On the Computer Control of Movement*

R. W. Brockett
Division of Applied Sciences
Harvard University
Cambridge, MA 02138

Abstract

In this paper we describe the theoretical back-
ground for an ongoing experiment in motion control.
The work has as its goal the discovery of efficient
ways to distribute the computation and organize
the communication needed to manage systems in-
volving many degrees of freedom and unpredictable
environments. Formalizing motion control to the ex-
tent necessary to be able to investigate correctness
of motion control programs is an important subgoal.
A conceptual framework is presented together with
some remarks on an existing implementation which
uses these ideas.

Introduction

A common way to modularize the development of com-
puter controlled devices is to focus on three problems:

a) The definition of an interpretive language
capable of describing the tasks to be done.

b) The construction of an interpreter/mechanism
which accepts such descriptions and exe-
cutes the task.

c) The creation of suitable applications pro-
grams for facilitating the generation of the
description of specific tasks in terms of the
interpretive language.

Frequently the interpretive language is designed with a de-
gree of device independence so that the work invested in
its development can be amortized over many products. For
example, various commercially available pen plotters and
laser printers fit this pattern and a number of motion con-
trol products are also of this type.

The main problem in motion control is to simultane-
ously achieve adequate speed and expressiveness. In this
paper we discuss a solution to these problems based on the
type of modularization scheme just outlined. More specif-
ically, we define the essential parts of a general purpose
motion description language and show that with a modest
investment in computational hardware for the interpreter,
a language based on these primitives can give adequate
performance. The main scientific issue to be addressed is

*This work was supported in part by the U.S. Army Research Office
grant number DA AL03-86-K-0171 and the National Science Foundation
grant number CDR-85-00108.

CH2555-1/88/0000/0534$01.00 © 1988 IEEE

534

that of how to choose the operators which are to be in-
cluded in the language and, hence, interpreted by the in-
terpreter/mechanism. We define just three, although two of
these accept a number of parameters. They are: i) an op-
erator for specifying a feedback dependent, vector-valued
velocity for the mechanism together with a time interval
over which the velocity rule is to be used; i) an opera-
tor which specifies a change of coordinates thus altering
the meaning of subsequent input data; and 1) a report-
ing function. From the point of view of robotics, perhaps
the most innovative features are the introduction, through
i), of programmable compliance at the lowest level and the
use of a combination of table lookup and matrix multipli-
cation, using the idea of exponentially separable functions,
to implement the sweeping generalizations of the inverse
kinematics problem embodied in i1). Analysis is given sup-
porting the expressiveness and computational tractability
of a solution based on these choices.

In addition to being an abstraction of certain parts of
engineering/computer science practice, our approach has
been influenced by the psychology literature. In particu-
lar Bernstein’s work on the degrees of freedom problem [1]
and Hinton’s work 2] on the computational tractability of
the inverse kinematics problem are provocative as are the
more specialized theories of Marr [3] and Albus [4]. In this
context, one of the attractive features of the framework dis-
cussed here is the clear separation between low level feed-
back rules (part b) and higher level planning (part c).

Portions of the setup described here have been imple-
mented at the Harvard Robotics Laboratory and some re-
marks about this are given in later sections. Alex Bangs,
Victor Eng and Josip LonZarié, as well as others in the lab,
have contributed to this implementation and made sugges-
tions about the theory.

Open- and Closed-Loop Control

We wish to achieve a degree of device independence
in our treatment of motion control. Nonetheless, because
the amplifiers, actuators, and mechanisms which will ul-
timately realize the motions are governed by the laws of
physics, adopting a differential equation model for them is
reasonable. Our notation for the description of this “lowest
level” hardware is

£(t) = f(z() + Gz()v(8) 5 (t) = h(=(t))

with z being an n-dimensional state vector, v being a m-
dimensional vector of controls and y being a p-dimensional
vector consisting of the sensor outputs.

