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Control Theory and Singular Riemannian Geometry*

R. W. Brockettf

This paper discusses the qualitative and quantitative aspects of the solution
of a class of optimal control problems, together with related questions con-
cerning a corresponding stochastic differential equation. The class has been
chosen to reveal what one may expect for the structure of the set ofconju-
gate points for smooth problems in which existence of optimal trajectories is
not an issue but for which Lie bracketing is necessary to reveal the reachable
set. It is, perhaps, not too surprising that in thinking about this problem
various geometrical analogies are useful and, in the final analysis, provide a
convenient language to express the results. Indeed, the geodesic problem of
Riemannian geometry is commonly taken to be the paradigm in the calculus
of variations; a point of view which is supported by a variety of variational
principles such as the theorem of Euler which identifies the path of a freely
moving particle on a manifold with a geodesic and the whole theory of
general relativity. Nonetheless, the class of variational problems considered
here can only be thought of as geodesic problems in some limiting sense in
which the metric tends to infinity. For this reason the geodesic analogy has
to be developed rather carefully. What is actually needed is a generalization
of Riemannian geometry and it seems that the intuitive content of Rieman-
nian geometry is sufficiently robust so as to withstand modifications of the
type required and still provide a reasonably " geometric " picture. We con-
sider questions involving model spaces, geodesic equations, the appropriate
definition of the Laplace-Beltrami operator, etc. The end results make avail-
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Program Contract N0001475-C-0648 and the National Science Foundation under Grant
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able in the control setting, considerable geometrical insight and suggest
some novel problems in dillerential geometry.

In addition to work in control theory and geometry which we draw on in
a very specific way, one sees in the recent work of physicists an exciting, albeit
vague, parallelism centering around the idea of " superspace." Before em-
barking on the actual mathematics of this paper let me make a few com-
ments on this. Part and parcel of the Riemannian expression for infinitesimal
distance

(ds)2 : 2Sti6) dx, dx,

is idea that space is " essentially isotropic." That is to say, the distance to
nearby points involves the same kind of expression regardless of the direc-
tion. characteristic of the models which we investigate here is a very strong
anisotropic character as would be suggested by an expression such as
(ds)2 : (dx)2 + (dy)'+ ldzl. T\ere have been, and continue to be, sug-
gestions in the physics literature to the effect that what we perceive as being a
four dimensional space-time continuum may be better thought of as being a
submanifold of a higher dimensional space. In the theory of o. Klein and r.
Kaluza (see [1])one takes the ambient space to be five dimensional, obtain-
ing in return a setting in which electromagnetic and gravitational theories
are unified. In more recent work, e.g., Zumino's article in [2], one sees sug-
gestions about ten and twenty six dimensional ambient spaces. Manifestly
these theories refer to a highly anisotropic kind of space. Having planted tht
idea that what is to be discussed here may have physical as well aJ mathema
tical interest we hasten to add that only the mathematical and contro
theoretic aspects will be considered further.

optimal control and geodesics have been discussed before in the litera
ture, for example Hermes [3] and Hermann [4], however the most directl.
relevant prior work that I am aware of occurs in the thesis of J. Baillieul [i
where he carries out certain detailed computations on a specific model of thr
type considered here.

I thank the organizers of the conference for giving me the opportunity tc
speak at my alma mater on the occasion of its l00th anniveriaiy. It was a
pleasant occasion. I also want to express my appreciation to J. Bajflieul, c. I.
Byrnes and N. Gunther for their patience in listening to, and help in clarify-
ing the arguments given here.

The Starting Point

consider a neighborhood of xs in ra-dimensional cartesian space Rn, and
consider the following problem from control theory. Given

. d
X :  , . X

dt
*: B(xlu,
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find u(r)e R' on the interval [0, 1] such that x(0) : xs, x(1) : X1, &Dd

4(xo ,  x ) :  i t ( ( r ,  u ) \ , t ,  d t
J o

is minimized. Here ( , ) denotes the standard inner product on R.. We
investigate this problem under the assumption that B is smooth and of
constant rank m. In place of 4 we study

p(x, y): min q(x, y).

