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[38] R. A. Freeman and P. V. Kokotdyi “Optimal nonlinear controllers for a class of linear feedback control problems. The model studied here
feedback linearizable systems,”f1oc. American Contr. ConfSeattle, can be viewed as a variant of the classical linear feedback control
[39] \Q{A\}Vi{fﬁ’ Vp\)lgis?grzwazz.zz-rapostathis, “Quaternion feedback regulat rroblem. However, unlike the classical problem where the assumption
for spacecraft eigenaxis rotation]” Guidance, Contr. Dynamvol. 12, 1S that the plant and the feedback controller are either colocated or
pp. 375-380, 1989. they can communicate with each other over a channel with infinite
capacity, the crux of the problem studied here is that the plant and
the feedback controller communicate over a digital channel with
finite capacity. This simple change in the basic assumption has a
substantial effect on the complexity of the problem. First of all, the
. . L issue of coding and communication protocol becomes an integral part
Systgms with F'r_“te Commumgatpn of the analysis and cannot be decoupled from the control law design.
Bandwidth Constraints—II: Stabilization Second, there is an inherent delay in the feedback control that further
with Limited Information Feedback complicates matters. In particular, one simple consequence is that
such communication constrained systems can never be asymptotically
stabilized if the uncontrolled dynamics are unstable. Instead, a weaker
stability concept calledontainability is introduced. The concept of

) . containability is closely related to what has been caliedctical

Abstract—In this paper a new class of feedback control problems is tability [71. A k It in thi t tainabilit ith
introduced. Unlike classical models, the systems considered here haveS& ility [ ,]' ey result In this paper (.:0nngc S Con ana ',' y wi
communication channel constraints. As a result, the issue of coding the Kraft inequality [3] and a newly derived inequality that involves
and communication protocol becomes an integral part of the analysis. the communication data rate and the rate of change of the state.
Since these systems cannot be asymptotically stabilized if the underlying
dynamics are unstable, a weaker stability concept called containability
is introduced. A key result connects containability with an inequality Il. THE FINITE COMMUNICATION CONTROL PROBLEM
equation involving the communication data rate and the rate of change Consider a system with linear dynamics
of the state.

d
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Index Terms—Asymptotic stability, containability, feedback control, —z(t) = Az(t) + Bu(t), z(0)=zo
Kraft inequality. dt (1)
y(t) = Cx(t)
|. INTRODUCTION where the state:(¢) is an element ifR"™, u(t) is am-dimensional

n th I  of this decad | d hv ctor of controly(t) is ap-dimensional observation, ant, B, and
n the early part of this decade several papers appeared Wniety e , 1y, 4, by m, andp by n constant matrices, respectively.

investigated various information related aspects of decision andThe observation of(¢), y(t) is transmitted to a remote decision-

control. These _ir!cluded work by Delchamps [4], Kabampa ar}ﬁaker for computing the appropriate level of feedback control. The
Hara [6], and Williamson [10]. For example, Delchamps studied t mmunication channel is assumed to have a data ratB bfts

problem of stabilizing a discrete-time linear system with quantiz r second. For simplicity, we ignore the detailed implementation

state feedback. Quantization is, of course, a crucial considerati ues in the communication protocol and simply assume that it takes

but in_formationally rel_ated issues involve a much wider range gf 1/R s to send one bit from the plant to the controller and vice
qugstlo_ns. In a previous paper _by _the author_s [11], a class rsa from the controller to the plant. Hence, if a bit is sent at time
estimation problems with communication constraints was |ntr0duc§ ro. it will be received at time at the receiver. Unlike classical

antql ar:alyze?' It_t\évas s_hovxlln, '? par|t|<t:ucliart, trlﬁt tk(;etperfc:rmanget odels, the observed information is not transmitted continuously.
estimation algoritnms 15 closely re‘ated fo the cala rate an nce, we assume thai¢) is sampled at time instancds; }:2,

time scale of the underlying dynamical system. The motivation f%th ro = 0; the other sample instances will be defined later. Before

mvestlbgaltmg thlese L:,ystems C"?‘”l’e from a_valnety tOf sourceds includ observation can be transmitted, it must be quantized and coded
neurobiological systems, socla-economical Syslems, and remolsy yne yransmission. We assume thefix codesare used so that

fR& termination of a codeword is immediately recognizable [3]. The
antization and coding function can be symbolically represented by
functionh from the state spac®” to B where 5 stands for the
and delays are 1% of finite length strings of symbols froma-ary symbol setc;,

