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Some  Geometric  Questions in the Theory of 
Linear  Systems 

Abstract-In this paper  we discus certain geometrical aspects of hear 
systems  which,  even  though  they  arise  in the case of single  input-single 
output  systems,  do  not  seem  to  have been explicitly  recognized  and stodied 
before.  We show, among other things, that  the set of minimal, single 
input-single  output, linear systems of degree n, when  topologized  in  the 
obvious way,  consists  of n + 1 connected  components.  The  Cauchy  index 
(equivalently,  the  signature of the  Hankel  matrix) characterizes the  com- 
ponents and the  geometry  of  each  component is investigated.  We also 
study  the effect of  various constraiuts such as asking  that  the  system  be 
stable or minimum phase. 

I. INTRODUCTION 

C LASSICAL control theory deals with  single input- 
single output systems characterized by a transfer 

function which is rational. In this theory there appear 
many representations of the rational functions, e.g.,  by 
means of partial fractions, pole and zero locations, numer- 
ator  and denominator coefficients, Nyquist loci, etc. In 
fact, one may  say that a large part of the mathematical 
technique used in classical control theory is concerned 
with passing back and forth between these various repre- 
sentations. This is  necessary because each representation 
is convenient for investigating certain phenomena and 
inconvenient for others. 

If  one’s concern is  with the identification or tracking of 
linear systems it is not clear which, if any, of these 
representations is to be preferred. In this paper we under- 
take a study regarding the possible  choices of coordinate 
systems in which to describe rational functions without 
common factors, including all the above possibilities as 
well as others. This work has as its goal the determination 
of adequate sets of coordinate systems for describing 
rational functions and rules for switching  back and forth 
between possible coordinate systems. Our primary motiva- 
tion in this paper is to develop a theory which  will  be 
useful in the study and implementation of system identifi- 
cation algorithms. We will return to this point later. 

The main result to be established here is that the set of 
rational functions of a fixed degree n (without common 
factors) is, when topologized in a natural way, actually the 
disjoint union of n + 1 open sets. It is impossible to pass 
from  one of these open sets to  another without passing 

recommended by J. B. Pearson,  Chairman of the IEEE S-CS Linear 
Manuscript received October 20, 1975;  revised April 19, 1976. Paper 

Systems  Committee. This work was supported by the U.S. Office of 
Naval  Research  under  the  Joint Services Electronics  Program  under 
Contract N00014-75-C-0648. 

The  author is  with the Division of Engineering and Applied Physics, 
Harvard  University,  Cambridge,  MA 02138. 

through a region of common factors. As a refinement of 
this we investigate the set of rational functions without 
common factors, with denominators of degree n,  and with 
numerators of fixed degree m (< n),  whose poles and 
zeros are constrained to lie in ,open, simply connected 
subsets of the complex plane. 

The only prior work on this  class of problems is ap- 
parently [1]-[3]  of the references.  Glover’s  work  [2],  [3] 
investigates certain related questions for multivariable sys- 
tems and discusses the performance of system identifica- 
tion algorithms with  this theory in mind. Precise defini- 
tions of topological terms used here can be found,  for 
example, in [4]. 

11. SECOND-ORDER SYSTEMS 

Instead of starting directly with the general situation, 
we consider second-order systems characterized by a 
transfer function 

There is a four-parameter family of second-order systems 
but each choice of a four-tuple (qo,ql,po,p,)  does not 
result in a second-order system because of the possibility 
of common factors. In  order to avoid common factors we 
must parameterize g2(s) very  carefully. 

Consider the parameterization 

r(s+u)cosB+rsinB 

g2(s)= (s+ u)2+ v 

In this  case we see that as u varies  over (- m, 00) and  as r 
ranges over (0, co) no common factors appear or disap- 
pear. Thus, as a first attempt to understand the common 
factor problem we  fix (J = 0 and r =  1. This gives a two- 
parameter family 

The values of B and v which correspond to common 
factors satisfy 

v = - tan%. 