In the process of arriving at such a model various ap-
proximations will be necessary. Even so, typically z will
include components for the position and velocity for each
mechanical degree of freedom, components representing dy-
namical effects in the actuators and amplifiers, etc. The
vector y will include components for the outputs of posi-
tion sensors for all the mechanical degrees of freedom, force
sensors for at least some mechanical degrees of freedom,
and possibly components for the readings of amplifier cur-
rents, vision sensor outputs, etc. The components of v will
be the inputs to the various amplifiers associated with the
actuators.

The function of a motion control system is to use the
sensory data represented by y, together with instructions
supplied exogenously, to compute v. Engineers commonly
divide control actions into two categories, open-loop con-
trol and closed-loop control. The open-loop situation cor-
responds to setting v equal to some fixed function of time,
ignoring y altogether. A prototype for open-loop control is
launching a projectile with no post-launch corrective mech-
anisms. On the other hand if there is some sensing mecha-
nism whose output can be used to adjust the input to the
system based on its evolving performance, then one speaks
of closed-loop control. The reason that closed-loop control
is absolutely essential in many settings is that it enables
the system to adjust its response to a partially unknown or
changing environment. In the present context the equations
of motion under the application of an open-loop control u()
are just

(1) = f(=(t)) + G(=(t))u(t)
Closed-loop control, using the feedback rule v(t)
results in the differential equation

(t) = f((t) + G(=(t))k(h(=(1)))

k(y(t))

Although this terminology is well established, its usage
invites two types of difficulties. The first is that it does not
seem to correspond to everyday experience with human mo-
tor control. One can easily appreciate that many human
motions appear to be a combination of a pre-positioning
phase achieved with little or no feedback, followed by an
environmental adjustment phase characterized by a signifi-
cant use of feedback. Walking, grasping and shaking hands
are examples of what we mean. Thus it seems that in deal-
ing with complex systems it is more insightful to think of
the mode of control as alternating between these two possi-
bilities. The second point has to do with basic mathemat-
ics. As defined above, open-loop control is not an alterna-
tive to closed-loop control but simply the special case for
which k(y) is independent of y. Commonly, one appeals to
additional conditions so as to be able to make a clear dis-
tinction between open- and closed-loop control. One pos-
sibility is to designate a neutral or “home” value for y. If
this value is yo, then it is possible to split any k(y(t)) up as

535

the sum of two terms, one of which is independent of y and
the other of which vanishes when y is in the home position.
That is,

k(y(2)) = k(yo) + (k(y(?)) ~ k(vo))

In this equation the two terms on the right can, without
ambiguity, be called the open- and closed-loop parts, re-
spectively.

For a motion control situation in which the components
of y represent positional data and force data sensed from
the environment, y, would correspond to the home position
of the mechanism and a zero value for the sensed environ-
mental forces.

MDL Devices/Modal Segments

Eventually we will arrive at a more or less complete
description of a family of computer controlled mechanisms
which we will call MDL devices. (Here MDL refers to “mo-
tion description language”.) The full description of these
mechanisms will come in stages, only the first part of which
is given in this section.

Consider a mechanism with inputs and outputs as above.
Suppose, furthermore, that it is embedded in a computing
environment which includes

i) Registers, buffers and random access mem-
ory.

ii) Analog to digital converters operating on a
fixed cycle of period 7, producing a stream
of sampled and quantized values of y.

iii) A microprocessor which can operate on the
stream of sampled values of y, together
with suitable descriptions of u and k()
from memory, so as to produce digital rep-
resentation of a stream of values of u(t) +
k(y(t)) delayed relative to the y stream by
less than 7 units of time.

iv) A digital to analog computer for converting
the digital representation of u(t) + k(y(t))
to analog form.

We do not specify either the sampling period 7 or the
precision of the digital representations. Our point of view
is that u and k will be downloaded to the MDL device with
more accuracy than any practical implementation could
use. We suppose that 7 is small compared to the me-
chanical/electrical time constants of the system and that
the implementation is such that making 7 smaller will only
improve the approximation which the actual path makes
to the path predicted by the differential equation model.
Thus all deviations from the ideal are the result of r being
positive rather than being infinitesimal and the word length
used to describe y and v being finite rather than infinite.

