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Abstract

In this paper, we study the problem of determining a mathematical
description of the surface defined by the shape of a membrane based
on an image of it and present an algorithm for reconstructing the sur-
face when the membrane is deformed by unknown external elements.
The given data are the projection on an image plane of markings on
the surface of the membrane, the undeformed configuration of the
membrane, and a model for the membrane mechanics. The method of
reconstruction is based on the principle that the shape assumed by the
membrane will minimize the elastic energy stored in the membrane
subject to the constraints implied by the measurements. Energy min-
imization leads to a set of nonlinear partial differential equations.
An approximate solution is found using linearization. The initial
motivation, and our first application of these ideas, comes from tac-
tile sensing. Experimental results affirm that this approach can be
very effective in this context.

KEY WORDS—membrane mechanics, soft fingers, imaging
shape

1. Introduction

In this paper, we investigate the theory and application of a
new sensing modality based on imaging a deformable mem-
brane. This technique has many potential applications; here
we emphasize its applicability to tactile sensing. Deformable
membranes are especially suitable for tactile sensing because
of their ability to conform to the shape of the object being
manipulated, providing compliance and helping to stabilize
the grasp. Fluid supported membranes possess desirable
force-displacement properties analogous to human finger-
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tips (Brockett 1985). Although a number of researchers have
experimented with deformable fingers (Akella and Cutkosky
1989; Son, Monteverde, and Howe 1994) and controlled grasp
using both the sensed location of contact and the applied
force (Chang and Cutkosky 1995; Kao and Cutkosky 1993;
Maekawa, Komoriya, and Tanie 1992), the explicit recovery
of shape does not seem to have been explored (with one excep-
tion discussed below). However, if shape information is avail-
able, it can be used in the control grasping operations (Mon-
tana 1988, 1989). In this paper, we concentrate our efforts on
the development of a method to recover the shape of the finger
in contact with an object: it is the subject of further work to
use this shape information for grasping applications (Hristu
1999).

Using an array of Hall effect sensors and a membrane finger
lined with magnets (Nowlin 1991) showed that it is possible
to recover shape using the relationship between the change in
shape and the change in magnetic field induced by the motion
of the magnets. Here we explore the use of imaging to infer
the membrane shape. Imaging is advantageous because the
sensor can be positioned at some distance from the area of
contact and hence can be protected from damage. In addi-
tion to its noninvasive nature, imaging is inexpensive and fast
enough for a range of applications. This paper shows that the
potential drawbacks of imaging, such as computational effort
and calibration issues, can be overcome.

Recovering three-dimensional shape from a two-dimensional
image requires careful modeling. The popular “shape-from-
X” paradigm in computer vision refers to situations in which
special assumptions are made about the image formation pro-
cess and/or the pattern of illumination (examples include
shading, structured lighting, controlled motion, and texture).
Depth (or equivalently shape) information can be recovered
using two or more images of the same scene (Beardsley and
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Zisserman 1995; Koenderink and Van Doorn 1991; Tomasi
and Kanade 1992; Verri and Torre 1986), two or more images
of a moving rigid object (Bennett et al. 1989; Harris 1992),
occlusions (Belhumeur 1993), or prior information about the
three-dimensional shape of the object (Lowe 1992; Perkins
1978; Terzopoulos, Witkin, and Kass 1987; Ullman and Basri
1991). The tactile sensing application considered here is such
that techniques requiring a moving camera are too complex.
The membrane is not rigid, and occlusions are usually not
present; hence, we must incorporate prior information about
the object being imaged, i.e., the membrane.

Here we use what may be termed “shape from elasticity”
in conjunction with a classical imaging model. Shape from
elasticity minimizes the need for heuristic assumptions about
the world. We draw a distinction between this work and the
large body of vision/graphics work that makes use of discrete
element elastic models for animation and interpretation (see,
e.g., Terzopoulos, Witkin, and Kass 1988; Yuille 1990; Lip-
son et al. 1990), which use deformable models of object to
accommodate shape variations and to compensate for projec-
tive effects as the viewpoint varies. In our work, we model
the physical properties of the elastic material that is being im-
aged and use this model in the recovery of the 3D shape of an
imaged membrane. The shape reconstruction applies to the
entire membrane, providing object shape information on that
part of the external object that is in contact with the mem-
brane. The idea of imaging a membrane to determine shape
has many potential applications beyond this discussion, in-
cluding its use in laproscopy and tele-medicine.

In the following section, we briefly describe the imaging
model. Then we describe a mathematical model that is based
on the elastic energy associated with a membrane under de-
formations from a known nominal position. The minimum
energy solution combined with boundary, volume, and im-
age constraints leads to a set of nonlinear partial differential
equations. Using grid approximations, we solve a linearized
form of these equations. Finally, we give some experimental
results of the membrane shape reconstruction algorithm.

2. Description of the Physical Setup

A prototype of the class of problems under discussion here is
shown in Figure 1. The imaging configuration is well-defined:
we image the surface of a membrane that forms part of the
boundary of a fluid-filled cavity. A pattern of dots has been
drawn on the interior surface of the membrane. The pattern to
be imaged and the light source are part of the sensor design.
Because the fluid in the cavity is essentially incompressible,
the volume contained within the cavity is constant.

The physics of the situation can be characterized as follows

(1) Displacements of portions of the membrane arising
from contact with external contacts that distort the
shape of the membrane. The portion of the membrane

that is not in contact with the external objects deforms
in such a way to minimize the elastic energy stored in
the “free” portion of the membrane.

(2) The volume contained within the membrane cavity is
constant.

(3) The boundary of the membrane is fixed, and the re-
maining components defining the cavity have a fixed
geometry.

(4) A large number of points on the inside of the membrane
are imaged. A suitable approximation of the nominal
(undeformed) position of the membrane is known from
prior calibration.

(5) The displacements of the dots on the image plane are
observed.

