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Pattern Generation and the Control
of Nonlinear Systems

Roger W. Brockett, Fellow, IEEE

Abstract—Many important engineering systems accomplish
their purpose using cyclic processes whose characteristics are
under feedback control. Examples involving thermodynamic
cycles and electromechanical energy conversion processes are
particularly noteworthy. Likewise, cyclic processes are prevalent
in nature and the idea of a pattern generator is widely used to
rationalize mechanisms used for orchestrating movements such
as those involved in locomotion and respiration. In this paper,
we develop a linkage between the use of cyclic processes and the
control of nonholonomic systems, emphasizing the problem of
achieving stable regulation. The discussion brings to the fore char-
acteristic phenomena that distinguish the regulation problem for
such strongly nonlinear systems from the more commonly studied
linear feedback regulators. Finally, we compare this approach to
controlling nonholonomic systems to another approach based on
the idea of an open-loop approximate inverse as discussed in the
literature.

Index Terms—Inverse systems, Lie brackets, nonlinear control,
pattern generation, regulation, stabilization.

I. INTRODUCTION

I N THIS PAPER, the word “pattern” is used to denote a col-
lection of periodic, or nearly periodic, vector valued func-

tions of time. The choice of words is inspired by language used
in neuroscience and biological motor control where approxi-
mate periodicity is common and true periodicity rare. In fact, for
the applications we have in mind it is only the qualitative prop-
erties of the functions that matter; successive cycles need not
have exactly the same waveform and/or the same period as long
as they possess the appropriate general shape. We will argue
that the need for, and use of, patterns is closely related to non-
linear controllability and that the operation of important classes
of such systems is entirely dependent on nonlinear effects. In
the literature this effect is associated with phenomena such as
Berry’s phase [1], rectification and area rules, [2], etc. We adopt
a point of view that unifies and explains these problems in terms
of concepts from geometric nonlinear control.

The main points to be developed are as follows.

1) In those applications where the successful operation of a
system depends on cyclic motion, there is often an un-
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derlying strongly nonlinear subsystem whose controlla-
bility depends on the nonintegrability of a family of vector
fields.

2) To obtain suitable tracking and regulation properties with
such systems, it is usually necessary to generate and shape
patterns, giving them the correct amplitudes, frequencies,
and relative phases. Although the basic shapes can be gen-
erated in an open-loop way, feedback is essential to ac-
commodate changing loads.

3) When attempting to solve feedback regulation prob-
lems in which nonintegrability is important, it is often
insightful to identify an appropriate output, relative to
which the system is lossless. Here, this means focusing
attention on input–output systems taking the form of a
nonlinear integrator

Such systems are lossless relative to the internal energy
function .

Common control problems ranging from the control of in-
ternal combustion engines to the regulation of respiration in
mammals are profoundly nonlinear. In many cases of interest,
one can linearize about a steady state, usually a periodically
varying solution, and get some insight into the dynamics. How-
ever, this sort of analysis provides no explanation as to why
the system was designed to use periodic motion in the first
place. For example, it has long been recognized that provision
for pattern generation is an important part of the neural cir-
cuitry used to generate and control various animal movements
such as walking, breathing, blood circulation, peristalsis, etc.,
yet linear theory is silent about the need for this mode of con-
trol. Parametric amplifiers and switched capacitor filters provide
examples from electrical engineering in which pattern genera-
tion is essential. Applications of particular technological signifi-
cance include rotating electrical machinery [3] and the use of or-
chestrated periodic switching to transform direct current at one
voltage to direct current at a different voltage [4]. In the domain
of mechanics, vibratory motors [2] provide a class of highly
nonlinear examples. Recently, interest has been focused on this
area because of robotic applications involving wheeled vehi-
cles and object manipulation, and because of spacecraft control
problems involving nonholonomic effects. Specific problems
discussed in the literature include the control of unicycles, par-
allel parking, control of autonomous vehicles, and the steering
of tractor-trailer systems.

A number of different points of view on pattern generation
are to be found in the literature. Prominent among these are the
physical point of viewplacing emphasis on the role of energy,
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momentum, etc. and thecybernetic point of viewplacing em-
phasis on the flow of signals necessary for stabilization, motion
planning, etc. The first of these is exemplified by the equations
of an electrical machine, relating the amplitude of the field cur-
rent and the angular velocity of the shaft and the equations of
motion for a satellite being controlled by momentum wheels.
The second point of view is more prominent in neuroscience
where pattern generators are often studied without considering
the dynamics of the elements being controlled. However, even
in this literature important experiments, such as those of [5],
show a strong link between physics and pattern generation. The
development here is closely tied to the physical point of view.