_only e_xph_cntly considered but actually form the_ focal point Of_ the(heith transmitted codeword from the plant to the controller, can be
investigation. Recent papers by Borkar and Mitter [2] and Li anldepresented as

Wong [8] also adopt a similar perspective.
In this paper, we continue the analysis of communication con- ci = h(y(r:)). 2
strained systems, studying the effect of the communication rate on . . . i
It is assumed in this paper thatis a measurable function so that
Manuscript received December 19, 1996. Recommended by Associgft_el(c) for any codeword: is measurable.
Editor, W.-B. Gong. This work was supported by a grant from the Hong We use variable length codewords. The codeword length function
Kong Research Grants Council. _ o ~is denoted byl. Denote the time théth codeworde; is received
Urméfs}&’vgfnﬂéiﬂgrfgesﬁﬂ”ﬂept HOL:]T;f?(I‘g’InZgIOH Engineering, Ch'”es‘_&t the feedback decision-maker by. Once the coded observation
R. W. Brockett is with the Division of Engineeriﬁg and Applied Scienced> received, it is decod.ed.and the feedback control is computed an.d
Harvard University, Cambridge, MA 02138 USA. then coded for transmission back to the plant. We assume there is
Publisher Item Identifier S 0018-9286(99)02118-2. no computation delay. However, there is a transmission delay due

in wireless communication studied in [9]). This class of systems
substantially different from those studied in [4], [6], and [10] becau
the issues of coding, communication protocol,
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Fig. 2. Schematic of a memoryless finite communication control model.
to communication bandwidth constraints as before. dthecontrol In summary, we define the memoryless finite communication
codeword is denoted by, control model by the following set of equations:
d
di = gi(co, -, ¢i) ) T x(t) = Ax(t) + Bu(t), 2(0)= o
' y(t) = Ca(t)
wherey; is a function fromB*™! to B. ci = h(y(r:)) ©)
In general, the feedback control can depend on the past history of d; = g(ci)
received codewords. If the feedback law is such that the control only si =71 +1(ci)6
depends on the most recently received message we have rip1 = 8; +1(d;)6, ro =0
U,(TH_l) = k((ll)
di = g(ci) (4) A schematic diagram showing the relation between the various

equations is shown in Fig. 2.

with ¢ being a function fron#3 to 5. This will be called anemoryless  Notice that it is possible to combine the effect of the functions
feedback law. Once the control codeword is received, it is decodgdand i together into one composite function. Call this composite
and translated into a suitable control by means of a codebook. Yaction thecoded feedback control lawf the system. In theory, this
assume onlympulse controlsire used,; that is, the control is in effectcoded feedback control law can be precomputed and stored at the
only for an arbitrary short duration. Létdenote the mapping defined plant. This will avoid the need of communication totally. However,
by the codebook. Then, the feedback control definedkby;) is in practice many systems separate the decision-maker from the
received and applied at the plant at time+ {(d;)5. plant and control it remotely for reliability and other considerations.

The relation between the time instanfs;} and {s;} can be Many neurobiological systems fit this paradigm. From an engineering
defined in different ways, depending on the prearranged protocpérspective, if the dynamics or the control objective change from time
In this paper, a scheme which is similar to the stop-and-wait AR time it is desirable in some cases to implement simple codebooks
protocol [1] is assumed. Namely, after a coded observation ofthat translate codewords into various fixed modes of control than to
is sent, the next observation instant is defined to be the time afte@mpute complicated algorithms to handle these changes directly at
the corresponding feedback control information has been receiu@e plant.
and applied. Hence, the sequendes} and{s;} can be recursively It should be pointed out that in this model the initial control is