Since 6 takes on values  between 0 and 2?r with 0 and 2n 
corresponding to the same point we think of 6 as ranging 
over the circle S I .  Thus, we think of (e, v) as ranging over 
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a cylindrical surface (see  Fig. 1). The locus of common 
factors is then as indicated. It is important to note that the 
locus of common factors separates the space into three 
connected components, labeled here I, 11, and 111, and 
that these distinct components have essentially different 
geometries, regions I and I11 being simply connected 
while  region  I1  is not. 

Notice that regions I  and I11 are mapped into each 
other by the change of variables e+@+ T. Since Y is 
negative, in these  regions the poles are real. A short 
calculation shows that the residues at these  poles are both 
positive in region I  and both negative in region 111. In 
region 11, however, the poles  may be real or complex. If 
they are real, the residues have opposite signs. 

This shows then that there are three  basic  types of 
second-order systems  which we may parameterize in the 
following  way: 

A given second-order system can be represented by 
exactly one of these formulas whereas each of these  ex- 
pressions defines a second-order system. There is no com- 
pelling reason for the choice of functions used here. We 
have simply made one choice  which  clearly  reveals the 
geometry of the three regions. 

111. THE CAUCHY INDEX 

GI 
Fig. 1. Illustrating  the  three types of second-order systems. 

idea is due to Cauchy but it  is convenient to give  it a new 
twist. Regard g ( - )  as defining a mapping of 9' into the 
circle S ' according to the rule 

e= -2tan-'g(x). 

This associates with each rational function g(.) a continu- 
ous curve on a cylinder (see Figs. 2 and 3). The ambiguity 
of the definition of the inverse tangent is  resolved  by 
restricting it to lie  between - 77/2 and ~ / 2 .  Since g( - cc) 
= g(w) = 0 we  may identify the ends of the cylinder so as 
to obtain from each g( - )  a closed curve on a torus. 

Associated with each rational function is an integer, the 
number of times  this curve winds around the torus in the 
positive direction as x increases from - co to co. This 
winding number will  be  called the Cauchy index. A glance 
at the partial fraction expansion of g(s) will convince the 
reader that in the case of unrepeated poles, the Cauchy 
index is  simply the number of real poles  with  positive 
residues, minus the number of real poles  with  negative 
residues. 

Lemma 1: The Cauchy index is a continuous map of 
rat(n) into the real numbers. 

Proof: Let x, = (1, x, x 2 , .  * , x,)'. Then in an obvious 
notation 

For fixed x, the map of (32, into S 1  defined by 
By rat(n) we mean the set of rational functions of the 

form (qn-l>...,qO,Pn-l. - .  ,pol: I+ -2tan-'g(x) 

q ; J - l +  * - .  q; is continuous at all points except  where q ( - )  and p ( . )  
s n + p ; - I s n - l + .  . . vanish simultaneously. Thus, on rat(n) this function is 

with no common factors. We regard rat(n) as a metric We  now  make the observation that included in the 
space with the metric possible Cauchy indices are - n, - n + 2,. . * ,n - 2, n. 

continuous. 

These  possibilities  show  up  in  the rational functions 
2 

P(g,,gj)=(q,-l-q,z-l) +.. .  +(4:-4I) 
2 

n - k  r 
+ ( p , ' - l - P , z - , ) 2 + - . .  + ( P A - P o ) .  2 2  &(x)= c s+r 3 

k=n,n-l; .- ,O 
r=  - k  

One  way to visualize rat ( n )  is as an open subset of C,$2n which  have winding number n - 2k. 
with  its usual topology. That is, 

rat(n)={(q, _,,..., qo,p,-,,...,~0):q(s) and Iv. THE NUMBER OF CONNECTED  COMPONENTS 

P ( s )  have no common factors) In the case of first-order systems we have a representa- 

and the condition of not having a common factor simply tion 
subtracts a closed  set from CkLZn.  g(s) = a / ( s  +X), afO. 

tween - n and n with each element of  rat(n). The basic Regarding the parameters a and X as points in the plane, 
We  now describe a way of associating an integer be- 
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me - X  

Fig. 2. Typical  curve on the  cylinder. 