II. EXAMPLES

There is a large literature on driftless, multi-input systems
of the form . Our starting point is the related
input–output system

A basic property of such systems is that they are lossless in the
sense that

and, thus, feedback controllers realized by connectingto
via a passive system will result in a closed-loop system having
bounded trajectories. For the problems considered here, the
structure of suggests decomposing the input space into two
parts so that we may write

If we apply partial feedback in the form , we get
a system with a drift term

which is still passive in the to channel. In the situations to
be discussed here, the systems are not only controllable using
( , ) but are even controllable using alone. The problem
to be addressed is that of finding a control law forwhich will
maintain the value of at some desired value with being
periodic with some specified average value.

A. Basic Model

The most elementary, and in a limited sense canonical, model
for the phenomena to be studied here has the input-to-state de-
scription

We associate outputs with this system according to the rule
, i.e.,

Fig. 1. Block diagram for the basic input–output system form = 2.

(See Fig. 1). As remarked before, this system is lossless in the
sense that . If we consider as
defining a skew-symmetric matrix via

then these equations can be written more succinctly, and in a
form that generalizes to any number of dimensions

the control system

the output map

This input–output system, having input pair (, ) and output
pair ( , ), is passive relative to the internal energy function

in the sense that

The control equations involving just (, , ) were appar-
ently first singled out for study in [6] and [7]. Prior work jus-
tifies the point of view that this system is to first bracket con-
trollable systems what linear systems are to linearly controllable
systems; see [7, Th. 1]. It is the prototype for first bracket con-
trollable systems. The input–output system appearing here does
not seem to have been studied before.

Rather than appearing in this elemental form, it often hap-
pens that the basic model is embedded in a larger system that
incorporates additional feedback paths and/or complicating dy-
namical effects. A simple example of how this system might be
altered by feedback is to let equal so as to get

B. Rotating Electrical Machinery

The conversion of energy associated with the flow of cur-
rent in a wire, into energy associated with the rotation of a shaft
has been identified with nonholonomic systems since [3]. The
Lorentz force from electromagnetic theory occupies
a central role. If one works in a coordinate frame that rotates
with the rotor of an electrical machine then in terms of the com-
ponents of the magnetic field,and and the current through
the armature coils, , , the system satisfies

where characterizes the electrical resistance in the coils,
is the angular rotation rate andrepresents a coefficient of vis-
cous friction. Obviously units have been normalized. The motor
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equations are obtained from the basic system by using feedback
to replace by , and by .

C. Internal Combustion Engines

The ability of an internal combustion engine to maintain an
angular velocity in the presence of an opposing torque depends
on a cyclic process of the type we are discussing. Letdenote
the angular velocity of the crankshaft. Letdenote the pressure
of the gas acting on the piston and letdenote the volume of
this gas in the cylinder. In this case, the variableis a periodic
function of the crank shaft angle. Say . Thus, the
equations must be augmented with an equation for. We assume
that the pressure is directly controllable (through the supply of
fuel and air) and call this control . We further assume that the
load can be modeled by viscous friction. The equations can be
written as

Although this is less symmetrical than the rotating electrical
machine example, the qualitative properties are essentially the
same.

D. Biological Phenomena

In 1911, Brown [8] published a paper in theProceedings of
the Royal Societywith the wonderful title, “Intrinsic factors in
the Act of Progression of the Mammal.” The substance of his
paper has to do with patterns associated with locomotion and
this topic has continued to be studied vigorously to this day.
Of particular interest in this setting is the fact that both the fre-
quency and the amplitude of the oscillation is used in regula-
tion. For example, it is a familiar fact that as one walks faster
both the length of the stride and the frequency of the steps in-
crease. Likewise, when faced with the need for a higher respi-
ratory rate, humans both increase the volume of air processed
per breath and the number of breaths per minute. Data on the
locomotion problem is cited in [9] and breathing is discussed,
for example, in [10].