So far then a MDL device is a computer controlled
mechanism which accepts u and k and forces z along a
path which closely approximates the solution of

= —
——
MANTPULATOR SENSORS
L

t "
INTERPRETER A/D CO[\WERTER‘_J

T

Figure 1: Partial Description of a MDL-Device.

z(t) = f(z(t) + G(=(8)) (w(t) + E(y(t))

with quality of the approximation improving as 7 tends to
zero and the word length tends to infinity. However, be-
cause different parts of a task may call for different con-
trol policies, instead of just transmitting {u, k) to the MDL
device we will transmit a triple (u,k,T) with the under-
standing that T defines the epoch over which the (u,k)
pair is to be used. We will refer to triples (u,k,T) as be-
ing modal segments because they specify a mode of control
over a segment of time. To be more explicit, what we have
in mind is that on receipt of an input string (ui, k1, 71)
(ug, k2, T3) ... (ty, k., T;) the MDL device executes a mo-
tion which closely approximates the z(} defined by

t= f(z)+ G(z)(u1 + kr(y))
i=f(z) + G()(u2 + k()

0<t<Ty
T <t<Ty+ T

r—1 r
i=f(2) + G@)(ur+k(y) ;5 XL<t<) T
i=1 i=1
Both the sampling rate 1/7 and the rate at which (u, k,T)
instructions can be processed are important measures of
the performance of an MDL device.

Expressiveness of Affine Modal Segments

In order to be able to implement a system which inter-
prets a family of modal segments it is necessary to index
the possible modes in a finite way. This necessitates re-
stricting the set of all possible u’s and k’s in some way. A
natural choice is to take what is, in effect, the first terms in
a Taylor series expansion for u + k(y). By an affine modal
segment we understand a (u, k,T) of the form

U1 uy a;y ayz a1p y1— b
V2 Uz azy Q22 Qz2p Y2 — b2
. = ; + . .

Um Um A1 Gm2 Amp Yp — bp

with the u;, a;;, b, and T all being floating point numbers.
For a system with m inputs and p outputs such modal seg-
ments are described by a total of (m + 1)(p + 1) numbers.
We now establish two slightly technical results supporting
the idea that restricting the implementation to affine modal
segments does not, in a practical sense, limit the expressive-
ness of the interpreter/mechanism.

More precisely, we make the following claims:

a) If f and G are continuous functions of z
whose components satisfy a Lipshitz con-
tinuity condition, then affine modal seg-
ments can, in the limit as 7 goes to zero,
be used to generate an arbitrarily good ap-
proximation to any curve which the mech-
amsm is capable of generating.

b) If f and G are differentiable functions of z
and if there is any u, k pair which makes
zp an equilibrium point while making the
solution z(t) = zo an exponentially stable
solution of £ = f(z) + G(z)(u+k(z)), then
there is an affine control law u + k(y — b)
such that the affine control law makes z;
an equilibrium point such that the solution
z(t) = zo is exponentially stable.

The importance of the first of these statements is ob-
vious; the importance of the second may be explained as
follows. In constructing motion control programs one is,
in the first instance, concerned with kinematics; at a more
refined level dynamics become important. In order to min-
imize the importance of dynamics, that is to minimize the
importance of the short term transient effects, one may try
to keep the motion close to a series of equilibrium states.
If these equilibria are stable, this procedure will be robust.
It may also be noted that stable equilibrium points are to
mechanisms what wait states are to microprocessors, nec-
essary evils useful for solving timing problems.