defined by the following equations: set to zero until the first observation is obtained. We call this model
an unpreparedmodel. It is possible to consider models that have
{s’i =r;+1(ci)d ) precomputed initial control. From a practical viewpoint, this imposes

ris1 = 5 +1(d;)8, ro =0. a severe constraint on the system because it implies the initial state

and start time of the system must be known quite accurately. In this
The relation between these time instants is illustrated in Fig. 1(@gaper, we will consider only unprepared systems.
An alternative way to define the sampling instants is to define themAn unprepared system with an unstable dynamics cannot be made
“back-to-back” as in Fig. 1(b). This is loosely related to the morasymptotically stable by a coded feedback control law. This is due
complicated continuous ARQ protocol. to the delay between observation instants and control time. For the
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initial 26 or more time units, the system is essentially an uncontrolled
system. It follows that we need a weaker stability condition in

order to study these systems. This leads to the following notion of
containability.

I1l. NOTION OF CONTAINABILITY

For the linear systems defined in this paper, we introduce the
following concept of containability.

Definition 1: A finite communication control system oR" is
containable if for any spher® centered at the origin there exists an
open neighborhood of the origit/ and coding and feedback control
laws such that any trajectory started/¥h remains inN for all time.

The notion of containability is closely related to the concept afig. 3. Al trajectories starting inx ;. , stay in N for all time. Those
practical stability and uniform practical stability[7]. In particular, starting outside ofLx 1, , Will leave N eventually.
the system defined by (1) is uniformly practically stable if given ) ) o
(A, A)y with 0 < X < A4, |xo| < A implies|x(t)] < A for all ¢ > 0. If_ the controlu is applied over the time mt_er\_/w,_t] to the system
Hence, one of the major differences between the two concepts is tigfined by (1), then the terminal state at times given by
containability is not predicated on the tugl®, A). , A "t _aa

Notice that the definition of containakfi(:ity irzwplies that is a w(t) = e w0 + /D Y Bu(s) ds. ©)
subset of V. Suppose that coding and feedback laWwsand g, are |t follows that if the initial states lie in a sé&, then
fixed in a finite communication control system, and defe 5 , , L a o
to be the maximal set such that all trajectories starting in it remain ou(K, u) = e K+ v(u) (10)
in NV for all time. By definition, if the system starts from a pointfor some vectoru(u). If K is Lebesgue measurable, then the
outside of Ln. 4 4, its trajectory will leave N in finite time. If a Lebesgue measure of (K, «) is given by the formula
system is containable, then for any sphéfethere exist coding and (oK, u)) = det(etA)u(K) — et “A,u(K). (11)
feedback lawsh andg, that confine trajectories t&'. We denote the SirA
setLx ., simply asLy if there is no confusion. Denotee by . _ o

It follows from the definition of containability that there exists a Denote the set oD-ary codewords in a memoryless finite com-

set with nonzero Lebesgue measure inside. Hence, the system Munication control system by = {co. ¢1, ---}. Since the feedback
satisfies law is memoryless, the coded observatignwill always elicit the

same coded feedback response, denoted;byVe assume that the
u(Ln) > 0. (7) f: codewords are also based hsymbols. LetF denote the set of
fi codewords. Without lost of generality, we may assumefihare
A simple observation that is crucial to our subsequent argumentdistinct. (If observation codewords ande; elicit the same coded
that the sampling instantgy;}, behave like renewal epochs in thefeedback response we can eliminate one of the observation codewords
sense stated in the following lemma. and use the other codeword to represent both sets of observed states.)
Lemma 1: Suppose that coding rule and the memoryless feed- Let R represent the cardinality of the set of observation codewords,
back lawg are fixed. Ifz(0) is contained inL~ », 4, thenz(r;) is  which can be assumed to be identical to the cardinality of the set of
also contained inL~, 4, , for all positive . feedback control codewords as previously explained.
Proof: Suppose that(r;) is outside ofLy, , 4. By the defini- Theorem 1: Consider a containable, memoryless finite communi-
tion of Lx 1, , such a trajectory will leaveV in finite time. Since cation control law for (1) that use®-ary codewords. LetV be
the coding and feedback laws are both memoryless, the trajectagy arbitrary sphere centered at the origin®# and » and ¢ be
afterr; is identical to the trajectory starting atr;) at time zero, a the corresponding coding and feedback control laws that ensure all
contradiction. U trajectories starting from an open neighborhood of the centgr,
It should be emphasized that in between time instants, a remaininX forallt > 0. Letm; = I(e;) andn; = I(f;). (Recall that
“contained” trajectory may wander outside bfv ., 4 but inside of 7 is the codeword length function.) Then the following inequalities
N as shown in Fig. 3. (Note that the trajectory starting frefw) hold:

for ro < ¢t < r1 may be subject to a totally different set of control oo
inputs.) Y 1/D"” <1
0
IV. NECESSARY CONDITIONS FOR CONTAINABILITY 2) i 1/Dni <1
In this section, a set of necessary conditions for a memoryless 0 B

finite communication control system to be containable is derived. = o
These conditions relate information theoretic characteristics with the 3 1<y St
dynamics of the system. 0

Let K be a subset oR™. If matrix A is n by n and vectorb is  ith + = ¢°*** and§ the transmission delay.
n-dimensional, define the setK + b by Proof: The first two inequalities are the well-known Kraft
inequality which must hold in order if it is to be possible to construct
the codeword set with the prescribed codeword lengths [3]. To prove
Define the subset oR”, ¢.(K, u) to be the set reached by athe thlj’d inequality, letl; be the subset o™ such that for any

trajectory at timet starting from an element i when the control * St
u is applied. MC(x)) =e;. (12)

AK+b={Ax+ bz e K}. (8)
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It follows that | JU; = R". Define Ly as stated in the previous as the dimension of the observation vector, which is equal to the

section. Let dimension of the state space.
L= UL (13) Define 7. to be the norm||e®4|... That is
_ B 5A
It is easy to see that th&,’s are measurable. Too = ahas, ™ llroe. (26)

If the initial point o is in L;, then at sampling time., x(r1) €  The following sufficiency result applies to any dimensien
Ly as implied by the assumption that the system is containable andregrem 2: Consider a memoryless finite communication control
Lemma 1. Moreover system with(A, B) forming a controllable pair and’ being invert-
ri = (m; +n:)d. (14) ible. Assume that binary codewords are used. Then the system is

If the decoded control is denoted lyy, then containable if

z(r) = e("”+"i)‘mwo + v(uy) (15)

for some vectors(uy).
Let the set of states at time for all trajectories starting irn’;
be denoted byM/;. Then

2t <, @7)

Proof: If one regards’(x) = h(C(x)) as the coding function,
one can assume thatt) = x(t), to simplify the presentation.
Let I, be ann-dimensional cube with sides parallel to the axes
and side lengtli. A key step in proving the theorem is to show that
M; = ML 4o (uy). (16) it is possible to construct coding and feedback control laws so that
From the containable assumption all trajectories starting id,, at time zero return td,, atr, the next
MoCL (17) sampling time. As observed before, since these sampling tifngk,
‘ behave like renewal epochs, the same coding and feedback control
or laws can be used to guarantee that future trajectories will always
(mi+n)6A 7 | o return to/,, at all sampling timesy;.
‘ Li+v(m)cL (18) To construct the coding and feedback laws, dividénto 2" cubes
It follows that with equal volume(l/2)™ and label them ad.;’s. Notice that each
(mi+n;)6A 1 cube has sides of length equal 2. We assume that the surfaces
e Li) < ulL). (19) of the L;’s are assigned in a well-defined way so that thés form
Hence a partition ofI,,. All points observed inL; will be coded with the
w(L) > T("”“”)H(Li). (20) binary codeword:; W!th lengthi. Since therg ar@” subcubes, the
codeword length varies from 1 td'2According to Kraft's lemma,
Since such a codeword set exists. The feedback contrpkorresponding
R to the codeword:;, is coded by the codeworeb~_;4. It follows
Z w(L;) = (L) >0 (21) that as shown before, if(0) € L; thenz(r1) is contained in the set

7 6(271+1)6AL1‘ =+ 'U(’ui) (28)

it follows from (20) that for some vectorn(wu;) which is dependent on the control law.