III. GENERALITIES ON FIRST BRACKET

CONTROLLABLE SYSTEMS

Let be a -dimensional and let be -dimensional and
consider

As is well known, when the vectors are differentiable a suit-
able number of times, the controllability of such systems is best
studied by thinking of the as defining vector fields and fo-
cusing attention on the way in which the Lie brackets

enlarge the vector space spanned by vectors .
We limit our discussion to the situation in which thevectors

together with the vectors generated by taking

their first brackets span
. Such systems will be calledfirst-bracket controllable. At a

generic point , will have a range space that is at most
-dimensional. The number of additional linearly independent

directions coming from the bracket terms can not exceed the
number of linearly independent brackets which is .
Thus, we see that if the system is first-bracket controllable

.
If the system is controllable in a neighborhood of then

must be nonzero. Using linear transformations
and , we can arrange matters so that

If takes on values in and in and if then
generically the identity matrix will be by so that

Assuming that the generic condition is satisfied and that the
appropriate changes of coordinates have been used, we can ex-
pand the in a Taylor series about . For the first coordi-
nates

where is the th standard basis element andis .
For the remaining coordinates

With some difficulty one can show (see the proof of [7, Th.
1]) that through a redefinition of the variables one can arrange
matters so that the first rows of the are all zero and the
remaining rows are such that we have

with the trilinear form being skew-symmetric in the last
two indexes. From this, we see that if we neglect the higher order
terms then locally the system can be identified with a subsystem
of

obtained from it by (possibly) ignoring some of the equations
defining the entries of .

The use of temporal patterns to achieve a desired form of
behavior for such systems can often be traced to the following
situation. Consider a system

with and . It is clear that we can use
the controls to adjust and at will. However, it is usually
possible to do more by means of an indirect procedure. If we
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use and to take and around in a closed loop then
typically there will be some change in the remaining variables.
In fact, the procedure for computing this change is by now well
known. If we let and then

does not remain at the origin but is displaced

One can get a good intuition for the proof by replacing the
trigonometric functions by the simpler functions,

and and doing a careful
(tedious) calculation, using repeatedly the fact that to second
order in the solution is

It is worth repeating that even though the average value of
and is zero, the pattern of variation about 0 gives rise to a
definite displacement as revealed by a second order calculation.

This result can be recast to avoid the specific role played by
trigonometric functions. Notice that if the integral over [0, 1]
of both and is zero, then the locus of points traced out for

generates a closed curve in and this closed curve defines
some area. We consider this area to have a sign, positive if
the curve in ( , )-space is traversed in the counterclock-
wise direction. With this understanding we can assert that

is approximately [ , ] evaluated at
times the area defined by the closed curve given by the graph of
( , ). When and are periodic, the curve in is traced
out repeatedly. If it is circular, the average of the time derivative
of is the rate at which ( , ) sweeps out area multiplied by
the bracket evaluated at 0. Many examples of “area rules” ap-
pear in engineering, physics and mathematics; see [1] and [2].
We observe that the basic properties of the nonholonomic inte-
grator are qualitatively unchanged if we replace the equation for

with as long as the span-
ning condition holds.

The main point of this paper is to show how the oscillations
needed to obtain the area can be generated spontaneously and
in a stable way by feedback control laws of the general form

where and .

IV. OSCILLATIONS FORSET POINT CONTROL

We now begin to address the main questions of interest,
building toward a series of results on set point regulation using
temporal patterns. The results to be derived assert the existence
of feedback control laws providing stable regulation of a
limit cycle for first bracket controllable systems. This section
considers the problem of establishing and regulating patterns
in ( , )-space suitable for maintaining a steady nonzero

value for in the face of a “load.” More precisely, we want to
maintain at some specified value for the system

This is typical in a situation where is, for example, a flow
rate which is to be maintained at some specific positive value
in opposition to a resistance represented by the term. The
problem is that of finding and
such that the steady state solution of this system of equations
is a stable oscillation in the ( , ) variables maintaining
at the constant value. Observe that if , and are positive
real numbers, then the choices

will cause the ( , ) variables to traverse a circle and their
contribution to the right-hand side of the third equation will be
such as to offset the effect of the term. The terms

and serve to adjust the amplitude of the
oscillation unless the amplitude of (, ) is exactly what is
needed to make . The following theorem addresses the
question of stability.