We can easily prove both of the above assertions. With
respect to the first one, a proof goes as follows. Let z(¢) be
any solution of

(1) = f(=(8)) + G(z()v(1)

According to a well known result in differential equation
theory, (see, e.g. [5]), the standard Euler approximation to
this solution, obtained by solving the difference equation

z(nh + h) = z(nh) + hf(z(nh)) + hG(z(nh))u(nh)

and using straight line interpolation, converges, as the step
size h goes to zero, to the true solution. Letting 7" = 7,

letting & = O, and letting u; = v(hi) we see that we get a
system which, if approximated by Euler’s method, would
have the same approximation as the original system. Thus,
by the result cited, as h goes to zero, the solution of the sys-
tem driven by the (u, k,T)’s approaches the original solu-
tion. We note in passing that this proof describes a method
of achieving expressiveness at the expense of dealing with a
high rate of (u, &, T) communication. As far as the second
result is concerned. Suppose that

() = f(z(8)) + G((2)) (u(t) + k(h(=(2))))

has zo as an equilibrium point. Then « must be constant
and
0 = f(z0) + G(zo)(u + k(h(z0)))

Expand u + k(kh(z)) near z; as
T3y oz

k(h(zo)) 3y

@ + PQ(z — o) + nonlinear terms

u + k(h(z)) Ok Ok (s — 20)

If we use an affine modal segment of the form (&, Py, T),
then the linearization of the modal controlled system will
be the same as that of the original system. However, as is
known (see [6]), exponential stability depends only on the
linearization.

Coordinate Changes/Inverse Kinematics

Because the sampled value of y(t) will change every r
seconds (e.g. perhaps as often as 10° times per second) it
is necessary to be able to evaluate k(y(t)) rapidly. This is
to be carried out, using special purpose hardware if neces-
sary, by the interpreter. Even a modest system might call
for (m + 1)(p + 1) ~ 100 and even if just 4 bytes are al-
located for a floating point number, then about 400 bytes
will be required for the description of a single affine modal
segment. It will be advantageous to arrange matters so
that the interpreter/mechanism can be adequately expres-
sive with (u,k,T)’s which, on average, have lifetimes of
10 - 7 to 10% - 7, since shorter lifetimes would result in un-
reasonably high communication rates between the (u, k, T)
generator and the interpreter/mechanism. To enhance the
expressiveness of single modes, as opposed to relying on
frequent mode changes in order to achieve expressiveness,
we introduce an additional operation. Its availability will,
at the same time, make it easier to write succinct motion
control programs. The operation is a type of coordinate
change whereby u is replaced by ®u for & some invertible
p by p matrix whose entries depend on y. The idea is that
when the interpreter receives a @, subsequent modal seg-
ments will enforce the rule

&= f(z) + G()®(y) (u + k(y))

We need to explain why this particular type of coordinate
change is the most crucial one to implement. One of the
basic problems in the control of robotic mechanisms is the
so-called inverse kinematics problem. In its simplest form,
it deals with the problem of inverting the vector valued
relationship z = g¢(f) which maps equilibrium configura-

537

tions corresponding to the motor positions (61,02, ..,6,)
to end effector positions (zy,2,. .., 2,). If we differentiate
g, we get a relationship expressing the velocities of the z’s
in terms of the velocities of the 8’s

3=G(0)d

Assuming that the 8’s can be controlled, i.e. that they are,
in effect u’s, we can “undo” the system kinematics by re-
placing u = 6 by G~!(f)u. Above, in the definition of the
change of coordinates, we asked that & depend only on the
sensor outputs y. We have, however, insisted that all kine-
matic variables be sensed so that G~! is actually expressible
in terms of y.

Because of dynamical effects, the above algorithm for
inversion of the system based on kinematics alone will only
provide an approximation to the true dynamical inverse.
The quality of the approximation improves as the velocity
and acceleration terms approach zero. True dynamical ef-
fects will not be discussed here since they are, in terms of
systems of the complexity envisioned here, not as important
as the kinematics.

Even within these constraints not all the types of co-
ordinate changes which can be envisioned can be imple-
mented; we discuss only one particular type which, how-
ever, includes the usual “inverse kinematics” of open chain
robots and a number of other cases as well. In our earlier
paper (7] we showed that the homogeneous coordinate ma-
trix X associated with an open chain manipulator can be
expressed as

X(ali 921 s ,0q) = eAlaleAngz .

with 81,0;,...,0, being the motor shaft angles and A, Ay,
..., Aq reflecting the link geometry. It is shown in the
paper referred to that the derivative with respect to time
can be written as

Aqb
. € l'qXO

d . R
d_tX(olyoh LR 70q) = (A101 + CAlﬂlAzage—Algl + -
+ eA19leA292

e eAq“Bq“‘Aqfiqe‘A"“"q‘l
—A,B;e—Aol)

.8,

The merit of this expression is that it can be used to display
the jacobian of the map from 6 to X as a relatively simple
combination of functions of one variable rather than as an
arbitrary function of n variables. This will allow us to use
table lookup in an advantageous way.