Notice that p satisfies the condition p(x, x):0, p(x,y): h(y,x)>0 if
x f y and p(x, y) < p(x, z) + p(2, y). That is, p satisfies the axioms of a
metric. The only step here which is not completely obvious is p(x, y):
p(y, x) and this is proven by replacing u,(t)by -ut(t - r) and noticing that
this control steers y to x if u steers x to y.

In the special case where ltr: tr, under our announced hypotheses we may
rewrite ic: B(x)u as B-l(x)i: u and express the problem as a Rieman-
nian geodesic problem, i.e., to find from among all smooth paths joining x
and y the one which minimizes

,: [ 'Kr-l(x)*, B- ,("y*,Sy,r, or., o

Thus we see that (f- t1x;;t3- t(") : G(x)plays the role of the metric tensor
if B-l(x) exists. However, p(x, y) may be well defined even if B is not
invertible and in particular even if rn < n. All that is needed for p(x, y) to be
defined is that every point should be reachable from every other point. None
of the phenomena which we investigate are a consequence of any rack of
smoothness in B or the quantity being minimized; for the sake of simplicity
we take B to be C- although we could get by with less.

what are the conditions for every point near x to be reachable from x?
This kind of question is studied in the control literature under the names
controllability, reachability, etc. but the specific result we need was known
already by chow [6] who generalized a result of caratheodory. what is
needed is that the Lie algebra of vector fields generated by

' ' :  
, )rui* '  

n: @i)

should be sufficiently rich to span Rn at each point. This condition is con-
siderably less demanding than the condition that B is invertible !

Perhaps an example will be of some help in developing intuition. Con-
sider the following prototype for the situation in R3:

X : U

y - u

Z : u y - u x .
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In this case

^ a a
f r : ; _  * y -  .

0 x  d z '

Since these span R3 we can reach any point from any other point. However,
B is 3 by 2 and so BrB is not invertible and we are not in the standard
Riemannian situation. with the help of the Lagrange multiplier technique
one can show that the geodesics satisfy

* +  ) ' i : 0

y  -  7 * : 0

i + ) " ( * x + y y ) : 0

where .l is a suitable constant. In fact, from the last equation we see that for
trajectories which pass through (0, 0, z)we have

a^:;+T'
The locus of points equidistant from (0, 0, 0) displays an x3-axis symmetry
but, in contrast with the Riemannian situation, the geodesic spheres are not
smooth manifolds. (They fail to be smooth at the north and south poles.)

( o ) ( b )

Figure I The geodesic spheres and one geodesic curve.

we can think of this example in the following way. At each point in the
space we have a two dimensional subspace of the tangent space, the one
spanned by the vector fields

* .  t *  a n d

In this plane we have a given inner product corresponding to the fact that we
are minimizing the integral of u2 + u2. we may think of this plane as being a

R. W. Brockett

F" :& -  - * ,  fFu ,F , l :2* .

o o
- _ Y _

oy oz
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two space of ordinary directions. In this problem the geodesics emanating
from a point are characterized by an initial velocity chosen from the
ordinary directions together with parameter ,t which controls, in a way we
want to make precise, the amount of twist the trajectory has to bring it
away from the plane of ordinary directions.

It may also be pointed out that for this example the points conjugate to
the point (0, 0, 0) consist of the entire z-axis. Recall [7] that in an ordinary
Riemannian space the points conjugate to p have distance

where K is the maximum sectional curvature of the manifold. Since p is
conjugate to points in every neighborhood of it we see that we are dealing
with a space having rather exceptional curvature!

Naturally associated with this problem is a subgroup of the affine group
on R3 consisting of elements of the form

: orthogonal.