Theorem 1: If and are related by

with , then there exists such that for every positive
and every , the control law

defines a closed-loop system that admits a one-parameter family
of periodic solutions

Each such periodic solution is stable and all solutions starting
off the line approach the circle defined by

at an exponential rate.
Proof: Let be a positive number. The closed-loop equa-

tions of motion can be written as

Introduce and observe that and satisfy

Eliminating gives

This equation has a single equilibrium point, . It
corresponds to . The derivative of
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Fig. 2. Block diagram of the feedback controller of Theorem 1.

along solutions of the differential equation is
and thus the equilibrium solution of the equation for

is asymptotically stable. Observe that and so
as approaches infinity (, ) approaches ( , ) from
all initial values [ , ]. However, does
not correspond to a finite value of and, thus, it is excluded
from this analysis; see Remark 1. This concludes the proof.

A block diagram for this system is shown in Fig. 2. Lin-
earizing the equation for about the equilibrium solution

gives

The eigenvalues of this second-order equation are

The system is critically damped when .
Remark 1: If the Lyapunov function used in this proof is ex-

pressed in terms of instead of , it takes the form

which takes on its minimum value at , .
The derivative is . If , this function
is well defined even for . Thus, we observe that the
null solution of the system defined in the theorem statement is
asymptotically stable in the large for all . This slight ex-
tension of Theorem 1 will play a role in the later developments.

As mentioned before, in some applications the feedback con-
trol law is selected so that an increase in the load causes an in-
crease in both the amplitude and the frequency of the oscilla-
tion. The following generalization of Theorem 1 incorporates
this effect. It makes use of the control laws

and
.

Theorem 2: If and are related by

with , then there exists such that for any ,
and any the control law

with defines a closed-loop system that
admits a one-parameter family of periodic solutions of the form

with

and

Each such periodic solution is stable and all solutions starting
off the line approach the circle defined by

at an exponential
rate.

Proof: Let be any positive number. The closed-loop
equations of motion are

As before, introduce and observe that

In this case, the elimination of yields the equation

The equation is quadratic in the unknown
. Solving it for a positive root, we see that the equilibrium

condition is

corresponding to . The derivative of the Lyapunov func-
tion

along solutions of this equation is and thus the equi-
librium solution is asymptotically stable. Linearizing
the equation for about the equilibrium point gives
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Fig. 3. Sample transient responses ofx with k = 0 (no frequency
adjustment) andk = 1 (frequency adjustment). The system with the frequency
adjustment term produces the faster response.

The Taylor series expansion about of the the coefficient
of is

If, for , the roots are complex then the effect of a small in-
crease in is to increase the resonant frequency, thus increasing
the speed of response as shown in Fig. 3.

Remark 2: The particular choice of the frequency adjustment
term in Theorem 2 is not significant. Work in the biolog-
ical literature suggests that a function that grows linearly with
amplitude, such as might better fit ex-
perimental data. The use of in place of

results in a cubic equation for but
does not change the qualitative properties of our analysis.

V. HIGHER DIMENSIONAL SYSTEMS

Although the models of the previous section provide useful
insight about how a system operates, more detailed models con-
taining additional degrees of freedom, e.g., those needed to de-
scribe both the piston and the valve motion for an internal com-
bustion engine, may be needed. For this reason, we now con-
sider the extension of the previous results to higher dimensional
problems. This involves significant new aspects becausenow
typically takes on values in a space whose dimension is higher
than the dimension of and it is only possible to achieve per-
fect regulation on a lower dimensional subspace. As it happens,
it is possible to achieve perfect regulation in certain subspaces
while ensuring that the average value is zero on a complemen-
tary subspace. The model will be the -dimen-
sional system introduced before

with .
Notation: Let denote the vector space of real,
by skew-symmetric matrices. We regard this as an inner

product space with . If is a subspace

of then denotes the orthogonal prjection which
projects onto . If is even, has a family
of -dimensional subspaces with the property that any
two elements in one of these subspaces commute. There are
no subspaces of dimension greater than that have this
property. One such maximal commuting set is given by

with being

If is odd the maximal commuting subalgebra is of dimen-
sion and the given choice of must be modified by
adding a one dimension 0 block at the lower right. This is one
of many such facts playing a role in the classification of simple
Lie algebras. Reference [12] is a readable account and [13] de-
scribes a number of applications of these ideas in control. In the
literature on Lie algebras, maximal commuting subalgebras are
calledCartan subalgebras. Cartan subalgebras are not unique
because if is a cartan subalgebra of and if is an
orthogonal matrix, then is also a Cartan subalgebra. In
fact, all Cartan subalgebras of can be generated from
the particular block diagonal one given above using this rela-
tionship. Adopting this language, we may say that Theorem 3
gives conditions under which it is possible to achieve perfect
regulation of on a Cartan subalgebra while forcingto have
a zero average value on its orthogonal complement.