We use a pinhole projection model for the image formation
process. A coordinate frame is chosen (see Fig. 2) such that a
point with coordinates (x, y, z) projects to image point (u, v):

u = −f
x

z
, v = −f

y

z
, (1)

where f is the distance from the image plane to the pinhole.
Suppose that under deformation the membrane pattern

distorts and the coordinates of a pattern point change from
(x, y, z) to (x′, y′, z′). The imaging equation yields the
following:

(x′, y′, z′) =
(
z′
(

u + δu

−f

)
, z′

(
v + δv

−f

)
, z′

)
, (2)

where (u, v) are the image position of the dots on the mem-
brane before the distortion and (δu, δv) are the measured
image displacements of the dots on the membrane after the
distortion.

It is crucial to know the a priori position of the dots on
the membrane with reasonable accuracy. In the application
presented here, the membrane dot pattern is drawn on the
membrane using a CNC milling machine and the relationship
between the dots and the camera is established using a cal-
ibration procedure, to be described later. Under distortion,
the positions of each dot on the membrane are determined
from its projection in the image, up to a scaling factor (i.e.,
the depth, z′). The central issue here is the recovery of the
scaling factor.

3. Membrane Shape Reconstruction

Elementary treatments of the continuum mechanics of mem-
branes discuss small deformations of a flat membrane subject
to fixed boundary support. The situation of interest here is
more complicated because the unstretched membrane is not
flat, the region of deformation is not simply connected, and
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Fig. 1. (a)A graphical depiction of imaging configuration, (b) a typical image of the inside of the membrane, (c) the device in
pieces with the individual components indicated, and (d) a photograph of the actual device.

Fig. 2. Coordinate convention for imaging/membrane.

the mechanics impose a constraint on the “volume” of the
deformation. We ignore the thickness of the membrane and
any consideration of bending stiffness. Let the surface of
the undeformed membrane be identified with a manifold M .
Think of M as a Riemannian manifold with metric inherited
from ordinary three-dimensional space. The postdeformation
surface is identified with a manifold N ; the mapping

φ : M → N (3)

describes the displacement of the material points that make
up the membrane. For a given N , it is known that the map φ

that minimizes the elastic energy is a harmonic map from M

to N (defined below) provided that the membrane does not
wrinkle. Such maps are characterized as the solution of a set
of nonlinear partial differential equations, or, equivalently, as
the minimizers of the harmonic map functional

E(φ) = 1

2

∫
M

tr[J T (φ)HJ(φ)G−1]dVM − E0, (4)

where J (φ) is the Jacobian of φ, dVM is the volume element
on M , G is the Riemmanian metric on M , H is the Riem-
manian metric on N , and E0 is the energy associated with
the undeformed membrane. For deformations that stretch the
membrane, this expression is a suitable model of the elastic
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stored energy (Eells and Lemaire 1978; Eells and Sampson
1964). More discussion is given in Appendix B. The ex-
pression for E(φ) shows that if N is known, then the elastic
energy can be computed from a knowledge of the material
point deformations through a suitable linearization expressed
here as J . Although not immediately apparent, one may think
of this expression for energy as being the sum of the squares
of local changes in lengths along the two principal axes of the
deformations. It must be emphasized, however, that in the
applications we are discussing that the characterization of φ

will only be a means to an end because N will not be known
in advance. In fact, the determination of φ is of less interest
than the determination of N , but in our situation these must
be determined jointly.

3.1. The Elastic Energy

To proceed, we parameterize the space of deformations and
use a discrete approximation for E(φ). This will let us find
an approximation to N while finding φ. We will then use
the constraints imposed by the imaging and the constraints
on the volume of the cavity defined by the membrane and the
housing as data for an algorithm. As in Section 2, we use a
coordinate system with the origin along the optical axis. The
xy plane of this coordinate system coincides with a certain
part of the boundary of the cavity, and the membrane can be
identified with a surface above this plane (see Fig. 3(a)). We
need to consider separately the specification of the shape of
the membrane and the specification of the displacements of
material points.

To describe the shape, we specify the z-coordinate, zij
associated with the point on the undeformed membrane lying
above (xij , yij ) on the xy plane. This is not a material point.
We take as our description of M , thought of as a submanifold
of R

3, as

M = {x, y, z| x = x; y = y; z = s(x, y)} (5)

and describe its deformed version, N , as

N = {x, y, z| x = x; y = y; z = s(x, y) + ψ(x, y)}, (6)

that is, the shape function for the undeformed membrane is
s(x, y) and the surface map of the deformed membrane is
s(x, y) + ψ(x, y), where ψ(x, y) is the incremental shape
function. Our goal is to find the incremental shape map ψ ,
but, as noted above, we will need to find the material point
map φ in this process (Fig. 3 b,c) because we observe the
motion of material points on the membrane.

Under distortion, a point on the membrane with coordi-
nates (x, y, z) will displace, moving according to the material
point map

φ̂(x, y, s(x, y)) = (x′, y′, s(x′, y′) + ψ(x′, y′)). (7)

φ is a mapping of manifolds, and we use φ̂ to denote the
mapping in our specified coordinates. Anm×n grid is defined

on the xy plane. In the undeformed state, the projection along
the z-axis of the grid onto the membrane divides the membrane
into curvilinear quadrilaterals (Fig. 3(a)). The grid is distinct
from, and of finer resolution than, the dot pattern placed on
the membrane for the purpose of imaging (see Fig. 4(b)).
For the sake of brevity, we drop the adjective curvilinear and
refer simply to quadrilaterals throughout the remainder of
this paper. We index the quadrilaterals by the grid indices
i, j , i = 1, . . . , n, j = 1, . . . , m. Define the set

Bij = {(i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)} . (8)

By the ij th quadrilateral, we mean the quadrilateral with ver-
tices at grid indices in the set Bij . We consider the approx-
imation of φ̂ by a family of locally affine maps sending the
undeformed quadrilaterals to the deformed ones. We approx-
imate φ in the ij th quadrilateral by an affine map with linear
part, Aij , and translation part, bij . Table 1 summarizes the
language and notation we are using.

An expression for the energy associated with a material
point displacement map, φ, and a manifoldN has already been
given; it contains G and H , the metrics on M and N . These
metrics can be expressed in terms of the partial derivatives of
of the shape functions s and ψ ,

G =
[

1 + (sx)
2 sx sy

sx sy 1 + (sy)
2

]
(9)

H =
[

1 + (sx + ψx)
2 (sx + ψx)(sy + ψy)

(sx + ψx)(sy + ψy) 1 + (sy + ψy)
2

]
.