This group acts transitively on R3 and leaves the form of the variational
problem invariant. Thus the calculation of p(., .)is no more difficult than
the calculation of p(0, '). Based on this remark we can see that just as
through (0,0,0)there is a line of points {plp : (0, 0, z)} which are conjugate
to (0, 0, 0), there is a line of points {plp : (a, b, z)l which are conjugate
to (a, b, zo). At each point in R3 this gives us a natural splitting of the
tangent space into a two dimensional subspace Range B and a one
dimensional subspace defined by tangent vector to the manifold of
conjugate points.

Finally, there is a second order operator associated with this problem,
namely

which shares many of the properties of the heat operator. We will discuss
this further in the final section of the paper.

The Hamiltonian Formulation

We now return to the general situation and set about the problem of study-
ing the geodesics. It saves a certain amount of annoying calculation to

fE

JK
pb,  d>

[;] - [*, ?,: l]t'l . hrl

':(*.'*) . (& -.*)',
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observe right at the start that the trajectories which minimize 4 also
minimize

" l

4:  lo (u ,u )  d t .

This comes about, as it does in the case of Riemannian geometry, because
the value of (u, u) along geodesic curves is constant.

In Riemannian geometry the equations for the geodesics can be written as
equations on the tangent bundle. Choosing coordinates, these may be ex-
pressed in terms of the Levi-Civita connection as

it + filiiir : 0 (summation convention).

In the present situation the tangent bundle formulation is not quite so
straightforward. Instead, we begin with a Hamiltonian formulation on the
cotangent bundle. According to the maximum principle of optimal control
Hamilton-Jacobi theory in the present context we may associate with the
geodesic problem a pair of first order equations

* , :  BU

b:  A(u ,  P) ,

where .4 is a bilinear form in u and p, and assert that if xO is a geodesic then
there exists a p(0) such that (x, p) satisfy these equations with

aA(u, p): - finrBu
and

u:  Brp.

Geometrically, the pair (x, p) is to be thought of as a point in the cotangent
bundle T*X. In this setup each geodesic through x is generated by a choice
of p(0) e TlX but, just as in Riemannian geometry where one does not
know c priori which values of *(0) generate paths over [0, 1] without cut
points, here we are not sure a priori which values of p(0) generate curves
which are free of cut points on [0, 1].

In order to prevent one from attempting to attach intrinsic meaning to an
accidental choice of coordinates it is worthwhile to recast these ideas in
coordinate free and, while we are at it, global terms. Let X be amanifold and
let .E be a rank m euclidean vector bundle over X. Let B: E -- E c. TX be a
vector bundle isomorphism. If ( , ) is the inner product on E then the sub-
bundle of TX defined by E has an inner product which comes from ( , ).
Associated with E is a sequence of derived distributions. Define E! as span
B(x) and continue inductively

span sPan

E(r) - - (flo,+ [Elo), E!o)]), EQ) - - lEtrr + [E(1), E(11),..., erc.,
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where the brackets indicate vector fields which arise as Lie brackets of vector
fields in the space indicated. If the dimensions of E$) are, for each i, indepen-
dent of x then E defines a sequence of derived vector bundles 6(0) - g(r) -
Etzt c "' . The condition for the system to be controllable is that this
sequence should terminate at TX. of course E determines, canonically, a
dimension m subbundle Et c T*X, Et : {plp vanishes on E}. The map
B: E -- E and the inner product define u ."p'fro- T*X lEt into E which is
given in coordinates by p*+ Brp: u. The pair of equations given above then
define a section of the tangent bundle of r*X.If the controllability condition
is satisfied then we get a metric p(.,.)on X and we may be sure that any two
points in X arejoined by a geodesic.

we also point out the following additional result which plays a role rater.
suppose that E(1) equals TX. rn that case the inner product structure on E
can be used to define an inner product on ([E, E] + E)IE. The idea is analo-
gous to the one whereby an inner product on the space of one forms is used
to define an inner product the space of two forms, etc. This goes as follows.
Let bp br, ..., b^be an orthonormal basis for E in some neighborhood
U q. X. Any point in ([E, E]+ E)lE can be then expressed as

X:La, i fb; ,b, f  + E.

