set of coupled equations of the form

Again, in view of Lemma 1, we may as well assume that both
and(? are in block diagonal form. In view of the propertiesef
we see that the equations for the diagonal blocks are decou

from the off-diagonal terms but because of #{e) term, the 01 01 2e1 + q1 q2 Gm
diagonal blocks are coupled to each other. Initially, we considgro: i 2 i a1 2e2+q2 ... qz
the case where: is even. The equations for the diagonal blocks . . . e e e e .
take the form om b Q1 q2 s 2em +qm
i [all _ [[3(61- —c¢) —s(T)w; } [ai} g;
dt | b; s(x)wi ﬂ(ez — Ci) b; X =0

¢ =1+ kaTa)w (%‘2 + bf) - ac;. om
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whereq; = 2w;kePi. Abbreviate the coefficient o as K We will say thatg andh arematchedf the aforementioned
and observe that we can exprdssas K = FQ whereQ = relationship holds. The condition for matching can be written
diag(2q1/e1 +1,2q2/e2 + 1,...,2¢m,/2/2+ 1 and more explicitly in terms of. as
Tt 1 1 h(x):ﬁ g(w):¢(H($))
1 24 1 dx h(z)
F = q2 > 0.
where) is a monotone function such that H(z))/h(z) is
1 1 R everywhere defined.
N Remark 3: Let h(z) = =P with p an odd positive integer so
Writing that H(z) = 2P*1/(p + 1). Lety(y) = a(p + 1)y so that
1 g(z) = ax For large values gp the corresponding oscillations
FQ = \/(_3 (\/GF\/Q> \/@ will approach a square in the same sense that the level curves

of v(zy1,z9) = 22" + 251" approach a square asbecomes
we see that’Q) is S|m|lar to a positive—definite matrix. If we large. On the other hand asapproaches one, the level sur-
definey asy = vQ 'z thenyj + ¢ + Fy = 0 with F positive faces approach a diamond ahdpproaches the signum func-
definite. Clearly, the null solution of this equation is asymptotion, sgn (). Finally, we consider an example withandg dis-
ically stable and so the equation f&must be as well. Again, continuous. Leh(x) = sgn(z)el®! so thatH (z) = el*l — 1. If
whereas the equations fprimply asymptotically stability, the we let)(H) = H + 1 theng(z) = sgn(x).
equations for: imply only neutral stability because of the pres- Building on these ideas, we now turn to the higher dimen-
ence of relative phases. sional analogs. If is a vector and ify is a map of the real line

into itself, we adopt the notation

VI. NONSINUSOIDAL PATTERNS )
g(w1)

Up until this point the explicit solutions we have developed g(z2)
have involved sinusoidal patterns. The feedback control laws go(@) =
used in Section IV results in a sinusoidal oscillation with area 9(xm)
being generated at a constant rate. The constant rate gener
property is of importance because it is this property that mak
it possible for there to be a st.ead_y -state solution mthX P—u X = go(@)u? — ug? (z) + U.

constant. However, the examination of more detailed models

often reveal considerations that make pure sinusoids less demisther than working with the energy functigm/2)||z||> +
able than other wave shapes. There are other oscillatory pattgmyst)|| X || as before, let

having the same key property of sweeping out “equal area in

|der

equal time.” v(z, X) = ZH(HJi) + l||X||2
Example 3: Consider the following modified version of the 4

system treated in Theorem 1: with H being a nonnegative function that vanishes only when

_ ' _ 2 = 0. Leth be the derivative off . Observe that along solutions

Ty =uy Fa=uy @3 =g(r1)us — g(x2)us +us of the g-modified system
with ¢ such thatzg(z) > 0. consider a feedback control law of Z u; + uT X gy()
the formu; = —h(z2); us = h(xy), with h being such that da?,
h(x)z > 0. If the equations _ _ 1

