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Relaxation effects impose fundamental limitations on our ability to
coherently control quantum mechanical phenomena. In this article,
we use principles of optimal control theory to establish physical
limits on how closely a quantum mechanical system can be steered
to a desired target state in the presence of relaxation. In particular,
we explicitly compute the maximum amplitude of coherence or
polarization that can be transferred between coupled hetero-
nuclear spins in large molecules at high magnetic fields in the
presence of relaxation. Very general decoherence mechanisms that
include cross-correlated relaxation have been included in our
analysis. We give analytical characterization for the pulse se-
quences (control laws) that achieve these physical limits and
provide supporting experimental evidence. Exploitation of cross-
correlation effects has recently led to the development of powerful
methods in NMR spectroscopy to study very large biomolecules in
solution. For two heteronuclear spins, we demonstrate with ex-
periments that cross-correlated relaxation optimized pulse (CROP)
sequences provide significant gains over the state-of-the-art meth-
ods. It is shown that despite large relaxation rates, coherence can
be transferred between coupled spins without any loss in special
cases where cross-correlated relaxation rates can be tuned to
autocorrelated relaxation rates.

The control of quantum ensembles has many applications,
ranging from coherent spectroscopy to quantum information

processing. In practice, the quantum system of interest interacts
with its environment, which leads to the phenomenon of relax-
ation. This results in signal loss and ultimately limits the range
of applications. Relaxation is also a major road block standing in
the way of practical quantum computing. Manipulating quantum
systems in a manner that minimizes relaxation losses is a
fundamental challenge of utmost practical importance. What is
the ultimate limit on how close an ensemble of quantum systems
can be steered from an initial state to a desired target state in the
presence of relaxation? Until now there existed no theory that
answers this question. This situation is comparable to the time
before the fundamental efficiency limits of heat engines were
known: More than 100 years after the invention of the steam
engine, the physical limits for the maximum amount of work a
steam engine could produce were unclear, despite decades of
advances in its design. ‘‘The theory of its operation is rudimen-
tary and attempts to improve its performance are still made in
an almost haphazard way’’ (1). Of course, the maximum effi-
ciency of a heat engine is not given by the cleverness of the
engineer who attempts to build such a machine, but by the
fundamental law of thermodynamics as captured in Carnot’s
Theorem.

In this article we derive fundamental limits on how close an
ensemble of nuclear spins can be driven from its initial state to
a desired target state in the presence of relaxation. In particular,
we derive the maximum efficiency of polarization and coherence
transfer between coupled nuclear spins. Such coherence transfer
operations are important in high-resolution NMR spectroscopy
(2, 3). In structural biology, NMR spectroscopy is an important
technique that allows one to determine the structure of biolog-
ical macromolecules, such as proteins, in aqueous solution. With
increasing size of molecules or molecular complexes, the rota-
tional tumbling of the molecules becomes slower and leads to
increased relaxation losses. When these relaxation rates become

comparable to the spin–spin couplings, the efficiency of coher-
ence transfer is considerably reduced, leading to poor sensitivity
and increased measurement times. Recent advances have made
it possible to significantly extend the size limit of biological
macromolecules amenable to study by liquid-state NMR (4–7).
These techniques take advantage of the phenomenon of cross-
correlated relaxation, which represents interference effects be-
tween two different relaxation mechanisms (8–13). Until now, it
was not clear if further improvements can be made and what is
the physical limit for the coherence transfer efficiency between
coupled spins in the presence of cross-correlated relaxation.

In this article, we give analytical expressions for this maximum
achievable coherence transfer efficiency for two coupled het-
eronuclear spins under very general decoherence mechanisms
that include cross-correlated relaxation. We describe the optimal
pulse sequences that achieve this efficiency and provide exper-
imental data that support these results. In the general case of
cross-correlated relaxation, we demonstrate substantial im-
provement over previously known sequences in NMR spectros-
copy. It should be noted that the optimal transfer efficiency
reported here applies to the case where the resonance frequen-
cies of a single spin pair (I and S) are known. However, the
presented approach will also make it possible to derive optimal
broadband transfer schemes for a given range of resonance
frequencies.

We also show theoretically that in the limit where the cross-
correlated relaxation rates become identical to the autocorre-
lated relaxation rates, lossless transfer of coherence is possible
between coupled spins. For an isolated spin pair in an isotropi-
cally tumbling molecule, this limit can be reached if the inter-
fering interactions are axially symmetric and if the symmetry
axes and the size of the interactions coincide (4, 12). Although
this is not the generic case, it can be approached by many systems
of practical interest (4, 6), and it may be feasible to construct
molecules for quantum information processing in which a com-
plete match is possible.