Finally, we introduce one nonstandard definition isolating an
idea that plays an important role here. By a-dimensionalbasic
conein we understand any subset ofconsisting of all ele-
ments expressible as

with the being linearly independent and of rank two.
Notice that the definition requires that thebe strictly positive.

We will say that a function taking on values in is
quasi-periodicif there exists a by constant matrix , a real

by matrix and a -dimensional vector such that
. Such functions will be periodic if there exists

a number such that all the eigenvalues ofare of the form
with the being rational numbers.

Theorem 3: Suppose that , and
are related by

with . Let be a Cartan subalgebra of and let
be a -dimensional basic cone in. Then, there exists

having distinct nonzero eigenvalues such that for any
and any , the control law
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defines a closed-loop system which admits quasi-periodic solu-
tions taking the form

with . These solutions take the form

with a solution of . Moreover

1) each such solution is stable and if
, then the

corresponding trajectory approaches one such solution;
2) ;
3) each such solution is periodic if the eigenvalues ofare

rational multiples of a single number, .
Before proving the theorem, we give a few preliminary re-

sults.
Lemma 1: If ( , ) satisfies

and if is orthogonal, then ( , ) satisfies
the same equation with replaced by , replaced by

and replaced by
Proof: This can be verified directly by differentiating

and . The only point that is not immediate is to check that
, but this follows from the

definitions.
Lemma 2: If and are elements of then there

exists unique skew-symmetric matricesand such that
with and orthogonal to every matrix

commuting with .
Proof: The identity shows

that the range of the operator is the orthogonal
complement of its null space.

Lemma 3: Let denote the set of all matrices commuting
with . Suppose . Then

where is quasi-periodic.
Proof: Express as in Lemma 2, . Now,

observe that

Thus

Clearly, the last two terms are quasi-periodic.

Lemma 4: Let be a Cartan subalgebra of and let
be a basic cone of dimensionin . Then, there exists

such that for each in we can find satisfying

Moreover, if is such that there exists someproviding this
representation then there is a -parameter family of ’s
satisfying this equation whereis the dimension of the kernel
of .

Proof: We begin by showing that the claim is true if is
2 2. In this case, and the projection has no
effect. We only need to show that there exists ansuch that it
is possible to solve

for each in the basic cone . There are essentially two pos-
sibilities. Either consists of the set of two-by-two skew-sym-
metric matrices whose 12-element is positive or else it consists
of the set of 2 2 skew-symmetric matrices whose 12-element
is negative. Let be any skew-symmetric matrix that is a nega-
tive multiple of an . Then, is negative and there is
a one-parameter family of solutions of

This establishes the lemma in the case that . Now con-
sider the general case. As noted above, there exists an orthog-
onal transformation that puts in block diagonal form. Thus,
the basic cone has a block diagonal set of generators. We can
order the basis of such that the generators ofoccur in the
upper left -by- block of . We take the upper-left

-by- block of to be a negative multiple of some element
of and let the remaining elements be arbitrary subject to the
constraint . To find , we need only work one block at a
time, consistent with the solution found in the two-by-two case.
Of course, this will result in being nonzero off the
diagonal but the projection will annihilate the off-diagonal
elements and result in a solution of .
If is invertable this solution is unique to within choices previ-
ously described. However if has a -dimensional kernel then

is arbitrary in the kernel, leading to the formula in the lemma.
Proof of Theorem 3:Using freely the commutivity im-

plied by the hypothesis we can write the closed-loop equations
of motion as

Assuming is even, we can find an orthogonal matrixsuch
that after the change of coordinates ; ,
takes the form
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as discussed in the definition of the Cartan subalgebra and in
Lemma 1. We can order the basis such that whenis expressed
in the same coordinate system it is nonzero only in the upper left

block.
These equations have an important property that can be ex-

pressed as

To see this, notice that in a coordinate system in whichand
are block diagonal, is block diagonal with each
two-by-two block being a multiple of the identity. Thus, if we
let then

The subsystem consisting of the upperequations can be ar-
ranged as a set of decoupled equations, each 22 block taking
the form

As in the proof of Theorem 1, introduce new variables
and observe that and satisfy

Differentiating the first equation and using the second to elim-
inate , we get

The properties claimed for and now follow from the
analysis done in the proof of Theorem 1. (What is calledthere
is now to be identified with .) Note that the equations inare
asymptotically stable but the equations inare only neutrally
stable because of the neutral stability of the relative phases.