Fig, 3. The curve on the torus. 

we  see that the set of all first-order systems consists of two 
connected components; one for a > O  and one for a < 0. 
The respective winding numbers are one and minus one. 
We indicated in Section I1 evidence to the effect that the 
set of all second-order systems consist of three connected 
components. In this section we show that rat(n), the set of 
all nth degree proper rational functions without common 
factors and with monic denominators, has n + 1 connected 
components. 

We carry out this  proof in a number of short steps 
beginning with the following  lemma. 

Lemma 2: The set rat(n) has at least n + 1 distinct 
connected components. 

Proof: From Lemma 1 we see that the Cauchy index 
is a continuous function on  rat(n). Since  it  is integer 
valued and takes on at least n + 1 different values as g 
varies over rat(n) (from the example) we  see that there 
must be at least n + 1 distinct connected components of 
rat(n). 

We  now introduce a more  precise notation. By rat ( p ,  q) 
we understand the subset of rat (p  + q) corresponding to 
rational functions whose Cauchy index is p - q. We regard 
rat(p,q)  as a topological space with the topology de- 
scribed above. 

Theorem I :  rat(p,q) is  arcwise connected. Thus, the 
set of all real proper rational functions of degree n 
(without common factors) is the disjoint union of exactly 
n + 1 arcwise connected open sets. 

The previous lemma establishes that there are  at least 
n+ 1 connected components; thus if  we prove that 
rat(p,q) is connected, we  will have established the result. 
We introduce the following special terminology. An ele- 
ment g of rat(n) is called typicaZ if all poles and all  zeros 
are unrepreated and have distinct real and imaginary 
parts except for the real parts of complex conjugate poles 
and zeros and the imaginary parts of real poles and zeros. 
Elements of rat(n) which are  not typical are called atypi- 
cal. 

Lemma 3: It is  possible to find in any neighborhood N 
of g €rat ( n )  an element g ,  E N (  g )  such that g ,  is  typical. 

Proof: The property of being atypical means that 
there is one  or more algebraic relation satisfied by the 
coefficients of g , .  Thus, it is  impossible  to  fill a neighbor- 
hood of g with such elements. 

Lemma 4: Any element g €rat ( p , q )  can be deformed 

in rat(p,q) to an element with all poles and zeros eider 
purely real or purely imaginary. 

Proof: We have observed that  rat(n),  and hence 
rat(p,q), is an open subset of a2". Of course a2" is 
locally arcwise connected (see [4, p. 551) and thus rat(p,q) 
is as well. Given g we can by Lemma 3 and the local 
arcwise connectedness of rat(p,q) deform it into  a ra- 
tional function which  is  typical. Then deform the typical 
element as indicated in Fig. 4; i.e.,  by moving the complex 
poles and zeros horizontally to the imaginary axis. This 
process  involves no pole-zero cancellation because the 
imaginary parts of the poles and zeros are distinct. Thus, 
this procedure defines a  path in rat ( p ,  q). 

Lemma 5: Any element of rat(p,q) can be deformed 
within rat(p,q) to one with  exactly Ip -41 real poles, 
exactly Ip - 41- 1 real zeros, the poles and zeros interlac- 
ing, and the complex poles and zeros purely imaginary. 

Proof: If there are two  poles on the real axis  which 
are  not separated by a zero we may  move  them together 
without introducing common factors. When they are 
together we may split them off into the complex plane. 
Following the device of the proof of Lemma 4 we may 
make them purely imaginary. The same is true of the 
zeros. Thus, we eliminate any adjacent poles and any 
adjacent zeros occuring on the real  axis. 

The number of poles on the real axis  is, of course, 
Jp-  q1 since otherwise we would not have the correct 
Cauchy index. The number of zeros can be Ip - q1+ 1 or 
Ip - 41- 1 since the total number for a typical element is 
p + q - 1 and  an even number of them are complex. If 
there are Ip-q1+ 1 we proceed as indicated in Fig. 5. If 
the rightmost zero is (qs+ 1) then we let 77 change sign to 
bring the zero through infinity reappearing on the left. 
Now there are two adjacent zeros and we  may split them 
off into the complex plane and hence locate them on the 
imaginary axis. 

The following lemma completes the proof of Theorem 1 
since it shows that any two elements of rat(p, q) can be 
deformed into  a particular element and hence into each 
other. 