Theory
Let � denote the density operator of a quantum mechanical
system coupled to a bath. Under the assumption of Markovian
dynamics for the system of interest (very short correlation times
with the bath) (14), the most general form for the evolution of
the system density operator � takes the form

d
dt

� � �i�H, �� � LD��� [1]

LD��� �
1
2 �

k,l�1

M

ak,l LFk,Fl
��� [2]

LFk,Fl
��� � �Fk, �Fl

†� � �Fk�, Fl
†�, [3]
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where H is the systems Hamiltonian and generates unitary
evolution. All nonunitary relaxation dynamics is accounted for
by LD. The Hermitian coefficient matrix A � {ak,l} contains the
information about physical relaxation parameters (lifetimes,
relaxation rates) and Fk denotes operators representing various
relaxation mechanisms (14).

We now consider an isolated heteronuclear spin system con-
sisting of two coupled spins 1⁄2, denoted I (e.g., 1H) and S (e.g.,
15N). To fix ideas, we first address the problem of selective
population inversion of two energy levels (e.g., �� and ��) as
shown in Fig. 1. This is a central step in high-resolution multi-
dimensional NMR spectroscopy and corresponds to the transfer
of an initial state Iz, representing polarization on spin I, to the
target state 2IzSz representing longitudinal two-spin order. We
now consider the slow tumbling regime (the so-called spin
diffusion limit) (2), which applies to macromolecules at high
magnetic fields, where the correlation time of the molecular
tumbling is much shorter than the inverse of the resonance
frequencies of spins I and S. In this limit, longitudinal relaxation
rates are negligible compared with transverse relaxation rates for
an isolated heteronuclear spin system consisting of two coupled
spins 1⁄2, where the two principle relaxation mechanisms are
dipole–dipole (DD) relaxation and relaxation due to the chem-
ical shift anisotropy (CSA) of spins I and S. Hence, both the
initial state (Iz) and final state (2IzSz) are long-lived. However,
the transfer between these two states requires the creation of
coherences that in general are subject to fast transverse relax-
ation. In a double rotating frame chosen specifically for the pair
of spins under discussion, the above set of equations (Eqs. 1–3)
take the following form (Eq. 4), where F1 � 2IzSz, F2 � Iz, F3 �
Sz, and we assume a23 � 0 because in the present application
interference terms between the CSA of spins I and S have no
effect on the involved density operator terms (see below):

�̇ � �J��i2IzSz, �� � �kDD�2IzSz, �2IzSz, ���

� �kCSA
I �Iz, �Iz, ��� � �kCSA

S �Sz, �Sz, ���

� �kDD�CSA
I �2IzSz, �Iz, ��� � �kDD�CSA

S �2IzSz, �Sz, ���,

[4]

where J is the heteronuclear coupling constant. The rates kDD,
kCSA

I , and kCSA
S represent autocorrelated relaxation rates due to

DD relaxation, CSA relaxation of spin I, and CSA relaxation of
spin S, respectively. The rates kDD�CSA

I and kDD�CSA
S represent

cross-correlation rates of spin I and S caused by interference
effects between DD and CSA relaxation. Unconventional �
factors in front of the relaxation rates results in concise expres-

sions of optimal transfer efficiency later. The relaxation rates
depend on various physical parameters, such as the gyromag-
netic ratios of the spins, the internuclear distance, the CSA
tensors, the strength of the magnetic field, and the correlation
time of the molecular tumbling (2, 11).

Let the initial density operator be �(0) � A and denote the
density operator at time t by �(t). The maximum efficiency of
transfer between A and target operator C is defined as the largest
possible value of trace (C†�(t)) for any time t (3) (by convention
operators A and C are normalized).