S

Xo(64,0,,..

We want to establish a result here on the evaluation
of a function of several variables and its differential. In
view of the results of [7] it applies directly to the change of
coordinates problem.

Definition: We will say that a function ¢ of the variables
(61,0s,...,8,) is exponentially separable if, after a possible
reordering of the s, there exists a positive integer n, a set
of n by n matrices Ay, A,,..., A, and a pair of n-vectors ¢
and b such that

¢(91,02, e

L 8,) = cetrfiehafz gAdbep

Theorem: Suppose that ¢ is an exponentially separable
function of 8y,0,,...,8,. Denote by L a grid of {? points
{61,62,...,0,]6;, = multiple of §,—1/2 < 6; < 1/2}, then
with the storage of gin? + 2n real numbers, ¢ can be evalu-
ated at any point in L by reading gn?+2n real numbers from
memory and performing gn® + 2n scalar multiplications.
Moreover, the partial derivatives 9¢/d6;, ¢ = 1,2,...,q
can be evaluated at any point in L by reading gn? +2n real
numbers from memory and performing 2¢gn* + 2nq scalar
multiplications.

A homogeneous coordinate matrix in three dimensions
contains 12 nonconstant entries. If we divide 27 into v equal
segments, then with 12v numbers or, say 48v bytes, we can
store an approximation to e for 0 < § < 2r. In order to
form the set of matrix valued coefficients for él,éz, ce ,(jq
in the above expression we need to carry out 2¢ matrix
multiplications. (At first sight it may seem that it takes
about ¢? matrix multiplications but the products are nested

in a certain way so that computing eA:f:, eAifigdabz
eA101 04262

)
e44% takes only ¢ — 1 matrix multiplications.)
Thus to evaluate G in the kinematic equation

z = G(z)v

takes only 12-v-2-(n —1)-16 = 384:v - (n — 1) mul-
tiplications. (The leading constant in this bound can be
improved by looking in more detail at the block upper tri-
angular structure of the matrix multiplication involved.)

Having G(y) consider the matrix differential equation
H=HGH-1I)

If G71 exists and H(0) is sufficiently close to G™!, the so-
lution of this equation tends to Hy = G~'. To evaluate the
right-hand side of the differential equation takes 2 n by n
matrix multiplications. Thus we can take one step in an
Euler method at that cost in computational complexity.

As in the case of the (u, k,T)’s, it is necessary to restrict
the choice of ®’s to some finite set and to index this set. Qur
solution to this will be simply to designate a finite subset
of the set of exponentially separable ®’s. The justification
of this is that most robotic mechanisms need just a few
such changes of coordinates, e.g. changes that correspond
to rectilinear or cylindrical movement in end-effector space.

Sorting all this out then, we see that we can keep a
running value of H available to form H(y)(u+ky) as needed
to implement the change of coordinates. In this sense, then,
we can assert that the above change of coordinate map lets
us program in end effector coordinates simply by selecting a
® which inverts G. For systems with moderately complex
dynamics this can be done at an acceptable speed using,
say, a five megaflop digital signal processing chip for the
matrix multiplication and a megabyte of ROM to store a
table of values for the matrices. What we have in mind is
that a given MDL device will have a built-in finite list of

538

coordinate changes which are supported by the combination
table look up/computation scheme described here and that
the user can select from this list of coordinate changes.
This situation is not unlike what one finds with respect
to printers and fonts; a given printer supports a number of
fonts, usually defined in ROM, and the user can select from
this list.

Internal States

It usually happens in the design of feedback compen-
sation for control systems that it is desirable to introduce
dynamic compensation. By this one means feedback control
policies which are not just v = k(y) but rather something
like .

o(t) = ky(®) - [(v~ w)do

Without the availability of such dynamic compensation terms
the control system designer is severely hampered.