(10)

This makes evident the fact that contributions to the elastic
energy are coming from a repositioning of material points, φ,
and contributions from a change in the shape, (sx, sy, ψx, ψy).
Recall that the expression for the energy is

E =
∫ ∫

tr

[
∂φ

∂x

T

H
∂φ

∂x
G−1

]
dxdy, x = (x, y)T . (11)

LEMMA 1. The change in energy associated with a material
point map φ and an incremental shape change map ψ is given,
in the neighborhood of an equilibrium configuration, by

E(φ,ψ) ≈
∑
ij

[
trAT

ijHAijG
−1 areaij

]
+ ξ, (12)

Table 1. Summary of the mappings

φ : M → N material displacement map
s : R

2 → R shape function
ψ : R

2 → R incremental shape function
φ̂ : R

3 → R
3 coordinate representation of φ

Aij : R
2 → R

2 approximation to φ (local affine
maps)
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Fig. 3. (a) Extrinsic representation of the membrane as a surface in R3. A grid on the xy plane divides the membrane into
quadrilateral elements. (b) φ is used to recover ψ . The new shape, s(x′, y′) + ψ(x′, y′), is found from the nominal shape,
s(x, y), and the material displacement, φ(x, y). The diagram shows these mappings in the plane (b) and in 3-space. (c) Note
that A, the approximation to φ, is the projection of material displacement, φ. (d) A local linear approximation to φ maps
quadrilaterals to quadrilaterals. For clarity, only a portion of the membrane is shown.

where the area terms are

areaij =
√

(1 + s2
x )(1 + s2

y ) − s2
xs

2
y

· (xi+1 j − xi j )(yi+1 j − yi j ),

(13)

Aij is as above, and ξ is of third order.
We will now use this lemma to derive an expression show-

ing how the energy depends on the data that define the pa-
rameters of the affine approximation, Aij and bij . Let ψij be
the value of ψ at the grid points (xij , yij ) and use discrete ap-
proximations to the partial derivatives in eq. (10). The partial
derivatives [ψx,ψy] at the grid indexed by ij are expressed in
terms of ψij , ψi+1 j , ψi+1 j+1, and ψi+1 j+1. Define the vec-
tor ψ̂ = [ψ11, . . . , ψ1n, . . . , . . . , ψmn] whose components
are discrete values of the incremental shape map, indexed by
their grid position. Once ψ̂ is determined, we have a discrete
approximation of the shape of N .

With finite difference approximations to the partial deriva-
tive terms and with the elements of Aij in eq. (12), the ap-
proximate formula for E can be organized in terms of the sum
of quadratic terms in the incremental shape function, ψij , and
quadratic terms in the approximation to the material point

mapping, plus higher order terms, which we will ignore. By
incorporating the contributions from each quadrilateral, we
can rewrite our approximation for the energy as a quadratic
form in the incremental shape change as represented by ψ̂ij

(see Appendix D for details)

E(ψ̂) = ‖Q̃ψ̂ − γγγ ‖2, (14)

where the terms of Q̃ depend on the shape of the nominal
membrane as reported by s(x, y) and the approximation to
the material displacement map, φ.

3.2. Elastic Energy with the Image Constraints

Interpolation of the imaged motion of the observed material
points gives us an approximation to φ̂. The motion of this
pattern is the projection of φ. For interpolation of the image
flow, we use least squares matching. Given the image coor-
dinates pkl = (xkl, ykl) and p′

kl = (x′
kl, y

′
kl), a local linear

approximation to φ is described by Aij , bij where A, b will
be chosen according to

Aij , bij =argmin
A,b

∑
kl∈Bij

‖(Apkl + b) − p′
kl‖2, (15)
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Fig. 4. (a) An affine approximation is used to describe motion of the projection of each quadrilateral on the plane. (b) The
motion of the material points (large dots) is observed. A finer resolution grid is used for discrete approximations.

where Bij was defined in eq. (8). Let

Fij =

 ∑

kl∈Bij

pkl · (p′
kl)

T


− 4p̄ij (p̄

′
ij )

T and

Gij =

 ∑

kl∈Bij

pkl · pT
kl


− 4p̄ij p̄

T
ij ,

(16)

where p̄ij denotes the centroid of the ij th quadrilateral. The
best fit is given by (see Appendix C)

Aij = FT
ij G

−1
ij and bij = Aij p̄ij − p̄′

ij . (17)

Note that Gij depends on the coordinates of the dot pattern on
the membrane in the undeformed configuration, and thus G−1

ij

can be computed off-line. Fij depends on the coordinates of
the dot pattern on the membrane in the deformed configura-
tion, which reveals its dependence on the incremental shape
map, ψ .

The energy associated with a given image displacement
and a given incremental shape map, ψ̂ , becomes, in this way,
a function of the measured image displacement. Using the
above expressions, Q̃, which depends on Aij , is re-expressed
in terms of the image flow measurements (δuij , δvij ),

E(δu, δv) = ‖Q(δu, δv)ψ̂ − γγγ ‖2. (18)

The imaging constraints are incorporated into the definition
of the nm × 1 vector γγγ and the matrix Q. The entries in
Q and γγγ are functions of the nominal membrane position
(x, y, s(x, y)), the image displacements (δu, δv), and the
imaging parameters. If the image displacement is zero, then
γγγ is zero and hence the minimum energy solution will be
ψ̂ = 0.

3.3. Volume Constraint

A displacement of the membrane does not change the vol-
ume enclosed by the membrane, and we assume that the

boundary of the membrane lies entirely within the xy plane.
The volume enclosed by the membrane can be computed by
splitting each quadrilateral into two triangles and identify-
ing with each triangle a tetrahedron with one vertex being
the origin. For quadrilateral, qij , one such tetrahedron is de-
scribed by the vertices [xij , yij , zij ], [xi j+1, yi j+1, zi j+1],
[xi+1 j+1, yi+1 j+1, zi+1 j+1], and [0, 0, 0]. The volume of
this tetrahedron is given by

V = 1

6

∣∣∣∣∣∣
xij yij zij

xi j+1 yi j+1 zi j+1
xi+1 j+1 yi+1 j+1 zi+1 j+1

∣∣∣∣∣∣ � 1

6
det Cij ,

(19)

where Cij is defined to be the matrix whose rows are the coor-
dinates of the vertex points ordered as indicated. The volume
contained within the membrane is approximated by the sum
of the volumes of the tetrahedra. If a vertex of the tetrahedron
element is given in terms of a right-handed Cartesian coor-
dinate system, then equations are valid only when nodes are
numbered in a counterclockwise manner when viewed from
the origin (see Fig. 5).