= (hu(w) = Xgoyu) + 5 (X, U)
Zi?l = — }L(:EQ)

the corresponding definition gfsuch that the system is lossless
Ty =h(z1) is
i3 = — g(z1)h(z1) + g(z2)h(22) — axs
y=go(z) — Xguo(z) Y =X
are to admit a solution witl3 constant, then along trajectories,

of #1 = —h(ws) andis = h(z1), the quantltyq(:Ll) (1) + Settingu equal toQ2y andU = —a X then gives
g(x2)h(x2) must be constant. If (x) = [ h(p)dp, thenitis & = Qhy(2) — QX go ()

easy to verify that the function P (g”(:v)hf(:v)(l +Qh, (J;)gUT(x)) WX

v(z1,w2) = H(z1) + H(z2) Theorem 5: Let a and3 be positive constants. Lét and E
. _ ) _ be elements ofkew(m) such thafF,Q] = 0 and EQ > 0.
is constant along solutions 6ff = —wh(z2); #2 = wh(z1). Denote the set of all matrices commuting Wity H. Suppose

Thus, if g(z1)h(z1) + g(z2)h(z2) is constant on the constantinat @, X) and @, U) are related by
value contours of we will have a system that admits solutions

with 23 constant. i=u X =g,(x)u” —ugl(z) - aX.
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Let h = dH/dx be such that XS\

g(@)h(z) = (H(x))
for some functiony. If the feedback control law
u= Qh(z) + Qru(E — X)g(z)

defines a closed-loop system such that the resulting differen:
tial equations have piecewise differentiable solutions, then they
admit a stable periodic solution on whiefy(E — X) = 0.

Proof: The equations of motion for the closed-loop X¢
system are \

t
& =Qh(z) + Qrg(E — X)g(z) v v 7 v 7 7
X == go(@)hy ()2 = Qhy (2)g; (x)
— Bry ([gv (x)g?;(a:), QX — E)]) —aX. Fig. 4. Simulation of the biped showing the variabtgsand.z .

As in the proof of Theorem 3, we observe that the bracket terfhate of the left foot. When;,

! is positive, the right foot is not
is zero. LetX,, = my(X) and observe that

in contact with the ground and thus has no role in maintaining
i = Qhy(z) + AUX — E)go(z) forward motion but that when it is zero it does._SimiIar remarks
Fa AT (D — Qb ()T X apply tox ;. We letz, denote the horizontal position of the right
w == (go(2)hy (2)Q = Qho(2)g, (v)) — X foot, measured relative to the center of mass of the body and let

This is just a set of decoup|ed equations of the type treated?in denote the horizontal pOSition of the left foot relative to the

the previous example. center of mass of the body. Now, le represent the horizontal
velocity of the center of mass of the body, relative to a fixed
VII. M ULTIPHASE SOLUTIONS point. The idea is that when the right foot is touching the ground

o . x1 = 0) then the advance of; is coupled to that ofi», but not
Here, we indicate briefly how one can get a crude model f kherwise. Similar remarks apply 16 andu,. Clearly,z5 can

biped wglking byjoin_g togetherthe methods of synchronizat.icmogreSS at a uniform rate only if the ( z») subsystem isr
and oscillation shaping. We begin with an example illustrating jians out of phase with the{, =) system. We add an addi-

a special form of oscillation shaping involving the signum funGyo ) state variable to the system, one that measures the phase
tion. Examples involving discontinuous functions offer a way Qéngle between, and; Usingis = s — a3u,. If in steady

thinking about what is sometimes studied under the ngiere- staterg = 0, then ther; andz; are completely out of phase as

wise holonomic systenis4]. We will build on this for the main desired. Consider then, an augmented set of equations
example.

Example 4: Let ¢ be a positive constant. We consider spe-  7; = — wsgn(z2) + (e — z5)sgn(z1) + zesgn(zz)
cializing the results of the previous section by letting:) =

To =wsgn(xz1) + (e — x5)sgn(zs) — resgn(x
sgn(z)el*l and g(x) = sgn(z). If = is two dimensional, this ? gulz1) + Jsgn(ra) — zesgn(m)

gives rise to &3 = —wsgn(za) + (€ — z5)sgn(z3) — zesgn(za)
(o] T4 =wsgn(z3) + (e — x5)sgn(r4) + vesgn(z3)
f1 = —sgn(@2)e™ + (o — as)sen(a) 5 = (L4 sga(e2)) s + (L + sgu(as)) g — 25
Ta :sgn(zl)e|ﬂ~"1\ + (a — z3)sgn(z2) G = iy — mad — oz

e — T |z2 ]
T3 =e +e — I3. i
8 s with w = wo + k(|z1] + |z2| + |z3] + |24])