Lemma 6: Any element of rat(p,q)  can be deformed 
within rat(p,q) to 

(s2+2)(s2+4)*.* ( s 2 + 2 v )  

(s2+ l ) ( s2+3)** .  ( s 2 + 2 v +  1) 
+ 

where v is ) ( n  - Ip - 41). 
Proof: By using the path indicated in Fig. 6 we may 

split adjacent poles on the imaginary axis, thus arranging 
the poles and zeros in an alternating pattern  on the 
imaginary axis  with adjacent poles appearing only on 
either side of zero. Thus, an application of the deforma- 
tions of Lemmas 5 and 6 gives a rational function whose 
real poles and zeros interlace on the positive  half-axis and 
negative half-axis. To get the form given in the lemma ' 
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Fig. 4. Illustrating the proof of Lemmas 4 and 5. 

b 
B 

Fig. 5. Passing a zero through infinity on the  real axis. 

w+-+c-- -* 
Fig. 6. A step in producing the interlacing  patterns. 

statement we only need to shift the poles and zeros along 
the real and imaginary axes. Clearly, this can be done 
without leaving rat ( p ,  q). 

V. rat ( p ,  4 )  AS A DIFFERENTIABLE MANIFOLD 

In system identification problems one deals with ap- 
proximations to actual systems  by  models  which  lie  in a 
certain class.  Very often the class  is the class of linear 
time-invariant systems of a certain degree. It is desirable 
-in fact essential in  some  cases-to eliminate common 
factors when carrying out system identification. One rea- 
son for this  is that the measure of the fit  is  insensitive to 
the location of a common factor of the form (s + a ) / ( s  + 
a) and thus the minimization problem becomes  exces- 
sively  ridge-like in one direction if common factors are 
allowed. 
’ Thus, to deal with the identification problem we want a 
“good” coordinate system or, failing that,  a set of “good” 
coordinate systems in terms of which we can describe 
rat(p,q).  In short, we want to carry out the analysis of 
Section I1 for systems of arbitrary order. 

To begin  with let us observe that rat ( p , q )  has been 
constructed as an open subset of 39. Thus, at each point 
of rat ( p ,  q)  there is a local coordinate system, correspond- 
ing to the standard coordinate system of q2“. If we want 
to construct a real analytic manifold which has rat ( p , q )  
as its underlying topological space, we merely  let the 
charts consist of all those charts compatible with the 
standard  chart for W (see [4, p. 981). Thus, we see rat 
( p , q )  admits the structue of a 2 ( p +  q)-dimensional real 
analytic manifold. Our  task is to identify useful coordi- 
nate charts with  which to describe the manifold. Also, and 
this is as yet not completely understood, we want to 
describe how the local charts fit together to give  us 
rat ( p ,  4 )  as a whole. 

In “most” of rat ( p , q )  partial fraction expansions are 
very convenient; however  in a neighborhood of  a repeated 
pole the partial fraction expansion must  be  modified  in 
some  way thus causing severe  difficulties. 

The only  case in which we have a single natural para- 
meterization for a whole component of rat ( p ,  q )  is  when p 
or 4 is  zero.  Say 4 is  zero. Then 

e + + e . .  + e% 
s + A l + e h 2 + - . .  +e& 

is, for each real choice of ai and 4, an element of rat(n,O) 
and any element of rat (n,O) has  a unique expression of 
this type. To parameterize rat(0,n) we insert a minus sign 
in front of the whole expression. 

There is a second case which  is more complicated but 
which can be analyzed in a quite satisfactory way. This is 
rat(n-  l ,l)=rat(l,n- 1). In this case we display 2n+ 1 
coordinate charts corresponding to a division of rat ( n  - 
1,l) into 2n f 1 overlapping pieces. Consider first of all 
the part of rat ( n  - 1,l) consisting of those elements with a 
single pair of complex  poles. This set is parameterized by 

There are, in addition, n distinct real  pole regions 

. . .  