The main result of this article is as follows. The maximal
efficiency of transfer between the operators Iz and 2IzSz depends
only on the scalar coupling constant J and the net autocorrelated
and cross-correlated relaxation rates of spin I, given by ka � kDD
� kCSA

I and kc � kDD�CSA
I , respectively. Here the rates ka and kc

are a factor of � smaller than in conventional definitions of the
rates, e.g., ka � 1�(�T2) if T2 is the transverse relaxation rate in
the absence of cross-correlation effects (15). The physical limit
� of the maximal transfer efficiency is given by

� � �1 � �2 	 �, [5]

where

� � �ka
2 	 kc

2

J2 � kc
2. [6]

The derivation of the maximal efficiency rests on the basic
principles of optimal control theory (16, 17) (for details, see
Supporting Methods, which is published as supporting informa-
tion on the PNAS web site). The optimal transfer scheme
(CROP, cross-correlated relaxation optimized pulse) has two
constants of motion. If l1(t) and l2(t) denote the two-dimensional
vectors (�Ix�(t), �Iy�(t)) and (�2IxSz�(t), �2IySz�(t)), respectively,
then throughout the transfer process the ratio of the magnitudes
of the vectors l2 and l1 is maintained constant at �. Furthermore,
the angle 
* between l1 and l2 is constant throughout. The two
constants of motion of the optimal transfer scheme determine
the amplitude and phase of the rf field at each point in time and
explicit expressions for the optimal pulse sequence can be
derived (see Supporting Methods).

We now consider two important limiting cases of this problem:
(i) In the case when ka 	 0 and kc � 0 (no cross-correlated

relaxation), the optimal efficiency � is equal to 
1�(ka
2�J2) �

(ka�J) � 1 (see curve for kc�ka � 0 in Fig. 2A) and the optimal
angle 
* is ��2 (15).

(ii) In the limit where the cross-correlation coefficient kc�ka
approaches 1, the optimal transfer efficiency � approaches 1 (see
curve for kc�ka � 1 in Fig. 2), and 
* approaches �. Surprisingly,
in this case using optimal control it is possible to transfer
coherence without any loss in the presence of relaxation. In the
limit of large relaxation rates ka, this relaxation-optimized trans-
fer mechanism gains up to 100% compared with state-of-the-art
transfer schemes.

The optimal transfer scheme is best illustrated by decompos-
ing the initial operator Iz as a sum of the two single-transition
operators IzS� � Iz�2 � IzSz and IzS� � Iz�2 � IzSz (2). The
transverse components IxS�, IyS� and IxS�, IyS� relax with rates
ka � kc and ka � kc, respectively. When kc�ka approaches 1, the
transverse single-transition operators IxS� and IyS� do not relax.
The optimal pulse sequence in this case reduces to selectively
inverting IzS� to �IzS� by weak rf irradiation at the frequency
(�J�2) of the slowly relaxing multiplet component. Such selec-
tive inversions have been performed in the past for various
applications, including the selective measurement of relaxation
rates (11, 20–23). Because the component IzS�, which we do not
want to invert, has a large transverse relaxation rate given by ka
� kc, it is possible to carry out the selective inversion process

Fig. 1. Selective population inversion of the energy levels �� and ��,
corresponding to a transfer of polarization Iz (A) to longitudinal two-spin
order 2 IzSz (B).
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much more rapidly than in the absence of relaxation. In Fig. 3,
optimal trajectories of the two multiplet components are shown
for several cross-correlation coefficients kc�ka and ka � J.

In Fig. 4, the optimal rf amplitude and irradiation frequency
of a CROP sequence is shown as a function of time for the case
kc�ka � 0.75 and ka � J. Although the ideal sequence has a long
duration, most of the transfer occurs in a relatively short time
window, outside of which the rf amplitude is vanishingly small.

The transfer efficiency � is shown in Fig. 2 A for several ratios
kc�ka as a function of the autocorrelated relaxation rate ka�J. For
the case kc�ka � 0.75, the physical limit of the transfer efficiency
is compared in Fig. 2B to the transfer efficiency of conventional
transfer schemes INEPT (18), CRIPT (19), and CRINEPT (7).

The optimal control methods for the transfer from Iz to 2IzSz

in the presence of cross-correlated relaxation immediately ex-
tend to other routinely used transfers, such as in-phase to
in-phase transfer (Ix 3 Sx) (24) and single-transition to single-
transition transfer (e.g., 2IxS� 3 2I�Sx) (4). Because the oper-
ators Iz, Sz, and 2IzSz do not decay, the optimal efficiency for the
transfer Ix to Sx is achieved by first rotating Ix to Iz (which can be
done rapidly with negligible loss). Then Iz is transferred opti-
mally to 2IzSz with efficiency � (Eq. 5), followed by the optimal
transfer of 2IzSz to Sz, which is finally rotated rapidly to Sx. The
optimal transfer 2IzSz3 Sz is analogous to the optimal transfer
Iz3 2IzSz. The efficiency �� for this transfer is also given by Eq.
5, where the rates ka and kc are replaced by the corresponding
rates k�a � kDD � kCSA

S and k�c � kDD�CSA
S for spin S and � is

replaced by the corresponding ��. The maximal efficiency for the

transfer Ix3 Sx is the product of the efficiencies of the individual
steps (see Table 1).