It is not difficult to see that for eacht;(0),z2(0)) # (0,0) The effect of thers term is to generate a synchronizing term

there exists a piecewise smooth classical solution to these edhat serves to lock the phase betwegnand —z3. A typical

tions and ag — oo solutions approach a periodic solutiortransient response is shown in Fig. 4.

with 21 andz, lying on a level set of the function(z;, z2) =

eleil 4 elezl, VIIl. COMPARISONWITH OPEN-L OOPAPPROXIMATE INVERSES
Example 5: A simple and purely kinematic model for two- The reachability results of [7] show that by one measure, si-

!egged Walklng Serves fo illustrate a number_ of.the' Conce%tlsjsoids are the most efficient waveforms for altering Xxhdike
introduced in this paper. Suppose thats a point inR° and

that the equations of motion farare terms in our basic system. Their use efficiently generates the
necessary area terms. The work of Liu and Sussmann [15] es-
ip=u; 1<i<A4 tablishes a very general result on tracking with nonholonomic
system. One might say they show how the generation of area
by sinusoids can be separated from the generation of position.
The interpretation is that; represents the vertical coordinate oft was suggested in [11] that the idea of an approximate inverse
one foot, say the right foot, ang, represents the vertical coor-system could be useful in studying stabilization, approximate

5 = (1 —sgn(z1)) uz + (1 + sgn(zs)) ug.
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a > u . o— Us X
: sin(ot+0)
S PH— sI(mt+
s P sin(@:+9) : (}@3 F@ﬁ
1 \ / S & sin(wt-¢)
¢ @ b e H— 1—' s y
@

X

v Fig. 6. Open-loop approximate inverse cascade as an alternative to the system
of Fig. 2.

»@)T_ sin(wt-¢)

b

Fig. 5. Block diagram of an approximate inverse for the basic system. . . .
cascade, shown in Fig. 6, can be contrasted with the feedback

i L Krish ad al. 1161 and M . formofinversion shownin Fig. 2. The important distinction here
inearization, etc. Krishnaprasad al. [16] an organsen IN ;¢ 1he difference between situations in which the oscillations are

[17] have subsequently extended the inverse system idea IBe"iﬁerated internally verses those using the insertion of a peri-

numbe_r of d|rec_t|ons. . . . . odjic signal from some other source.
The idea behind the approximate inverse is to provide an ad-

justable level of modulation on the input signals so as to steer

the state variables of the system IX. CONCLUSION

We have argued that the appearance of time-periodic phe-

— 21 (t) + uy(t) nomena in bqth man made and biological syste_ms can oft_en be
traced to nonintegrable effects of the type that arises in nonlinear
— w2(t) + ua(t) controllability. This point of view unifies many diverse phe-
—z3(t) + z1(t)ua(t) — z2(t)ui(?) nomena found in engineering and nature. We investigate here

the analog of the regulator problem in this context, not from the
along a desired path. Suppose we have low frequency inpptsnt of view of optimal control, but rather from a more classical
a,b,c and we want to find a mapping : (a,b,¢) — (u,v) pointofview. We define stabilizing control laws for large classes
such that ¢, v) causes the system to track these functions of systems, drawing a distinction between the cases where regu-
the sense that the vector ¢ a, vy — b, z — ¢) is small. The lation involves both frequency and amplitude adjustment and the
plan for constructing the approximate inverse is to think.of case where amplitude adjustment is used alone. The treatment
andv as being the sum of two parts, a part that uses the lowgirthe higher dimensional cases involves analysis on the space
frequency portion of the power spectrum and can be taken to®feskew-symmetric matrices. In particular, Theorem 3, which
u = a,v = b and a second part, occupying a frequency bagldresses a rather general class of problems, makes use of the
well above that which is needed farandb which will drive idea of a maximal commuting subalgebra and succeeds in estab-
z3. The latter will be shaped by a combination of amplitude arl$hing a result on controlling the phases between synchronous
phase modulation in accordance with the functienab—ba). Modes of oscillation. We also discuss nonsinusoidal oscillations
We may think of this last expression as being,“)-corrected” and make use of them in a model of biped locomotion.
in that we have subtracted off the influence of the area defined
by the desired path af andy. ACKNOWLEDGMENT
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