We add to this set of coordinate charts n more charts to 
cover what happens in the case where one is near a triply 
repeated pole. Notice that in rat(n - 1, l )  a triple pole 
would be of the form [a(s+ u ) ~ +  P ( s +  u)+ y]/(s+ u ) ~  
with y > 0. The condition y < 0 is not compatible with the 
definition of rat(n - 1,l). Thus, we add  as  charts 

+ e a4 

s+A,+eb 
+... 
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eal  a ( s + ~ , + e * 2 ) ' + p ( s + ~ ~ + e ~ 2 ) + y  
g(s) = s+x1 + +... 

(s +A, + e'213 + 6s' + Es 

+ e 4  
s+A,+eA2+-*-  +e& 

... 

eul  + e a2 +... 
g(')= s+hl s +A, + e*2 

e%-4 a ( s + A J 2 + p ( s + & ) + A  + + 
s+A,+e'2+... +e&-4 (s +AJ3 + asz+ a Fig. 7. Fitting  together the coordinate  charts of rat(n - 1,l). 

In these expressions we must restrict S and E to be 
sufficiently small. These 2n + 1 charts cover all of rat (n - 
1,l). There is overlap as indicated schematically in Fig. 7. 
These coordinate charts enable one to prove that the 
differentiable equivalent to S manifold X Ck2"-' rat(n  and - thus 1, l )  implicitly is topologically give the &* +D 

"shape" of rat ( n  - 1,l)  or rat (1, n - 1). 
The cases rat (n -2 ,2 )  and  rat (2 ,n   -2)  are even more Fig. 8. Illustrating  the  hypothesis of Theorem 2. 

complicated and  are  not yet completely understood. 

VI. RESTRICTING THE POLE-ZERO LOCATIONS 

Suppose one knows in advance that  the poles of the 
transfer function lie in the left-half plane or within the 
unit circle. Or, suppose that the systems under considera- 
tion are all minimum phase so that the zeros  lie  in the 
left-half plane or within the unit circle. We may  want to 
know  how a priori assumptions of this type affect Theo- 
rem 1. Our goal here is to establish a suitable generaliza- 
tion of Theorem 1 so as to be able to handle questions of 
this type. 

Theorem 2: Let R ,  and R ,  be two open, connected 
subsets of the complex plane which are each bounded and 
symmetric with  respect to the real axis. Then the subset of 
rat(n) consisting of those rational functions having all 
their poles in R,, exactly r zeros in R,, and no other zeros 
in the finite part of the plane has 1) two connected 
components if R, n R, n {real axis} is empty, and 2) 
2 ( r+  1) connected components if R, n R2n {real axis} is 
nonempty. 

Proof (sketch): The idea of the proof  is quite similar 
to the proof of Theorem 1. Typical examples of cases 1) 
and 2) are indicated in Fig. 8. 

In case 1)  we see that the Cauchy index must be 1 if n is 
odd  and 0 if n is  even, since there can  be no interlacing 
poles and zeros on the real axis. If the Cauchy index is 
zero we note  that 

cannot be deformed into its negative without one  or more 
of the zeros leaving the bounded set R,. In particular we 
cannot change the sign of the coefficient of s r  in the 

numerator. Thus, if n is even or  odd there are  at least two 
connected components-characterized for n even by the 
sign of the coefficient of s' in the numerator and by the 
Cauchy index for n odd. To show that there are only  two 
connected components we note  that we can deform any 
pole-zero pattern  into a particular one in the given space 
as we did in the proof of Theorem 1. Since a pole-zero 
pattern, together with a scaling determines a rational 
function the description of the pole-zero deformation is all 
that is required to complete the proof. Since the proof of 
Theorem 1 provides one example of this type we omit 
further details here. 

In case 1) we may have any Cauchy index of the correct 
parity between - r - 1 and r +  1, the limiting factor being 
the possible number of interlacing poles and zeros on the 
real  axis. The question is that of determining how the 
restriction on the poles and zeros further divides the 
connected components of rat(n).  To study this we may 
think of the special case  where R, and R, are overlapping 
disks as indicated in Fig. 8. Following the proofs of the 
lemmas given above we  see that everything proceeds as 
before (slight modification of typical being required) up to 
the point where we pass a real zero through infinity in the 
proof of Lemma 5. This is not possible here since the-set 
R, is bounded. Thus, after we have removed from the real 
axis  all  possible  poles and zeros as in Lemma 5 four types 
of configurations are possible. 