In order to achieve this kind of flexibility we supplement
y with certain components which are associated with “sim-
ulated dynamics”. That is, in addition to an MDL device
having the properties ascribed above, we ask that it should
have the capacity to run vector valued iterations, as speci-
fied by the instructions. More specifically we postulate that
in addition to properties ¢) through iv) listed above MDL
devices have the following capability.

v) Internal to the computing environment is
the possibility for simulating a-dimensional
vector equations

Te=0. ; Ye= T,

That is to say, having specified nonnegative integer «, the

a-dimensional vector z, is appended to the vector of quan-

tized values of y and the vector v, is appended to the quan-
tized values of v. This means that the v and the k in

a modal segment (u,k,T) is then “enlarged” in the sense

that k depends on y and y, and maps to z and z, whereas

u is enlarged to include an z, part.

Once these internal states are added, the v and y of the
mechanism are supplemented with v, and y, of the internal
states and the total system is then a quantized, discretized

version of
. _ | Yold
? y Ic

#(t) = f(z(t)) + G(2(t))voua

Ze(t) = ve(t)
L]

In particular the size of the vectors v and b and the ma-
trix & in the description of an affine modal segment increase
as the result of adding simulation states. -

with input

In addition to being useful for feedback compensation,
simulated states can be useful for generating certain types
of nonstraight-line motions. For example, if one wants to
generate a circle it is possible to use a two dimensional

internal vector with an affine modal segment selected so

that
sof0 1
=l -10]|%

since the solution of this equation is

cost sint
—sint cost

z.(t) = []z,(o)

Recording

As we have argued before, at the interface between the
interpreter and the mechanism interpreter the data rates
are quite high but within the interpreter the computation
is highly structured. At the level of the modal segment gen-
erator the data rates are lower but the computation has less
structure. Ordinarily past values of the measured quanti-
ties, represented by y, are not needed or used. However
there arise situations involving adaptation and learning for
which past values of y are required. How can we accommo-
date an occasional request for past data without saturating
the capability of the system?

Clearly one cannot keep the entire past of y in memory.
On the other hand, a moderate size ring buffer storing the
most recent 10° samples is perfectly reasonable and repre-
sents almost no computational burden. At 200 samples per
second, and with y being 20 dimensional, this represents a
25 second epic. In order to get this information out of the
modal segment interpreter we must enlarge our free monoid
L so as to have it include atoms representing requests for
recent data.

On receipt of the atom (d, @) the interpreter will return
the present time (a time stamp) followed by a string of o
real numbers consisting of the most recent samples of each
of the variables y1,v2,...,ya-

Example for Illustration

In order to give the reader a specific example of how
this works, without getting into too much detail, we con-
sider an idealized situation. Consider a mechanism with a
differential equation description

1=V B1=21; Ys= fry

L=V 5 Y2=22 ; ys= fz,

That is, we consider a point which moves in the plane.
There are four scalar variables which are sensed, these are
the positions z; and z; and the z, and z, components of the
forces felt by this point. If we assume that the forces are
generated by the point (z;, z;) approaching objects fixed in
the z;,z, plane, then we can suppose that f,, = ¢;(z1, z,)
and f;, = ¢2(z1, ;). We undertake to control this system
using affine modal segments. Thus we can force the system
to follow any piecewise smooth segmented path generated
by differential equations of the form

539

I
[531 — | b ki ks kg T2 o™
E-2% kay kay kas kay ¢1(-"71,1?z) Uz
¢2(31,$z)

A sample programming problem would be, say, to find a
string of modal segments which drives the system from its
initial value to a point where the force is fon =1, f5, =0
and leave it there for a certain period.