We now determine the effect of a small displacement of the
vertices has on the volume. The volume, V ′ of the tetrahedral
element after distortion that sends C into C + δC is given by

V ′ = 1

6
(det[C + δC]) = 1

6

(
det
[
C(I + C−1δC)

])

≈ 1

6
det C(1 + tr[C−1δC])

= 1

6
det C

(
1 + 1

det C
tr[adjC δC]

)

= 1

6
det C + 1

6
tr[adjC δC].

Hence, the change in volume is approximated by

-V ≈ 1

6
tr[adjC δC], (20)
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Fig. 5. The computation of the volume of the membrane is re-
duced to a computation of the volume of tetrahedral elements.
The arrows depict the order that the vertices must be taken to
compute volume.

where adjC is the classical adjoint of C (i.e., the matrix of
signed cofactors) and δC is the matrix with elements that are
the change in coordinates of the membrane. Notice that the
matrix adjC is a function of nominal membrane position and
can be computed off-line. The trace operation is linear and
hence the expression -V = 0 is linear in the elements of δC.

The total change in volume is given by the sum of the
changes in volume for each tetrahedron and is also a linear
expression in the elements of δC. We use the imaging con-
straints (eq. (2)) to express the elements of δC in terms of the
nominal positions (xij , yij , s(xij , yij )), the measured image
displacements (δuij , δvij ), and the unknowns ψ̂ij . This can
be expressed in terms of the vector ψ̂ , leading to an equation
of the form

vT ψ̂ − c = 0. (21)

4. The Algorithm

The discrete approximations presented in the previous sec-
tions allow us to formulate the membrane shape reconstruc-
tion problem as finding the value of ψ̂ that satisfies the fol-
lowing expression

ψ̂min = min
ψ̂

1
2‖Qψ̂−γγγ ‖2, subject to vT ψ̂−

c = 0, and ψ̂ij = 0 for grid indices (i, j)

on the boundary.

This is a constrained minimization problem with solution

ψ̂ =
(
QT Q

)−1
QTγγγ

+
(

c − vT
(
QT Q

)−1
QTγγγ

vT
(
QT Q

)−1 v

)(
QT Q

)−1
v.

(22)

To arrive at this expression, we needed to reduce ψ̂ by the
removal of the boundary data terms (ψ̂ij = 0). The reduced
incremental shape map vector is denoted by ψ̃ . We solved a
modified reconstruction problem

min
ψ̃

‖Qψ̃ − γγγ ‖2 subject to vT ψ̃ − c = 0 (23)

for the remaining components of ψ̂ . The minimization prob-
lem is solved using Lagrange multipliers:

L(ψ, λ) = 1

2
(Qψ − γγγ )T (Qψ − γγγ ) + λ(vT ψ − c) (24)

= 1

2
ψT QT Qψ − γγγ T Qψ + 1

2
γγγ T γγγ + λ(vT ψ − c),

where λ is a Lagrange multiplier, not to be confused with the
elastic constant used earlier. Equating the derivatives Lψ,Lλ

to zero gives

0 = QT Qψ − QTγγγ + λv (25)

0 = vT ψ − c. (26)

We solve eq. (25) for ψ : ψ = (
QT Q

)−1 (
QTγγγ − λv

)
and

substitute the result into eq. (26), then solve for λ:

λ = vT
(
QT Q

)−1
QTγγγ − c

vT
(
QT Q

)−1 v
. (27)

Using this value of λ in eq. (25) yields eq. (22).
The minimization problem reduces to solving a least

squares problem (eqs. (25) and (26)). This problem formu-
lation involved approximations in expressing the volume lin-
early and the energy as a quadratic. Obviously, the accuracy
of the reconstruction depends on the accuracy of these ap-
proximations.

Because the discrete expression for the energy was derived
using a local approximation to the deformation on a coarse
scale, the solution may not be smooth. To enforce continu-
ity of the resulting solution, as is common in solving stiff
differential equations, we modify the quadratic form to be

‖(Q + S)ψ‖2, (28)

where ψT ST Sψ is a discrete approximation to the square of
the Laplacian.
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5. Implementation and Results

We have applied the analysis given above to a membrane
tactile sensor. A prototype device is shown in Figure 1, and a
second generation device is shown in Figure 14. A pattern of
dots is drawn on the interior surface of the membrane. The
membrane surface is imaged through a 50 micron pinhole
using a CCD camera. In practice, we used patterns on the
order of 10 × 10 dots, alternating small and large dots as
shown in Figure 1(b).

The dots are detected using a gray scale thresholding op-
eration and a connected component analysis (standard image
operations as described in, e.g., Horn 1986). Under deforma-
tion, the dots move and the image displacement is measured
using a heuristic search based on both proximity and dot size.
There are two sizes of dots to enable “multi-scale” matching,
which improves the speed and provides matching accuracy.

As described earlier, our measurements are of the displace-
ments of the projected dot pattern after deformation. To use
discrete approximations described above, we require the pro-
jected flow at the grid vertices; hence, we used bilinear inter-
polation to approximate the projected material deformation at
the grid vertices. Typical results are shown in Figure 6.

5.1. Segmentation of Contact Location

It is important that we segment the points on the membrane
that are in contact with the object from those that are not
in contact because only the “free” portion of the membrane
will distort in such a way that the elastic energy is minimized
(see Section 4 and appendix B). For nonpoint contacts, shape
reconstruction requires knowledge of the shape of the ob-
ject (Elliott and Friedman 1986). Here we restrict to the case
of point contacts. At the contact location, the derivatives of
the shape function can have discontinuities.