To complete the proof in the case is even we need to use
Lemma 3 to establish the appropriate properties for the projec-
tion of onto the complement of . If the eigenvalues of are
unrepeated then and lemma three applies directly.
On the other hand, if then the eigenvalues may be re-
peated. As noted in the proof of Lemma 4, if the eigenvalues
of are all nonzero the solutions of

will be zero except for the first entries. This im-
plies that will be zero outside the upper left -by- block
and Lemma three implies that has the desired properties
within the -by- block. The fact that is quasi-periodic
is established by Lemma 3 together with the remark that the
input–output stable linear system will have
a unique quasi-periodic solution for each quasi-periodic. If

is a cyclic vector for then none of the blocks can have
a zero initial condition vector, necessary for the application of
Theorem 1. Thus there exists stable solutions (, ) with the
given properties defining a quasi-periodic solution. If the eigen-
values of are rational multiples of a single imaginary number

then is periodic and hence the solution is periodic and not
just quasi-periodic.

Finally, if is odd the equations can be arranged as a set
of blocks in the form just discussed but now with a
final equation which necessarily takes the form . The
variable does not enter the other equations forand is neu-
trally stable as required by the theorem statement. It enters the
equation for but because is a constant and multiplies only
functions with average value zero, it does not affect the conclu-
sions reached above.

Example 1: Let be the set of 4 4 block diagonal matrices
and let be the cone consisting of those elements ofthat
have negative entries in the 12-element and the 34-element. Let

be given by

and let be

The theorem asserts that there is a two parameter family of’s
satisfying . The corresponding two
parameter family of solutions can be expressed as

In biological systems, synchronization might relate to main-
taining a particular phase relationship between the action of
muscle groups used for breathing. In an electrical power grid,
synchronization might be necessary to coordinate the frequency
and phase of various generators. Clearly, the maintenance of
correct phase relationships can be of critical importance. Of
course synchronization is only meaningful in cases wherehas
repeated eigenvalues. If part of the goal of the feedback control
system is to synchronize various modes, it is essential that we
choose appropriately. Theorem 3 allows repeated eigenvalues
in only when the cone is of dimension less than .
The following example illustrates the simultaneous regulation
of amplitude and the relative phase of two modes.

Example 2: Let and let be the linear span of the
two commuting matrices

Let be the positive multiples of . Because the elements of
are only of rank two, we can limit to one pair of distict

eigenvalues. Let . Theorem 3 asserts that there is only
a one parameter family of’s satisfying
and that there is a periodic solution of the feedback equations.
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The corresponding one-parameter family of periodic solutions
is

so that and are necessarily synchronized.
As might be expected, there is an adjustable frequency ver-

sion of Theorem 3 that stands in relationship to Theorem 3 as
Theorem 2 stands to Theorem 1. In the theorem statement we
use to denote the Moore–Penrose inverse.

Theorem 4: Suppose that and
are related by

with . Let be a Cartan subalgebra of and let
be a -dimensional basic cone in. Then there exists

having distinct nonzero eigenvalues such that for any
and any , the control law

with , defines a closed-loop system which
admits a -parameter family of quasi-periodic solutions (,

),

with

and . Moreover

1) each such solution stable;
2) ;
3) each such solution is periodic if the eigenvalues ofare

rational multiples of a single number, .
Proof: Note that because and are proportional,

. The closed-loop equations of motion are

Again, in view of Lemma 1, we may as well assume that both
and are in block diagonal form. In view of the properties of
we see that the equations for the diagonal blocks are decoupled
from the off-diagonal terms but because of the term, the
diagonal blocks are coupled to each other. Initially, we consider
the case where is even. The equations for the diagonal blocks
take the form

Introduce and observe that and satisfy

The first equation implies
and using the second to eliminate, we get

Dividing by and then summing over, we see that in equilib-
rium

Solving this quadratic equation for the sum implies that in equi-
librium

Having solved for the sum, the individual can be determined
as

and, thus

However

Notice that if the eigenvalues ofare unrepeated and is even,
then is necessarily invertible, , and thus we have
the expression for given in the theorem statement.