Such a representation is not unique, but among all such representations
there is a unique one which minimizes

: q(x).

This then gives a mapping from ([d E]+ E)lE into R'(.-r)/2. It is easily
seen to be linear. We define the length of apoint in ([8, E]+ E)lEasthe
minimum value of 4(X). It is easy to verify that this defines a norm and that
the norm satisfies the parallelogram identity and so it comes from an inner
product. Finally, one can check that the norm is independent ofthe choice of
orthonormal basis.

Geodesic Equations

In order to better understand the qualitative behavior ofthe solutions ofthe
optimal control problem which we introduced in the second section. we now
describe a transformation which may be thought of as a partial inverse
Legendre transformation. The effect of this transformation is to introduce as
many second order equations as possible. Everything here is local.

Given the control equations *: B(xlu, we then have a subbundle
E : span B in TX. In a neiehborhood of any point xo we can find an

(,p,'t)"
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integrable subbundle E of TX which is tangent to E at xo. In local coordin-
ates this amounts to saying that we can write the given equations as

*u:  Bul r

*4 :  BP

with B, being an mby mnonsingular matrix and B,(xo) : 0. For each choice
of integrable subbundle E tangent to E atxo we get such a decomposition of
the equations of motion by letting x, be such that

i.rl ' '" ' axtr
span the integrable subbundle. As noted, E also determines a subbundle
EI e T*X, namely the subbundle of one forms which vanish on E. Denoting
a typical point in Et by p, we can write the equations of the previous section
AS

* u :  B u u

* r :  B f i

bu: Auu(u, p") + A"t(u, pt)

br: Au{u, p") + Ar(u, pt).

Differentiating the equation *,,: BuB[p" * B"Blp,with respect to time and
using the differential equations for p we get a second order equation in xu.
By using *,: Buu to eliminate u we then end up with a pair of equations of
the form

ii + fi**j*k * Ajriipk:0 xi e {x1, x2, ..., xn}

i i  +  F i r * i i x  +  E ik* ipk :0  p ,  e {p^* t ,p^* r , . . . ,p " }

where the coefficients depend on x but not * or p. These equations have to be
integrated along with the nonholonomic constraints represented by
*r: &Bu 

li,. The symmetries are as follows: I-j1 is symmetric injk and Ai*
is skew symmetric in y.

Since we did not give a canonical way to choose .E we cannot attach an
intrinsic meaning to any aspect of these equations which is not invariant
with respect to that choice. However, given any such choice, B, defines an
inner product on E and hence B, defines a Riemannian structure on the
submanifold passing through xe and defined by E. When we change E or xo
we change this Riemannian structure. We call the original system reducibleif
there exists a choice for E such that when we write )cu : Buu, B, is of the
form

Bu(ru, x1): Be(x,)0(r,, r,)

with 0 orthogonal. Under this circumstance the Riemannian structure does
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not vary from leaf to leaf and we can recast the entire problem in the
following terms. Given an rr-dimensional Riemannian manifold M find the
shortest path between two points me and m, subject to n - m constraints of
the form yr(l) : c, where yi satisfies

t' : c,i6, yhl.

In this case Fi* are just the ordinary Christoffel symbols for this Riemannian
manifold.

There exists an entire hierarchy of examples of reducible systems,
classified on the basis of the properties of the Riemannian space. For exam-
ple, the space might be taken to be flat, symmetric, etc. Our prototype
problem of section two can be restated as the problem of finding the shortest
path between two points R2 such that the area enclosed by the straight line
between the two points and the path has a specified value. This family of
special cases is therefore related to the isoperimetric problems in the calculus
of variations, and in particular, to the problem of Pappus [8], solved by him
more than two thousand years ago.