1) zero, pole,. - - ,pole, zero; r + n is .odd 
2) zero, pole, . . ,zero, pole; r + n is  even 
3) pole, zero, . ,zero, pole; r + n is odd 
4) pole, zero,. - . ,pole, zero; P + n is  even 

where we include the possibility of zero length sequences 
under 2)  and 3). 
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If ( n  + r )  is odd  and r is odd, we have ( r  + 1)/2 possible 
configurations of type 1) and ( r  + 1)/2 possible configura- 
tions of type 3) for  a  total of r + 1.  If ( n  + r )  is  even and r 
is odd we have ( r +  1)/2 possible configurations of type 2) 
and ( r +  1)/2 of type 4) for a  total of r + 1. Finally, if 
( n  + r )  is even and r is even we have r/2+ I possible 
configurations of type 2) and r/2 possible configurations 
of type 4). In all cases the total number  is r + 1. 

In  rat(p,q) g ( s )  can  be  deformed into - g ( s )  if the 
Cauchy  index is zero. Otherwise, each interlacing pole- 
zero sequence  corresponds to two possible Cauchy in- 
dices, 1 and - 1. In the present case each of the sequences 
1)4) again corresponds to two possible Cauchy indices if 
the  Cauchy  index is nonzero.  However,  even if the 
Cauchy  index  is zero, in the present case we cannot de- 
form g ( s )  into -g(s)  because  we cannot pass a zero 
through infinity as we did before. Hence,  even in this case 
each interlacing pole-zero configuration corresponds to 
two  connected  components. Putting together these re- 
marks we  see that there are  at least 2(r+ 1) connected 
components of the subset of rat(n) under consideration 
here. 

The proof that each of the components identified is 
actually connected  proceeds  along the same lines as be- 
fore;  further details are omitted. 

VIII.  HANKEL MATRICES 

These results make contact with the state variable the- 

Associated  with  each  proper rational function of degree 
ory of linear dynamical  systems in the following  way. 

n we have an expansion 

g ( s ) =   h , s - ’ +   h 2 s C 2 +  * . . 

and we have a family of Hankel matrices 
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values are real, a zero eigenvalue (hence a singular H,) 
would  be  encountered in deforming H,’ into H,’. Since H, 
being singular implies a common factor this means that 
there is at least one distinct component of rat(n) for each 
possible signature of H,. 

From Theorem 1 we see that there must  be a bijection 
between the set of Cauchy indices and the set of possible 
signatures of the associated n X n Hankel matrices. To 
determine  what  this bijection is  we only need to check to 
which signature a particular element of rat(p,q) corre- 
sponds. Notice that the realization of 

which takes the form 

ii= - 4 x i + f i  u ;  

y ( t ) =  5 ( s g n a i ) m x i ,   i = 1 , 2 , . - . , n  
i =  1 

results in Hankel matrix of the form 

H,,=(b,Ab; * . , A  “-‘b)’Z(b,Ab; . . , A  ‘-‘b) 

where 

Z=diag(sgna,; - , s p a R ) .  

Thus, we see that the signature of H, is equal  to the 
number of real poles with positive residues minus the 
number of real poles with negative residues. This gives a 
new “control theoretic” proof  of a 19th century theorem 
of Hermite and Hurwitz  (see Gantmacher [5 ,  p. 2101). 

Theorem 3 (Hermite-Humitz): The Cauchy  index of 
g (  -) is equal to the signature of the associated Hankel 
matrix. 