In the light of increasing use and superiority of transverse
relaxation-optimized spectroscopy (TROSY) methods (4), the
single-transition to single-transition transfer 2IxS� 3 2I�Sx is
important in NMR applications to structural biology. It is of both
theoretical and practical interest to establish the physical limits
for this transfer. This transfer can be achieved optimally as a
sequence of the following steps. First, the term 2IxS� is rapidly
rotated to 2IzS� � Iz � 2IzSz. In a second step, �2IzSz is
transferred by means of CROP to Sz, followed by the CROP
transfer of Iz to �2IzSz. This completes the transfer from 2IxS�

to 2I�Sz, which is finally rapidly rotated to 2I�Sx. The maximal
overall transfer efficiency is given by 
�2 � ��2 (cf. Table 1).

Experimental Results
The performance of the analytically derived CROP sequences
was tested experimentally by using the coupled two-spin system
of 13C-labeled sodium formate with a coupling of J � 193.6 Hz
between the 13C spin (denoted I) and the 1H spin (denoted S).
Sodium formate was dissolved in a mixture of 96% (2H8)glycerol
and 4% 2H2O. The viscosity of this solvent can be conveniently
adjusted by varying the temperature. The experiments were
performed at a temperature of 256.5 K, where ka�J 
 1.1 (Fig.
5A), and 260 K, where ka�J 
 0.6 (Fig. 5B). At a magnetic field
of 17.6 T, the experimentally determined ratio of cross- to
autocorrelation rate was kc�ka 
 0.75. In the preparation phase
of the experiments, the thermal equilibrium 1H magnetization
was dephased by applying a 90° proton pulse followed by a pulsed

Fig. 2. (A) Physical limits of the transfer efficiency � as a function of ka�J for kc�ka � 0, kc�ka � 0.75, kc�ka � 0.95, and kc�ka � 1. (B) For the case kc�ka � 0.75,
the theoretical bound of the transfer efficiency (CROP, solid curve) is compared with the transfer efficiency of conventional transfer schemes [INEPT (18), dotted
curve; CRIPT (19), dash-dotted curve; and CRINEPT (7), dashed curve].

Fig. 3. Optimal trajectories of the expectation values of the two multiplet components I�S� (A) and I�S� (B) for ka � J and kc�ka � 0 (green curves), kc�ka � 0.75
(red curves), kc�ka � 0.95 (blue curves), and kc�ka � 0.999 (black curves).
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magnetic field gradient. The transfer efficiency of 13C polariza-
tion Iz to 2IzSz was measured for the novel CROP sequence, as
well as for INEPT (18), CRIPT (19), and CRINEPT (7)
sequences. Finally, a hard 90°y proton pulse was applied to
transform 2IzSz to 2IzSx, and the amplitude of the resulting
proton antiphase signal was measured. The resulting experimen-
tal transfer amplitudes are shown in Fig. 5 as a function of the
transfer time. CROP sequences were truncated symmetrically to
acquire transfer amplitudes also for finite mixing times. Exper-
imentally, the optimal transfer time of the CROP sequence was
found to be 7.5 ms and 15 ms, respectively. This is a compromise
between losses due to the truncation of the (very long) CROP
sequence and losses due to the nonzero relaxation rates of the
terms IzSz. The experimentally determined relaxation time of
these terms was about 45 ms and 80 ms, respectively. Despite
these nonidealities of the model system, the CROP sequences
are substantially more efficient than the conventional sequences.
In Fig. 5, the experimental gains compared with CRINEPT are
34% and 22%, respectively. Although the optimal pulse se-
quences were designed for specific rates ka and kc, they were
found to be robust to variations in these parameters.

Conclusion
Here, we derived upper achievable physical limits on the effi-
ciency of coherence and polarization transfer for two coupled
spins in the presence of very general decoherence mechanisms
that include cross-correlated relaxation. In this article, the focus
was on the study of polarization and coherence transfer between
an isolated pair of scalar coupled heteronuclear spins in the spin
diffusion limit. For this example, transfer schemes were found
that yield substantial gains (of up to 100%) in transfer efficiency
over conventional methods. With these physical limits estab-
lished, it is expected that significant improvement can be
achieved over state-of-the-art experiments in protein NMR
spectroscopy. Further work is necessary to incorporate practical
considerations such as broadbandedness and robustness with
respect to variations of relaxation rates and experimental im-
perfections. The methods presented here can be generalized for
finding relaxation-optimized pulse sequences in larger spin

systems as commonly encountered, e.g., in backbone and side-
chain assignments in protein NMR spectroscopy. Furthermore,
these methods directly extend to other routinely used ex-
periments such as excitation of multiple quantum coherence
(2, 25, 26).