N . . . . .
1< Z it 22) The image ofL; at the sampling time:; can be contained in a
B ' cube C with sides parallel to the axes and length no greater than
/2721, Since

|
One can derive the following necessary condition as a corollary o Tl <2 (29)
of this result. it is possible to find an impulse contral to move insideI,,.

Corollary 1: If a memoryless finite communication control system T show that the system is containable in a sph¥recentered
uses the same set of codewords for observation and feedback congplne origin, construct a cub& centered at the origin with sides
then it is containable only if equal toe and parallel to the axes. Apply the coding and feedback

7 < D. (23) control laws defined previously. At time, the trajectories stay i/ .
dSince there are only a finite number of possible coding and control

Proof: If m;’s and n;'s form sequences that are relate values,r; can assume only a finite set of values and the trajector
to each other by permutation of the indexes, then by trg 1 y ! y

Hardy-Littlewood—Polya rearrangement theorem [5], it follow: rOT wflror) t?nm(r‘“)] N unltforrnrnily”bnounrdttekc]ii for ?” 'nr']t'gl prglnés Idi).itr »
that the termY>X 1/7™i 1/7" is maximized whenm; = n;. o cove SINCE e System 1S finear, this set can be made arbitrartly

Hence, it follows from Theorem 1 that small if M is small en(.)ugh..So, by phogsmg a small gnougbnfa
N N can ensure that all trajectories startinglifi will be contained inN
. . for all time. O
1<y 1y =N 10, 24 , . ,
- ; /T Z /r (24) This theorem can be easily generalized to fheary codeword
B cases. Note that ifA is the identity matrix, thenr = ¢?
The necessary condition in Corollary 1 for the binary codeword case

=0

= Teo.

If 72 > D, then

x X states that
1<y /7™ <> /D™ < 1L (25) o
i=0 i=0 e < 2. (30)
A contradiction. O On the other hand, the sufficient condition of Theorem 2 requires
that
V. SUFFICIENT CONDITIONS FOR CONTAINABILITY L2718 <2 (31)

In this section, we will consider some sufficient conditions for
systems to be containable. For simplicity, we assume from now étence, there is a large gap between the two conditions. It is likely
thatm = n = p, that is the dimension of the control vector is saméhat a tighter necessary condition can be derived i 1. Moreover,



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 5, MAY 1999 1053
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_ 2Y £2i —
(D=1)(r%) 7 Abstract—In this paper the authors present linear matrix inequality

. o . LMI) conditions for output feedback control problems. The results
This holds ifr* < D. The rest of the argument follows as in Theorenire based on sufficient conditions because they are dependent on the

2. O particular state-space representation used for describing the system. Nev-
ertheless, the conditions are not sensitive to a certain class of state-space
VI transformations, and if the control problem is feasible then there exists
- CONCLUSION some state-space transformation leading the conditions to be necessary
In this paper, the issue of feedback control of a system with finig#d sufficient for the problem. The authors approach can be used for
communication constraint is considered. The concept of containabilfl§s'9ning decentralized controliers and is easily extended &2, Hoo and
L. d d and simole necessarv and sufficient conditions xeng/Hgo problems via standard LMI techmqges. The continuous-
IS 'nt'_'o U_C_e ' p y an _ A d discrete-time cases are considered and numerical examples are given
containability are derived. The problems introduced in this paper atgillustrate the results.
relatively new and much more effort is needed in the future to provide )
Y . . . . . P . Index Terms—LMI, robustness, static output feedback.
deeper insight into this class of systems. An interesting geometric
question central to the issue is the following:
Problem: Consider a unit cube or sphere iR", I. Given a |. INTRODUCTION

function f that maps/ into ®”, what are the necessary and sufficient The static output feedback stabilization is among the most impor-

conditions for the existence of a partition n?;-f into I.’'s and @ yant control problems for which a complete solution is not available
corresponding sequenden; } satisfyingy_1/2™ < 1, such that yet. During the last decades various approaches have been proposed
L) o C T (35 deal with the problem [1]-[9].
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