A Local Canonical Form

Just as the local features of Riemannian geometry are greatly clarified by
coordinatizing the manifold by Riemann's normal coordinates, in the present
context the local features of the optimal control problem may be revealed by
an appropriate choice of coordinates. Specifically, we consider *: B(x)u
under the replacements

xr -x :  Y(x )

rtt"+ s : @(t)r,

where Y is a diffeomorphism and @(x) is an orthogonal matrix. This is the
natural group to study because of the role of (u, u): (@u, @u) in the
optimal control problem. What we will find is that it is possible, under a
suitable hypothesis, to get an interesting and useful canonical form with
respect to this group of transformations. Everything we do here is local.

To begin with we consider dim X : 3 dim E:2. What we want to
establish is that in this case we can arrange matters so that in a neighbor-
hood of xs we have

* r : z r * r r

* , 2 : u 2 * r z

ic1 : t t rx2  -uzxr  +13

where r, and _r2 have vanishing first partials and 13 has vanishing first
partials with respect to x3 and vanishing first and second partials with
respect to xr and x2, all at xo. Moreover, and this is what justifies the
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particular choices, any other choice of coordinates which enjoys the same
properties is related to the given one by a change of variables whose Jaco-
bian at xs has the form

a, l ' l  [ " r , lo l- I : t + l

0xlo [0 |  r ,J '
Therefore we have an intrinsic definition of a direction (010x3) which,
together with Range B, defines a splitting of the tangent bundle. The pro-
totype problem shows us that this is the direction along which the conjugate
points of an associated approximating problem emanate from xe.

To begin the proof of these assertions consider a system

*i : ui * yjyxjuk ; i, j, k : 1,2, .. ., rn.

As is well known, any m by m by m array such as ljx canbe expressed as a sum
qltr * a\*with qi* : eli and a'iy: -ali. By changing coordinates according
to

xir--xi - i, ' i*xixr

ui t- |'iui,

where 0 : exp(O(x)) and O(x) : (ci.jxxi), we arrive at a system

* i : u i + r i

for which all the first partials of ri vanish at 0. Let's call this a " type one "

reduction.
We now consider the x, equations. For notational reasons we write x and

y instead of x, and x,. Consider then

* i : u i ,  i :  l r 2

yt : aj*t'ur * B';lxjuk + qlirj

where qi have vanishing first partials with respect to x and y at zero.
Split Bi* up as Bi1 : P'jk + p; wittr the former being symmetric with re-

spect to jk and the latter skew symmetric with respect to the same indices.
Notice that if we replace y by yt - i!'iu*itr - cj.yxt then

y:pjrxiuk a eiui

where 4i have vanishing first partials with respect to x and y at zero. Irt's
call this a " type two " reduction.

Using a type one reduction followed by a type two reduction we can
arrange matters so that the dim X :3, dim E : 2 system looks, in a neigh-
borhood of x : 0. like

* r : u r  + r l

* 2  : u 2  +  1 2

jt: urx2 - u2xr * qt(*t, x'\ut + qz(xr, x2\yf + r3
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where 13 has_the property mentioned above: its first and second partials with
respect to xr and x2 vanish atzero, and its first partial with respect ro y
vanishes at zero. we need to eliminate the quadratic terms qr andq2. To this
end substitute

yv. y - h\x)

with h(x) cubic in x and selected in such a way as to put the expression for jr
in the form

jt : ur xz - x2ttr * axr yur + fxt wr.
It is easy to see that such an ft exists. After the further substitution

y 6 y - a x t y - B x 2 y
we have

* , 7 : u r  + r 7

i c 2 : u 2 + 1 2

i :  ut(x '  *  axrxz + d.y) -  ut(" t  -  f* t* ,  + py) + r3.