To determine the approximate location of contact, we an-
alyze the the image displacement field. Using the notation
of Section 2, we compute the change in polar angle for each
imaged material point

dβ = β0 − β1 < 0, (29)

where

β0 = cos−1(
f√

u2 + v2 + f 2
)

β1 = cos−1(
f√

(u + δu)2 + (v + δv)2 + f 2
)

and f is the a focal distance (see Fig. 7). dβ is zero at the
boundary. If dβ is positive in a neighborhood of the boundary,
then that region “bulges out.” The change of dβ from posi-
tive to negative indicates regions of contact when the contact
force is along the surface normal. The sign of dβ determines
whether the angle between the surface normal and the optical

axis increases or decreases. If the applied force is directly
along the optical axis (a nongeneric situation), then the flow
is everywhere divergent. This is readily detected, and the
optical axis is chosen as the contact location.

If the contact is not directed along a ray normal to the
membrane surface, which typically will be the situation, then
the image flow may not yield sufficient information to com-
pute the contact location. One must know the surface normal
before and after the contact has been applied. However, the
surface normal of the deformed membrane can only be com-
puted after the shape has been reconstructed. Thus, we must
resort to an iterative reconstruction/segmentation process that
reconstructs the membrane with a contact location estimated
as above, then computes the corresponding contact location
using the reconstructed shape. Some indentors may cause
occlusion, a situation we do not analyze here.

Figure 8 presents the results of the initial segmentation
algorithm. Figures 9 and 10 show the detection of one and
two contact locations using the iterative procedure.

5.2. Calibration of the Nominal Membrane Position

A crucial element of our reconstruction method is the as-
sumption that the nominal positions of the membrane dots (in
three dimensions) are given. To obtain this nominal position,
we establish the location on the image of a desired dot pat-
tern. Using ray-tracing optics and taking into consideration
the indices of refraction of both the Plexiglas and water, we
computed the intersection of a ray originating at a specific lo-
cation with the image plane. The recorded positions of a set of
such locations were used to position points on the membrane
using a CNC mill. A calibration was used to null small errors
in the construction process.

5.3. Reconstruction Results

We implemented our reconstruction algorithm using commer-
cially available imaging equipment. Although we do not give
details here, the reconstruction computation takes advantage
of properties of Q, and much of the computation required to
evaluate the expression in eq. (22) can be performed in ad-
vance (using the nominal values of the membrane position
and focal length). During run-time, we acquire an image of
the membrane under deformation, process the image to lo-
cate the dots, measure the image displacement of the dots as
described earlier, and use this to perform the reconstruction
using eq. (22).

Using a 200 MHz Pentium-Pro computer with Epix
framegrabber, Elmo camera, and a fiber-optic light source,
the shape reconstruction algorithm time has been reduced to
approximately 200 ms hence performing shape reconstruction
at about 5 Hz. A second generation “finger” tactile sensor us-
ing the improved imaging equipment is shown in Figure 14.

Figures 12-13 present examples of results of the recon-
struction of the membrane under deformation. Part (a) of
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Fig. 6. (a) Image of undeformed membrane, (b) image of the distorted membrane, (c) the measured flow vectors overlaid on
the undeformed image, and (d) an equivalent 16 × 16 interpolated flow field (vectors are magnified).

Fig. 7. (a) Cartoon depiction of the segmentation computation variable dβ. (b) Typical deformation when the contact is along
a radial line. (c) Contact location is incorrect when the contact is not radially directed.
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Fig. 8. (a) Image of distorted membrane with graphic representation of image motion of the dots overlaid. (b) Graphic
representation of dβ. (c) Segmentation of contact location—location is taken as the centroid of the region that “bulges in.”

Fig. 9. Example of detection of location of contact for a single indentor. An iterative procedure is used to detect the contact
location and perform reconstruction (see text).
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Fig. 10. Example of detection of location of contact for two indentors. An iterative procedure is used to detect the contact
location and perform reconstruction (see text).

Fig. 11. The viewpoints used for the reconstruction results rep-
resented. Figure 12 views the membrane from the side using
the x′ − y′ axes shown. Figure 13 presents the reconstructed
finger viewed down the length of the finger as depicted with
the “eye” shown here.

each figure shows the image of the membrane under defor-
mation. Part (b) shows the superposition of the undeformed
image with the displaced blob positions (as viewed in part
(a)) indicated. The circles are drawn where the blob appears
in the undeformed membrane image, and the arrows depict
the image displacement of the projected blob from the un-
deformed membrane (the tail of the arrow) to the deformed
membrane (the head of the arrow). This image displacement
is used as input, along with our physical constraints to solve
the system of eqs. (22). The resulting reconstructed finger
shape is shown in (c). The cross marks (+) indicate the origi-
nal membrane position. The mesh is our reconstruction of the
membrane shape. In Figure 12, the reconstruction is a side
view of the membrane. The membrane was contacted with
a point indenter (the end of a pen). In Figure 13, the recon-
struction is an end view of the finger (i.e., viewing the finger
down its length). In Figure 13, the membrane was squeezed
on the side. In the last result, shown in Figure 13, the mem-
brane was squeezed on both sides. We capture both contacts
successfully.

Figure 15 shows membrane shape reconstruction using the
finger shown in Figure 14. The addition of a fiber-optic light
source facilitates imaging over a larger membrane surface
area.

Figure 16 demonstrates poor performance when the image
flow is incorrectly measured.
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Fig. 12. (a) deformed images (b) blob matches (c) reconstruction
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Fig. 13. (a) deformed image (b) all blob matches (c) reconstructed finger shape

Fig. 14. A second-generation finger sensor using membrane shape reconstruction.
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Fig. 15. Reconstruction using second-generation finger.
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Fig. 16. Problem reconstructions—if the image matching is not correct, the reconstruction produces unreliable results.

6. Summary

In this paper, we have described a physical situation in which
the shape of a membrane is to be inferred from an image of
it. Based on the principal that under distortion the true mem-
brane shape will minimize the energy stored in the membrane,
we presented an algorithm to reconstruct the shape of a mem-
brane. Physical principles lead to a set of nonlinear partial
differential equations, and an approximate solution is found
using linearization.

We measured the projections on the image plane of mark-
ings on the surface of the membrane. A good approximation
to the shape of the nominal membrane is required, and we pre-
sented a method to achieve this. Experimental results showed
that membrane shape and contact location can be successfully
determined. It is the subject of ongoing work to use this shape
information for grasping applications.