The most surprising aspect of the presented results is that
despite large relaxation rates, it is possible to exploit the
structure of relaxation and have decoherence-free evolution by
steering the system through a decoherence-free subspace (when
kc � ka, the operators IxS�, IyS�, and IzS� span a decoherence-
free subspace). Decoherence-free subspaces (DFS) have gener-
ated considerable interest in the area of quantum information
processing recently. It has been shown that by encoding qubits
within the subspaces of the Hilbert space that do not decohere,
it is possible to perform error-free quantum computations (27).
Interference effects among various decoherence mechanisms
(13, 28) provide a way for creating DFS. It is possible that in
some future implementations of quantum computing devices, by
suitably engineering interference between various decoherence
mechanisms, a DFS can be synthesized for error-free computa-
tion. The methods presented here can be extended to find
optimal pulse sequences that in the presence of relaxation will
produce a Liouville evolution that is closest to a desired unitary
evolution. Such relaxation-optimized implementations of uni-
tary propagators can then be used to minimize decoherence
losses in quantum information processing.

This work was funded by Defense Advanced Research Planning Agency
Grant 496020-01-1-0556, National Science Foundation Quantum and

Fig. 4. Truncated CROP for kc�ka � 0.75 and ka � J. (Left) The dimensionless
rf amplitude A�J with A � 
B1�(2�) as a function of the dimensionless time
t�J�1 � tJ. (Right) The dimensionless irradiation frequency ��J. The dotted line
corresponds to the frequency of the narrow multiplet component that is
inverted by the CROP sequence.

Table 1. Bounds on coherence and polarization transfer

Transfer Physical limits of efficiency

Iz3 2 IzSz � � 
1 � �2 � �

2 IzSz3 Sz �� � 
1 � ��2 � ��

Iz3 Sz ���

IxS�3 I�Sx 
�2 � ��2

where � � 
(ka
2 � kc

2)�(J2 � kc
2), ka � kDD � kCSA

I , kc � kDD�CSA
I ,

and �� � 
(k�a2 � k�c2)�(J2 � k�c2), k�a � kDD � kCSA
S , k�c � kDD�CSA

S .

Fig. 5. Relative experimental transfer amplitudes of truncated CROP se-
quences (circles) compared with CRINEPT (triangles; ref. 7), CRIPT (squares; ref.
19), and INEPT (diamonds; ref. 18) as a function of total transfer time. The
experiments were performed at a temperature of 256.5 K (A) or 260 K (B). The
absolute transfer efficiencies are approximate and have been estimated on
the basis of comparison with theoretical transfer curves for ka�J 
 1.1 (A) and
ka�J 
 0.6 (B).
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7. Riek, R., Wider, G., Pervushin, K. & Wüthrich, K. (1999) Proc. Natl. Acad. Sci.

USA 96, 4918–4923.
8. McConnell, H. M. (1956) J. Chem. Phys. 25, 709–711.
9. Shimizu, H. (1964) J. Chem. Phys. 40, 3357–3364.

10. Ayscough, P. B. (1967) Electron Spin Resonance in Chemistry (Methuen,
London).

11. Vold, R. R. & Vold, R. L. (1978) Prog. NMR Spectrosc. 12, 79–133.
12. Goldman, M. (1984) J. Magn. Reson. 60, 437–452.
13. Kumar, A., Grace, R. C. R. & Madhu, P. K. (2000) Prog. NMR Spectrosc. 37,

191–319.

14. Alicki, R. & Lendi, K. (1987) Quantum Dynamical Semigroups and Applications,
Lecture Notes in Physics (Springer, Berlin), Vol. 286.

15. Khaneja, N., Reiss, T., Luy, B. & Glaser, S. J. (2003) J. Magn. Reson. 162,
311–319.

16. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. & Mishchenko, E. F.
(1962) The Mathematical Theory of Optimal Processes (Interscience, New
York).

17. Bryson, A. E., Jr., & Ho, Y. C. (1975) Applied Optimal Control (Taylor &
Francis, Philadelphia).

18. Morris, G. A. & Freeman, R. (1979) J. Am. Chem. Soc. 101, 760–762.
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