The final reduction to the canonical form is now eflected by the substitutions

xt*'xr * ay * axrx2 + 2f(*r),

x2r- x2 + fly - fl"ttt - 2a(xrlz

f u r l  I  o  a x 2 - B x t l f u t ]
Lu, l*  

'*P 
[-o* '1B' '  o j [ r ,J

The statement about the form of the Jacobian at zero may be verified by
noticing that the linear transformation which defines the above trans-
formation on (x1, x2)has no z component if and only if the system is initially
in the desired canonical form.

Based on these techniques we can prove the following theorem.

Theorem l. Giuen x : B(x'lu with dim u : m and dim x : m(m + l)12 and
giuen that E(rt spans pn(m+r)/2 we can choose coorilinates (ri, *2, ..., x^,
!t'', lt' 

t, . . ., !^ 
- t' ̂ ) in a neighborhood of a giuen point,sdl x : 0, so that the

equations take the form

* i  :  u i  +  r i ,  i : 1 , 2 ,  . . . ,  m

j t ' i  : u i x i  -  u i x i  + r i i ,  i , j  : 1 , 2 , . . . , f t t ,  i < j

where the ri anil rii haue uanishing first partials with respect to x and y and in
aildition rii has uanishing second partials with respect to xi and xi. Moreouer,
giuen any second set of coordinates with this property it follows that the
Jacobian of the dffiomorphism which relates themhas the block diagonalform

,  l J , '  o l' :  
I  o  J n n ]

when eualuated at zero.
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In the next section we will analyze in detail the system defined by this
canonical form without the remainder terms. This analysis will explain, in
part, the hypothesis that n : m(m + I)12. In fact even the approximating
problem may display a certain lack of robustness with respect to the location
of the conjugate points unless this condition on the dimension is satisfied.

Model Spaces

Based on the claim of the previous theorem, the systems of the form

* i  :  u i ,  i :  l r 2 ,  . , . ,  m

y i j  :  u ix j  -  n jx t ,  i ,  i  :  1 ,2 ,  . . . ,  f f i

assume a special importance. In this section we explore the associated
geodesics. What we will show is that the optimal solution has a remarkably
simple structure. One might even think of this class of systems as being the
appropriate analog of the flat Riemannian spac€s in the present context.

There are many possible notational schemes: we begin with one which is
control theoretic and mention at the end an alternative based on dillerential
forms. Consider x e R' and Y e o(m), the set of n by n skew symmetric
matrices. The control svstem is

X : U

i ' : x u T - n x r .

It is easy to see that this system is controllable on Rn x o(n) and that this is
equivalent to the problem defined above. If we are to minimize

f l

4: |  (u,  u) i l t
J o

subject to fixed boundary conditions x(0):0, x(1).= s, f(0): g' if
y(1): S, then an elementary Lagrange multiplier argument shows that
there exists a skew symmetric matrix A such that

it * ltu :0.

Thus

* :  u :  e t t e ,

and the corresponding value of 4 is just llall. Since x(0) : 0 and Y(0) : 0 we
can also write

r ( t ) :  e^tb -  b

S;61 {r,syr{

and
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The optimal trajectories to points on the set x(1) : 0 are especially inter-
esting. In this case the expression for I simplifies to

e^'(bb'l\' - ltbb'yr''' Ot.

Theorem 2. The control u(') defineil on f0, Ll which minimizes

" l

v( l ) :  I
J o

fo,

, ' 1

, :  J o ( u ' u )  
d t

* , : u i  x ( 0 ) : 0  x ( l ) : 0

t  : x u r  - u x r ;  Y ( 0 ) : 0  Y ( 1 ) : Y
satisfies

i t + A u : O

for some sl<cw-syrnrnetric matrix A. The associated ualue of p is giuen by

p((0' 0)' (0' y)) : Ar * 2)., + T"t * "' * 1127,

where *i11, +i12,..., +i1, are the eigenualues of Y listed in decreasing
order according to the size of the imaginary part. Any two optimal controls u1
and u2 transferring (0,0) ro (x, Y) are related by u, : 0u2for some orthogonal
natrix 0 such that 0Y0' : Y. The point (x, Y\ is conjugate to the poinr (0, 0)
if, and only if, x belongs to an inuariant subspace of Y which is not in the
complement of Ker Y,