The fact that the frequency adjustment term couples all the
second-order oscillators together complicates the analysis. In
order to prove local stability of this equilibrium solution, we lin-
earize the equation forabout the equilibrium solution

. This gives a set of coupled equations of the form
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where . Abbreviate the coefficient of as
and observe that we can expressas where

and

Writing

we see that is similar to a positive–definite matrix. If we
define as then with positive
definite. Clearly, the null solution of this equation is asymptot-
ically stable and so the equation formust be as well. Again,
whereas the equations forimply asymptotically stability, the
equations for imply only neutral stability because of the pres-
ence of relative phases.

VI. NONSINUSOIDAL PATTERNS

Up until this point the explicit solutions we have developed
have involved sinusoidal patterns. The feedback control laws
used in Section IV results in a sinusoidal oscillation with area
being generated at a constant rate. The constant rate generation
property is of importance because it is this property that makes
it possible for there to be a steady-state solution with
constant. However, the examination of more detailed models
often reveal considerations that make pure sinusoids less desir-
able than other wave shapes. There are other oscillatory patterns
having the same key property of sweeping out “equal area in
equal time.”

Example 3: Consider the following modified version of the
system treated in Theorem 1:

with such that . consider a feedback control law of
the form ; , with being such that

. If the equations

are to admit a solution with constant, then along trajectories
of and , the quantity

must be constant. If , then it is
easy to verify that the function

is constant along solutions of ; .
Thus, if is constant on the constant
value contours of we will have a system that admits solutions
with constant.

We will say that and arematchedif the aforementioned
relationship holds. The condition for matching can be written
more explicitly in terms of as

where is a monotone function such that is
everywhere defined.

Remark 3: Let with an odd positive integer so
that . Let so that

For large values of the corresponding oscillations
will approach a square in the same sense that the level curves
of approach a square asbecomes
large. On the other hand, asapproaches one, the level sur-
faces approach a diamond andapproaches the signum func-
tion, . Finally, we consider an example withand dis-
continuous. Let so that . If
we let then .

Building on these ideas, we now turn to the higher dimen-
sional analogs. If is a vector and if is a map of the real line
into itself, we adopt the notation

Consider

Rather than working with the energy function
as before, let

with being a nonnegative function that vanishes only when
. Let be the derivative of . Observe that along solutions

of the -modified system

the corresponding definition ofsuch that the system is lossless
is

Setting equal to and then gives

Theorem 5: Let and be positive constants. Let and
be elements of such that and .
Denote the set of all matrices commuting withby . Suppose
that ( , ) and ( , ) are related by
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Let be such that

for some function . If the feedback control law

defines a closed-loop system such that the resulting differen-
tial equations have piecewise differentiable solutions, then they
admit a stable periodic solution on which .

Proof: The equations of motion for the closed-loop
system are

As in the proof of Theorem 3, we observe that the bracket term
is zero. Let and observe that

This is just a set of decoupled equations of the type treated in
the previous example.

VII. M ULTIPHASE SOLUTIONS

Here, we indicate briefly how one can get a crude model for
biped walking by joing together the methods of synchronization
and oscillation shaping. We begin with an example illustrating
a special form of oscillation shaping involving the signum func-
tion. Examples involving discontinuous functions offer a way of
thinking about what is sometimes studied under the namepiece-
wise holonomic systems[14]. We will build on this for the main
example.

Example 4: Let be a positive constant. We consider spe-
cializing the results of the previous section by letting

and . If is two dimensional, this
gives rise to

It is not difficult to see that for each
there exists a piecewise smooth classical solution to these equa-
tions and as solutions approach a periodic solution
with and lying on a level set of the function

.
Example 5: A simple and purely kinematic model for two-

legged walking serves to illustrate a number of the concepts
introduced in this paper. Suppose thatis a point in and
that the equations of motion forare

The interpretation is that represents the vertical coordinate of
one foot, say the right foot, and represents the vertical coor-

Fig. 4. Simulation of the biped showing the variablesx andx .