Experimentation

For the most part, the ideas advanced here are the out-
growth of efforts in the Harvard Robotics Laboratory di-
rected toward the development of an effective control en-
vironment for a two finger, four degree of freedom planar
manipulator. This system consists of

a) The manipulator hardware, sensors, motors
and amplifiers

b) A card cage with A/D and D/A converters,
motion control cards and a single board
computer

c) A Sun 3/110 with a Bus extender,

The software consists of device drivers and a partial im-
plementation of the (u,k,T) — (®) — (d, a) setup has been
written by Alex Bangs, Josip LonZarié and, especially, Vic-
tor Eng.

Figure 2 shows the system in schematic form. Typical
tasks of interest include inserting pegs in holes, manipulat-
ing objects, etc.

There are ten sensor outputs, four positions associated
with motor shaft angles, two pressure sensors from the fin-
gertip force sensors and four current sensors from the mo-
tors. These are sampled at approximately 300 Hz and made
available on the VME Bus.

WORKSTATION

MANIPULATOR

Figure 2: The hardware schematic for a planar
manipulator.

The motion control cards operate on input strings and
optical shaft encoder (position) data to produce pulse width
modulated signals for the motor amplifiers. The commands
to these boards must be sent in ASCII which results in a sig-
nificant communication bottleneck. Each card can handle
two motors and provides for some coordination between the
motors controlled by the same card. The commands which
these boards accept include feedback gains and setpoints.
Unfortunately, the input strings which they accept are not
unconstrained (i.e. do not form a free monoid) and the com-
munication rates available are too low for some purposes.

Towards a Planning Medium

In order to be effective, the three types of primitives in-
troduced here, the (u,k,T) primitive, the ® primitive and
the (d,«) primitive need to be packaged by an applica-
tions program with a number of editing and file handling
features. We envision that human planning of the motion
sequence will take place with the aid of such a program. In
effect it will be the premotor cortex of the system. More
specifically, this “choreography” program needs to incorpo-
rate in a smoothly integrated way

i) file handling to facilitate storage and recall of motion
sequences,

ii) editing capabilities for splicing, time warping, scaling
and translation of motions,

ifi) a facility for previewing motions,

iv) algorithms for the optimization of motions via smooth-
ing, interpolation, time warping, etc.

The printer analogy is again suggestive. Postscript [8] can
be thought of as being a type of motion description lan-
guage; to make full use of it, one needs an applications pro-
gram facilitating its use. Generating motion is at least as
complex as generating descriptions of printed pages and de-
serves to have much more elaborate support than is presently
available.

Conclusions

We have described certain features of a three-part solu-
tion to the problem of general motion control. It involves
a motion description language together with an interpreter
mechanism and an applications program. The language is,
to a large extent, device independent and thus applicable
to a wide variety of systems. Its basic programming mode
is that of specifying a position/force dependent velocity for
the mechanism and a period over which the velocity specifi-
cation is to be enforced. An analysis is given to show that a
suitable type of change of coordinate maps with this mode
of programming can be supported and is capable of gener-
ating a wide variety of motions. An existing experimental
facility implementing ideas of this type is briefly described.

540

References

[1] N. Bernstein, The Coordination and Regulation of
Movements, Pergamon Press, Oxford, England, 1967.

[2] G. Hinton, “Some Computational Solutions to Bern-
stein’s Problems”, in Human Motor Actions - Bern-
stein Reassessed, (H. T. A. Whiting, Ed.), North Hol-

land, Amsterdam, 1984.

David Marr, “A Theory of the Cerebellar Cortex,” J.
of Physiology, Vol. 202, 1969, pp. 437-470.

James Albus, “A Theory of Cerebellar Function,”
Math. Biosci., Vol. 10, 1971, pp. 25-61.

E. Coddington and N. Levinson, Theory of Ordinary
Differential Equations, McGraw-Hill, New York, 1955.

W. Hahn, Theory and Application of Liapunov’s Direct
Method, Prentice Hall, Englewood Cliffs, NJ, 1963.

R. W. Brockett, “Robotic Manipulation and the Prod-
uct of Exponentials Formula,” Mathematical Theory of
Networks and Systems, (P. A. Fuhrman, Ed.) Springer-
Verlag, Berlin, 1984.

8

Postscript Language Reference Manual, Addison-

Wesley, Reading, MA, 1985.