Pnoor. The first observation is that the range space of the operator

r l

* :  
)oe^tbb'e^'t  

dt

is the same as that of (b, Ab, . . . , A'- rb) and that the dimension of this range
space is upperbounded by the number of distinct eigenvalues of A. Second, if
{b : b then A must have at least rank W eigenvalues of the form 2Qni with

@ an integer since b is necessarily a linear combination of eigenvectors
corresponding to such eigenvalues. Finally, if 0 is any orthogonal matrix we
have p((0,0), (0, y)): p((0,0), (0, 0'yA)). We may, therefore, understand
the general situation by understanding the case where A is of the fprm

0
- Q)2

0 rot
-a)r 0

A _
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with rrrl :Znhr, and no @* is repeated. In this case a calculation shows that

(b? -b3 )  o  o
0 0 0
o o (b3-bi)
o  - (b3 -b i )  o

But this makes the solution obvious. Since the cost is llnbll we need to
p ick  { {1 ,  Qr , . . . ,  4^ rz \  to  be  {1 ,  2 ,  . . . ,  m l2}  i f  n  i s  even and {0 ,  1 , . . . ,
(m - t)12| if m is odd. The total cost will then be expressible in terms of
eigenvalues of Y. Say that the eigenvalues of Iwith positive imaginary parts
are il.r, ilr, ..., i,i, listed in decreasing size of the imaginary part. Since the
eigenvalues of Wlt - L'W are (bl - b1)lfr, etc., we see that the minimum
cost is just

4* :  l r  + 212 + 3). t ,  . . . ,  r )"n, r  < ml2'

As for the lack of uniqueness of u, of course x : u implies 9ic : 0u and so
0u and u accomplish the same transfer as long as0'Y0: Y. On the other
hand, in view of the specific form of the optimal control we see that any two
optimal u's which steer (0,0) to (x, Y) must be so related.

It is worth remarking that while p((0, 0), (0, cf)) : lo I p((0, 0), (0, Y)) it
does not define a norm on the space of skew symmetric matrices because
the unit ball is not convex. The geometry of the unit ball is partly explained
by the remark that the line segments in its boundary correspond to certain
line segments in a Cartan subalgebra of So(n).

If we consider a more general version of this problem whereby we wish to
control

* : U

t ' : x r d 2 r u ,  i : 1 , 2 , . . . , r

with the Cl, skew-symmetrig then it is no longer true that the conjugate
points have such a nice structure; in fact, even the connected subset which is
conjugate to (Q 0) and contains (0, 0) need not admit the structure of a
manifold in any natural way.

There are two possible generalizations of this problem which are inter-
esting and have been investigated in special cases. The first concerns the
possibility that it is not E(1) which spans TX but rather some higher Bi). The
second concerns isoperimetric problems which are not based on flat spaces
but rather spaces of constant curvature.

I.et A(R') denote the 2'-dimensional Grassmann algebra. Recall that
A(R') splits as the sum of m * 1 vector spaces Ao(R') + Ar(R') + .'. +
A'(R'), the pth of which is of dimension (i); Ao(R-) is called the space of
p-forms. There is an antisymmetric multiplication in A(R')denoted by n
and called exterior multiplications; it respects the above decomposition in
that

f Fu?o-uz,)
w t - l \ w ' : l  o

L O

n : Ao(R-) x At(R')-+Ae+{(Rn).



Control Theory and Singular Riemannian Geometry 25

Now consider a control system for which u e Al(R"), x e A(R') and

* o  : 0

* t : t l A X o

X p : U A X p - r

If we set xo : 1 and delete the first equation, this is a system for which
E(i) : Ar(R-) + "' + Ar(R-). Above we considered the special case p :2.