dinate of the left foot. When is positive, the right foot is not
in contact with the ground and thus has no role in maintaining
forward motion but that when it is zero it does. Similar remarks
apply to . We let denote the horizontal position of the right
foot, measured relative to the center of mass of the body and let

denote the horizontal position of the left foot relative to the
center of mass of the body. Now, let represent the horizontal
velocity of the center of mass of the body, relative to a fixed
point. The idea is that when the right foot is touching the ground

then the advance of is coupled to that of , but not
otherwise. Similar remarks apply to and . Clearly, can
progress at a uniform rate only if the (, ) subsystem is
radians out of phase with the (, ) system. We add an addi-
tional state variable to the system, one that measures the phase
angle between and using . If in steady
state , then the and are completely out of phase as
desired. Consider then, an augmented set of equations

with
The effect of the term is to generate a synchronizing term

that serves to lock the phase betweenand . A typical
transient response is shown in Fig. 4.

VIII. C OMPARISONWITH OPEN-LOOPAPPROXIMATEINVERSES

The reachability results of [7] show that by one measure, si-
nusoids are the most efficient waveforms for altering the-like
terms in our basic system. Their use efficiently generates the
necessary area terms. The work of Liu and Sussmann [15] es-
tablishes a very general result on tracking with nonholonomic
system. One might say they show how the generation of area
by sinusoids can be separated from the generation of position.
It was suggested in [11] that the idea of an approximate inverse
system could be useful in studying stabilization, approximate
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Fig. 5. Block diagram of an approximate inverse for the basic system.

linearization, etc. Krishnaprasadet al. [16] and Morgansen in
[17] have subsequently extended the inverse system idea in a
number of directions.

The idea behind the approximate inverse is to provide an ad-
justable level of modulation on the input signals so as to steer
the state variables of the system

along a desired path. Suppose we have low frequency inputs
, , and we want to find a mapping

such that ( , ) causes the system to track these functions in
the sense that the vector ( , , ) is small. The
plan for constructing the approximate inverse is to think of
and as being the sum of two parts, a part that uses the lower
frequency portion of the power spectrum and can be taken to be

, and a second part, occupying a frequency band
well above that which is needed forand which will drive

. The latter will be shaped by a combination of amplitude and
phase modulation in accordance with the function .
We may think of this last expression as being “(, )-corrected”
in that we have subtracted off the influence of the area defined
by the desired path of and .

Of course, we can add high frequency terms toand in
different ways using different types of modulation. Because the
dynamics associated withand will naturally suppress higher
frequency effects more than lower frequency effects, it is useful
to think in terms of the ratio of the modulation frequency and
the reciprocal of the time constant associated with the
dynamics. Modulation becomes much less effective if the fre-
quency falls below . Thinking in terms of the types
of applications mentioned in Section I, it is clear that one can
achieve more movement in the -direction if the frequency
is increased along with the magnitude of the modulation term.
(Faster walking is achieved by lengthening the stride and in-
creasing the steps per unit time).

This reasoning, together with some natural choices of mod-
ulation, leads to open-loop approximate inverses of the general
form shown in Fig. 5. This is discussed in much more detail in
[10].

Of course, the purpose of the approximate inverse is to create
a precompensator for the nonholonomic system that makes con-
trol or path planning easy. Thus the cascade of the inverse with
the nonholonomic system is of central interest. The open-loop

Fig. 6. Open-loop approximate inverse cascade as an alternative to the system
of Fig. 2.

cascade, shown in Fig. 6, can be contrasted with the feedback
form of inversion shown in Fig. 2. The important distinction here
is the difference between situations in which the oscillations are
generated internally verses those using the insertion of a peri-
odic signal from some other source.

IX. CONCLUSION

We have argued that the appearance of time-periodic phe-
nomena in both man made and biological systems can often be
traced to nonintegrable effects of the type that arises in nonlinear
controllability. This point of view unifies many diverse phe-
nomena found in engineering and nature. We investigate here
the analog of the regulator problem in this context, not from the
point of view of optimal control, but rather from a more classical
point of view. We define stabilizing control laws for large classes
of systems, drawing a distinction between the cases where regu-
lation involves both frequency and amplitude adjustment and the
case where amplitude adjustment is used alone. The treatment
of the higher dimensional cases involves analysis on the space
of skew-symmetric matrices. In particular, Theorem 3, which
addresses a rather general class of problems, makes use of the
idea of a maximal commuting subalgebra and succeeds in estab-
lishing a result on controlling the phases between synchronous
modes of oscillation. We also discuss nonsinusoidal oscillations
and make use of them in a model of biped locomotion.
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