Appendix A: One-Dimensional Membrane
Mechanics

This section presents the membrane reconstruction problem in
one dimension to prepare the reader and motivate the concepts
and ideas used in the 2d case.

Object Contact with Flat 1d Membrane

Consider a horizontal line with end-point 0 and a. Consider a
a one-dimensional membrane (e.g., a rubber band) fixed at 0
and a. Let the height of the membrane be u(x) for 0 ≤ x ≤ a.
Of course, u is continuous. If there is contact with an object
having a smooth boundary, the minimum energy solution will
yield a differentiable u. Figure 8 depicts a situation in which
the shape of the contact boundary of the object is given by
y = ψ(x) c1 ≤ x ≤ c2, where ψ(x) = 0 for some x ∈
[c1, c2]. We need to include a constraint on the volume of
the membrane cavity. Hence, with a maximum depression
of α, the contact boundary of the object and membrane is
described by y = ψ(x) − α for c1 ≤ x ≤ c2 (see Fig. 17).
The membrane position y = u(x) obeys the minimum energy
solution on the noncontact domains 0 ≤ x ≤ c1 c2 ≤ x ≤ a.
Conditions of transversality from the calculus of variations
imply that the tangent of the membrane matches the tangent
of the object at points of control. To determine the shape of
the membrane u(x), we solve

inf
u

τ/2

a∫
0

(
du

dx

)2

dx such that (30)
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Fig. 17. (a) A convex object defined by function ψ(x) where ψ(x) = 0 for some x in contact with the membrane(b) with a
maximum displacement of α, then the portion of the membrane in contact with the object is defined by u(x) = ψ(x) − α.

u(0)=u(a)=0,
(boundary)

u(x)=ψ(x)−α, c1≤x≤c2,
(object shape)

ux(ci )=ψx(ci ), for i=1,2,
(transversality) &

0=∫ a
0 udx

(volume) .

(31)

Because we do not have an a priori description of the object
ψ , we must simultaneously determine the points of contact
and the shape. The membrane minimizes the elastic energy
in the portions of the membrane that are not in contact with
the object: we assume that the segments of the membrane in
contact with the object conform to the shape of the object.

Reconstruction with Nonflat 1d Membrane

Consider a semicircular 1d membrane that is deformed by
contact with an object of zero width, the location and depth
of which is unknown. We observe the projection of points
drawn on the membrane. Model the deformation by

φ : r(θ) → u(ψ). (32)

The difference θ − ψ is determined from the image, see Fig-
ure 18.

Given the related pairs ψi and θi , we interpolate to ob-
tain the intermediate points and represent this relationship at
g(θ) = ψ .

The metric of the deformed membrane manifold is

H = u2 + (
du

dψ
)2, (33)

Fig. 18. Imaging in 1D.

where u(ψ) = r(g−1(ψ)) + φ(g−1(ψ)). Because we ob-
serve only the projection of the membrane points, φ(g−1(ψ))

is unknown. The deformation φ = u − r (i.e., the radial dis-
placement) is to be recovered. For the given geometry of the
undeformed membrane, we will assume a semicircular shape.
Get the radius of the semicircle to tear. In this case, the metric
on N is

H = u2 + (
du

dψ
)2 = (r + φ)2 + (

dr

dψ
+ dφ

dψ
)2

= (r + φ)2 + (
dφ

dθ
)2(

dθ

dψ
)2

(34)

and the Jacobian isJ = (
dφ
dθ

). The harmonic map functional is

J 2HG−1 = 1

r
(
dφ

dθ
)2[(r + φ)2 + (

dφ

dθ
)2(

dθ

dψ
)2], (35)

so the equilibrium configuration will be described by the φ

that minimizes

η =
∫

1

r
(
dφ

dθ
)2[(r + φ)2 + (

dφ

dθ
)2(

dθ

dψ
)2] 1√

r
dθ. (36)

Of course, the integration is over the regions of the membrane
not in contact with the object and the minimization is subject
to the constraints on the volume,∫

r2dθ =
∫

u(ψ)2dψ and u(0) = 0, u(π) = 0. (37)

1D Reconstruction Using Grid Approximation

To obtain data to test the 1D reconstruction, we built a
fluid-filled half-cylinder device covered (on the curved por-
tion of the half-cylinder) with a rubber membrane. A one-
dimensional cross section provides data for a 1d membrane.
The area under a cross section in the center of the device is
approximately constant (the length of the cylinder was made
much larger than the diameter to justify this assumption). The
original membrane shape was a semicircle. The image dis-
placement of a pattern drawn on the membrane was measured.
Figures 19 and 20 show reconstruction results.
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Fig. 19. 1D reconstruction: contact with membrane with cylindrical object—actual depression was ≈ 4 mm.

Fig. 20. 1D reconstruction: contact with membrane at two separate points—actual depression was 2 mm.
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Appendix B: Two-Dimensional Membrane
Mechanics

The elementary treatment of flat membranes with small dis-
placements as carried out in, e.g., Courant and Hilbert (1953)
leads to the conclusion that the normal displacement satisfies
Laplace’s equation subject to boundary conditions. Here we
have a more complicated situation and must use an expres-
sion for the energy associated with stretching, which takes
into consideration the underlying geometry of the undeformed
membrane. An analysis of an object in contact with a flat
membrane can be found in Elliott and Friedman (1986).