A second kind of generalization which yields interesting results concerns
systems for which X is principle bundle over a Riemannian space M, u takes
on values in TM and the equations of motion are of the form

i n :  u

i :  I  utei(m)y

where Y is some representation of the group, the Oi(n) belong to the
appropriate Lie algebra. The special case of an Sl bundle over 52 has been
investigated, by J. Baillieul [5] and N. Gunther and T. Goodwille

[unpublished].

A Second Order Operator

Considerations having to do with stochastic differential equations contain-
ing m-dimensional Wiener processes lead, under an appropriate hypothesis,
to a naturally defined second order partial differential operator associated
with our basic problem. The resulting operator is a generalization of the
Laplace-Beltrami operator; it will be hypoelliptic but typically not elliptic.

Recall that an nr-dimensional Wiener prooess w has a 0(m) invariance in
the sense that the statistical properties of the solution of an It6 equation

ax : f (x) dt + G(x) dw

are identical with those of the Itd equations

ax : f(x) dt + G(x)O{x) dw

where 0(x) is an orthogonal matrix depending smoothly on x. This 0(n)
invariance means that the same group of transformations investigated in
connection with the local canonical form is relevant here as well.

Given x : B(x\u as in the second section we define

.f'(r) : -l*ol (summation convention)
Z O X 1  '

and consider the stochastic equation in the sense of It6.

n

ax : f (x) dt + B(x) dw.
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Together with this equation we consider the equation for the evolution of
the associated probability density function p(t, x\ which is

U  o  " : ' '  l a  A
a; : 

- 
fii f'$)o * i ulalu'r'r'

or

op
E :  

t *  P '

The operator l* is not, however, invariantly defined because the probability
density p is the density with respect to the measure dx1, dtr, ..., dxnand,
when we change coordinates in X, this transforms by multiplication by the
determinant of the Jacobian. The ellect on I.* is therefore

L* t-- rlt- | L*rlr

where ry' is the determinant of the Jacobian.
If the underlying manifold has a Riemannian structure on it then it has a

natural measure, namely /detc ilx1dx2...dxn where G is the metric
tensor. In that case it may be verified that the operator defined by

I

GAZliz 
L*(det G)Lt2

is the standard Laplace-Beltrami operator. Thus to get an invariantly
defined operator in the present context it is enough to single out a set of
dilleomorphisms which are related by transformations whose Jacobians are
constant.

Based on the work we have done we are in a position to identify a suitable
subset of the set of all difleomorphisms in the following case. suppose that
for * : B(xlu we have Br) : TX and suppose that dim X : m(m + I)12 so
that Theorem 1 applies. we have a splitting of the tangent space at each
point [X:E"* F,. We also have a method of constructing an inner
product on ([4 E]+ E)IE. However, in view of the given decomposition of
?, it can be naturally identified with EO (t4 El+ E)IE. Since both these
factors have euclidean structures we have obtained from the euclidean struc-
ture on E a euclidean structure on T,x. what role this might have in the
study of the original problem remains to be investigated, however it does let
us define a volume form on T,X and hence singles out an invariant second
order operator.

As remarked at the end of the second section, the second order operator

plays the role of the heat operator on the metric space defined by .*: a,
jt : u, 2 : xu - yr. A calculation shows that it is also the second order
operator defined by the above procedure. It is hypoelliptic but not elliptic.

,.: (*.. ,*) . (& _.*)'
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In view of the many interesting results which relate the magnitude of the
eigenvalues of a Laplace-Beltrami operator to the lengths of geodesics on a
compact Riemannian manifold it is natural to expect that this would be a
fruitful area of study in the present context. In an earlier paper [9] the
spectrum of the Fokker-Planck operator was calculated for a class of prob-
lems which fit our framework and the spectrum was related, in a rough way,
to the controllability of the systems. The time it takes a Fokker-Planck
equation to reach a steady state is of some interest in applications and this is
related to the spectrum of the Fokker-Planck equation;perhaps the time is
right for a more general study of this type.
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