. . . . . . . . . . . . . . . . . . . .  1 hm hm+* hm+2 . * *  h2m-11 

It has been  known for  a long time [5]  and easily seen from 
the theory of controllability and observability, that the 
Hankel matrix H,, corresponding to  a proper rational 
function is  of full rank if and only if the rational function 
is an ( n  - 1)th degree polynomial divided by an nth degree 
polynomial  with no common factors between the numera- 
tor  and  denominator. Since H ,  is a symmetric matrix its 
eigenvalues are real. Moreover, since the coefficients in 
the expansion of g (  e )  depend continuously on g ,  we  will 
argue that two rational functions, say g,(s) and g2(s), 
which  have associated Hankel matrices with differing 
numbers of positive eigenvalues cannot  be in the same 
connected  component of rat(n). This comes about be- 
cause to deform gl(s) into g2(s) one would, by necessity, 
deform H,’ into H:. Since H,’ and H,’ do not  have the 
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Max-Min Contro.1  Problems: A System 
Theoretic  Approach 

MICHAEL  HEYMANN,  MEIR PACHTER, AND RONALD J. STERN 

Abstract--In this pap a “max-min controllability”  concept for a 
situation in which two linear control systems are in conflict is introdoced 
and characterized This concept is employed in solving a max-min linear- 
quadratic control problem with terminal  state constraiots and the relation- 
ship with differential  game theory is discussed. 

I.  INTRODUCTION 

C ONSIDER the following linear system  with dual con- 
trols: 

i = A ( t ) x + B , ( t ) u + B , ( t ) u ,   x ( t o ) = x 0 .  (1.1) 

Here x = x ( t )  is  the state vector in Euclidean space R”, 
with x. a specified initial state at time t,. The vectors 
u = u ( t )  E R 9 and t’ = u ( t )  E R me, regarded, respectively, 
as the pursuer and evader controls, are required to satisfy 
JIllu(t)l12dt< x and JIllc(t)l12dt< oo on each compact 
interval I ~ [ t , ,  oo), where 1 1   1 1  denotes the Euclidean 
norm. The matrices A ,  B,, and Be are assumed to have 
entries which are real and measurable on [to, w). For any 
pair of controls u and o we shall  denote by x ( t )  
= +(t,  to, xo, u,  u)  the corresponding unique solution of  (1.1) 
emanating from x. at time to ( t  2 to). 

In situations in which the pursuer and evader are in 
competition, it is natural to seek a comparison between 
their control capabilities. Towards this end we introduce 
the following concepts. 

Definition 1.1: An event (to,xo) in system  (1.1)  is 
strongly max-min controllable at time T ( T  2 to) if for 
each announced evader control o on [ to ,  T ]  there ex- 
ists a pursuer control u on [to, TI such that x( T )  = 
+( T,  to, xo, u, c)  = 0. The event (to, xo) is strongly max-min 
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controllable if it is strongly max-min controllable for some 

Definition 1.2: An  event (to,xo) in system (1.1) is 
weakly max-min controllable if for each a_nnounced evader 
control 2, on [to, w), there-exists a time t,= ;(u) 2 to and a 
pursuer control u on [to, t ]  such that x (   t )  = +(; to, xo, u, u) 
= 0. 

Clearly strong max-min controllability of an event  im- 
plies weak  max-mir; controllability. That the converse is 
also true is not immediately evident since it is not clear 
that when  weak  max-min controllability holds there exists 
any  one time T at which capture (i.e., x (  T )  = 0) can be 
imposed by the pursuer in face of any evader control. 
This, however,  is indeed the case as is  shown in [l],  and 
the two concepts of max-min controllability are actually 
equivalent, Henceforth, we  will simply  speak about m x -  
min controllability referring to the simpler Definition 1.1. 

It should be observed that max-min controllability gen- 
eralizes the concept of controllability in linear control 
systems as expounded by Kalman (see,  e.g., [2], [3]). While 
the existing “one player” controllability theory will be 
brought to bear on our development of the two  player 
case, certain significant difficulties and interesting dif- 
ferences arise, as will be pointed out below. 

Our results on max-min controllability will  be employed 
in solving the following restricted end-point max-min con- 
trol problem, denoted ( P ) .  

( P ) :  We are given a linear dual control system  (1.1) 
with x,#O. The evader announces a control function u, 
and the pursuer (if he has the capability) responds with a 
control function u such that x ( T )  = 0,  where T > to is a 
prespecified  time. The players’ control choices are to be 
made in accordance with the optimization of the payoff 
functional 

T E [ to, 00). 

P(u,t.) 2 IT[ Ilu(t)1I2- Ilu(t)l12]dt (1.2) 

where it is understood that the evader is the maximizing 
player while the pursuer is the minimizer. 

*O 