In studying membrane mechanics, one can take either an
extrinsic or an intrinsic point of view. In the former, the mem-
brane is described as a surface in three-dimensional space
and deformations are specified in terms of a fixed three-
dimensional coordinate system. The second point of view
treats each state of deformation as a two-dimensional man-
ifold, and the energy is expressed in terms of the mapping
φ, which takes one deformed state into another. This second
point of view can be called intrinsic. If one is interested in
small deformations from a simple geometry (e.g., an initially
flat membrane), the first point of view is most transparent.
However, the second is a simpler statement of the intrinsic
principle. Our analysis uses both. Let the surface of the un-
deformed membrane be identified with a manifold M . We
regard M as a Riemannian manifold with metric, G, inherited
from the ordinary three-dimensional space. Likewise, the sur-
face of the deformed membrane is identified with a manifold
N . The deformation is described by the mapping

φ : M → N. (38)

The boundary of M remains fixed; thus, M and N share a com-
mon boundary (i.e., φ(p) = p for p ∈ ∂M). The differential,
dφ, is a mapping of the tangent space of M at p to the tangent
space of N at φ(p) denoted:

dφ : TpM → Tφ(p)N. (39)

Choosing local coordinates1 {x1, . . . , xm} for p ∈ M and
{y1, . . . , yn} for φ(p) ∈ N , the tangent spaces will have
coordinate bases { ∂

∂xi } at p and { ∂
∂ya } at φ(p), and we denote

the matrix of dφ() with respect to these bases by J = [Jai]:

J =
[
∂φa

∂xi

]
. (40)

For a vector X ∈ Tp(M), the energy density is defined by
Eells and Sampson (1964)

e(φ) = 1

2
‖dφ(X)‖2 = 1

2
tr(φ∗H)(p) (41)

1. Here we are using manifolds of dimension m and n. In practice, we have
a two-dimensional membrane, hence dimM = dimN = 2.

where ‖ · ‖ denotes the induced tensor norm on T ∗
p (M) ×

Tφ(p)N , sometimes called the pullback metric. The metric is
one half of the sum of the eigenvalues of the first fundamental
form on Tp(M) with respect to G. In coordinates, the energy
density is expressed using summation notation as

e(φ) = 1

2
GijHab(φ(p))

∂φa

∂xi

∂φb

∂xj
= 1

2
tr[J T HJG−1],

(42)

where the latter equality is an equivalent energy density
expression2 called the harmonic map functional (Park and
Brockett 1994).

To get a physical interpretation of the energy density, we
consider the polar decomposition of J : J = RU = VR,
where R : TM → TN is an orthogonal transformation (i.e.,
RT R = I ) and U and V are symmetric positive definite ma-
trices (called the stretch tensors). The eigenvalues of U are
called the right principal stretches (and the eigenvalues of
V are called the left principal stretches). Geometrically, the
stretch tensors measure changes in lengths (and angles) due
to the deformation φ. The deformation tensor is defined by
(see Marsden and Hughes 1983):

C(p,W) = (p, dφ(X)T dφ(X)W) (43)

where W ∈ Tp(M). In coordinates {xi} and {ya} on M and
N, respectively,

CAC = Hab

∂φb

∂xA

∂φa

∂xC
, (44)

which when expressed with respect to G are the components
of the first fundamental form (φ∗H)(x). Hence, the energy
density (eq. (41)) is the trace of the deformation tensor. The
polar decomposition of C is C = J T J = UT RT RU =
UT U . The deformation tensor, C, has eigenvalues that are
squares of the principal stretches. At each point on M , the
stretch tensor measures the squares of the changes in length
in the principal directions at that point. The material (La-
grangian) strain tensor is defined by 2E = C − I . If C = I

(an isometry), then E = 0 and points on M experience no
relative motion (deformation or stretching) under φ. We can
interpret the energy density as measuring the strain at a point
on M . The total energy associated with the mapping φ is

E(φ) =
∫
M

e(φ)dVM, (45)

wheredVM is the volume element of M. Thus, the total energy,
E(φ), can be interpreted as the sum of the strains over the
manifold or as the “average” strain. A spring stores energy
under deformation from its nominal length, and the stored

2. This follows easily: 2e(φ) = tr[G−1JT HJ ] = [G−1JT HJ ]ii =
Gij JbjHbaJai = GijHabJaiJbj .
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Fig. 21. Manifold mapping of one membrane deformation state into another.

energy is proportional to the square of the change in length
of the spring. The membrane energy stored expressed as (45)
agrees with this intuitive notion that the energy of a membrane
is “spring-like” and energy is proportional to the squares of the
changes in length of the “springs” in the principal directions.
It should be noted that this elastic model also “stores” energy
under compression. A membrane does not store energy when
compressed; in fact, in our laboratory measurements, it was
difficult to compress the membrane (it bends and/or buckles).
However, for the tactile sensor application we are considering,
the membrane will be subjected only to stretching and not to
compression. We can apply this model because it is accurate
for the motions we anticipate.

There is much literature on the numerical solution of par-
tial differential equations with boundary values, or the equiva-
lent minimization problems, using grid approximations (e.g.,
Vemuri and Karplus 1981). The methods reduce the solu-
tion of the partial differential equations to a set of algebraic
equations. Our equations are nonlinear; we work with linear
approximations.

Boundary Conditions

The external membrane boundary is fixed, hence boundary
points do not move, φ(p) = p for p ∈ ∂M . Let MC ⊂ M

be the portion of M in contact with the object and denote the
portion ofM not in contact with the object byM\MC . We call
the boundary of MC and M \MC the interior boundary or the
contact boundary. If MC is a nondegenerate subset of M (i.e.,
not a point contact), then the membrane is C1 continuous at
the contact boundary (Elliott and Friedman 1986). However,
the interior boundary (of M \MC ) is not known precisely. It
is expected that MC take a shape that is related to the shape
of the object in contact with the membrane. We do not know
anything about that shape. We do, however, have interior
point constraints from the imaging, as described earlier.

Appendix C: Details of the Affine
Matching Computation

In this appendix, we derive the expression for the best fit affine
transformation between two point sets in R3 (although exten-
sions to other dimensions are clear). We define a least squares

matching criteria that minimizes the Euclidean distance be-
tween two point sets as

||Axi − b − yi ||2 =
∑
i

[Axi − b − yi]
T Q [Axi − b − yi] ,

(46)

where A ∈ R3×3, b ∈ R3, and Q ∈ R3×3 is a positive
definite symmetric matrix (it could represent the uncertainty
in the points and/or the point correspondences). Here, we
take Q = I .

Brockett (1989) described general least square matching
for the pair (A, b) in one of the matrix subgroups of the general
linear group. We follow this approach investigating the simple
case for affine matching between point sets in R3.

Given n point matches, we rewrite the matching criteria as

η(A, b) =
n∑

i=1

[Axi − b − yi]
T [Axi − b − yi]

=
n∑

i=1

[
xT
i AT Axi − 2xT

i AT b − 2xT
i AT yi

+2yT
i b + bT b + yT

i yi

]
.

Since the last term is fixed and will not affect the minimization,
we will neglect it in further calculations. The minimum value
of η with respect to b will occur for ∂η

∂b
= 0. Performing this

computation leads to

bo = Ax̄ − ȳ, (47)

where

x̄ = 1

n

n∑
i=1

xi and ȳ = 1

n

n∑
i=1

yi. (48)

Let

F = (

n∑
i

xi · yT
i ) − nx̄ȳT and

G = (

n∑
i

xi · xT
i ) − nx̄x̄T ,

(49)
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and use the fact that for square matrices AB and A, tr[AB] =
tr[BA] and tr[AT ] = tr[A] to determine the following modi-
fied matching criteria (neglecting terms not dependent on A):

η̃(A) = tr[AGAT − 2AF ] (50)

which we seek to minimize (over A). Perturbing A to A(I +
εL) and expanding yields

η̃(A(I + εL)) = tr[GAT A − 2FA + ε(GAT AL

+GLT AT A − 2FAL)

+ε2GLT AT AL]
= η̃(A) + ε tr[GAT AL

+GLT AT A − 2FAL] + h.o.t.

≈ η̃(A) + 2ε tr[GAT AL − FAL].
Then, to first order in ε, Ao is a critical point of η̃(A) if

tr[(GAT
o Ao − FAo)L] = 0. (51)

For arbitrary L, eq. (51) has many possible choices for A.
In the general case, setting (GAT A − FA) = 0 does not
ensure that A will be a transformation of the required form
(for example, if one required A to be orthogonal). However,
the pair (Ao, bo) will define an affine transformation as long
as A is nonsingular. In this case, setting GAT

o Ao − FAo = 0
and taking the solution

GAT A = FA → A = FT G−1 (52)

yields a nonsingular matrix A for nonsingular F and G.
For our purposes, A is nonsingular as long as the four points

defining a quadrilateral on the membrane are not collinear.
The components of A are

Aij = 1

det G

3∑
k=1

FkiadjGkj . (53)

In the context of matching the points on the grid of the elastic
membrane, gij are known values and fij are the unknowns,
hence Aij are linear expressions in the unknown parameters.

Appendix D: Expressing the Approximation to
the Harmonic Map Functional as a Quadratic
Form

In Section 3.1, we derived the discrete approximation to the
harmonic map functional (eq. (12), repeated here)

E(φ,ψ) ≈
∑
ij

[
trAT

ijHAijG
−1 areaij

]
+ ξ. (54)

For Aij = [akl], the expression trAT
ijHAijG

−1 at for the ij th
quadrilateral is (dropping the subscript ij for readability)

tr[AT HAG−1]ij =(
a2

12(1 + s2
x ) + a2

11(1 + s2
y ) − 2a11a12sxsy

)
(

1 + s2
x + 2sxψx + ψ2

x

)

+
(
a2

22(1 + s2
x ) + a2

21(1 + s2
y ) − 2a21a22sxsy

)
(

1 + s2
y + 2syψy + ψ2

y

)

+ 2
(
a12(a22 + a22s

2
x − a21sxsy)

+ a11(a21 − a22sxsy + a21s
2
y )
)

(
(sx + ψx)(sy + ψy)

)
,

(55)

which we can write as

[
ψx, ψy, 1

] mxx
1
2mxy mx

1
2mxy myy my

0 0 m0




 ψx

ψy

1


 , (56)

where

mxx = a2
12(1 + s2

x ) − 2a11a12sxsy + a2
11(1 + s2

y ) (57)

myy = a2
22(1 + s2

x ) − 2a21a22sxsy + a2
21(1 + s2

y ) (58)

mxy = 2(a12(a22 + a22s
2
x − a21sxsy)

+ a11(a21 − a22sxsy + a21s
2
y ))

(59)

mx = 2(a2
11sx(1 + s2

y ) + a12(a12(sx + s3
x)

+ sy(a22 + a22s
2
x − a21sxsy)) (60)

+ a11sy(−(sx(2a12sx + a22sy)) + a21(1 + s2
y )))

my = 2(a12sx(a22 + a22s
2
x − a21sxsy)

+ a11sx(a21 − a22sxsy + a21s
2
y ) (61)

+ sy(a
2
21 + a2

22 + a2
22s

2
x − 2a21a22sxsy + a2

21s
2
y ))

m0 = a2
12(1 + s2

x )
2 + 2a12sxsy(a22 + a22s

2
x − a21sxsy)

+ a2
11(1 + s2

x )(1 + s2
y ) − 2a11sxsy(a12 − a21

+ a12s
2
x + a22sxsy − a21s

2
y ) + (1 + s2

y ) (62)

(a2
21 + a2

22 + a2
22s

2
x − 2a21a22sxsy + a2

21s
2
y ).

When we use discrete approximations to the partial deriva-
tives in eq. (10), [ψx,ψy] at vertex ij can be expressed in terms
of ψij , ψi+1,j , and ψi+1,j+1. Recall we defined the vector
ψ̂ = [ψ11, . . . , ψ1n, . . . , . . . , ψmn] whose components are
discrete values of the incremental shape map, indexed by their
grid position. The matrix in (56) expands to ψ̃T Mψ̃ , where
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ψ̃T = (. . . , ψij , ψi j+1, . . . , ψi+1 j , . . . , 1)T and M is




. . .
...

...

mxx + myy + mxy myy + 1
2mxy · · ·

myy + 1
2mxy myy · · ·

...
...

. . .

mxx + 1
2mxy

1
2mxy · · ·

...
...

. . .

0 0

...
...

mxx + 1
2mxy · · · 0

1
2mxy · · · my

...
. . .

...

mxx · · · mx

...
. . .

...

0 m0.




(63)

From expressions (12) and (63), we see that the approxi-
mate formula for E can be organized in terms of the sum
of quadratic terms in ψij and quadratic terms in Aij (the pro-
jection of φ), plus higher order terms, which we will ignore.
By incorporating the contributions from each quadrilateral
(multiplied by the area term) and after some rearranging and
grouping of terms, we can rewrite the energy as a quadratic
form

E(ψ̂) = ‖Qψ̂ − γγγ ‖2. (64)
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