
Adjoint Orbits, Principal Components, and  Neural Nets

• Some facts about Lie groups and examples
• Examples of adjoint orbits and a distance measure
• Descent equations on adjoint orbits
• Properties of the double bracket equation
• Smoothed versions of the double bracket equation
• The principal component extractor
• The performance of subspace filters
• Variations on a theme



Where We Are

9:30 - 10:45       Part 1. Examples and Mathematical Background
10:45 - 11:15     Coffee break

11:15- 12:30  Part 2. Principal components, Neural Nets, and 
  Automata

12:30 - 14:30    Lunch
14:30 - 15:45    Part 3. Precise and Approximate Representation 

  of Numbers
15:45 - 16:15    Coffee break
16:15 - 17:30    Part 4.  Quantum Computation



The Adjoint Orbit Theory and Some Applications

1.   Some facts about Lie groups and examples
• Examples of adjoint orbits and a distance measure
• Descent equations on adjoint orbits
• Properties of the double bracket equation
• Smoothed versions of the double bracket equation
• Loops and deck transformations



Some  Background

By a Lie Group G we understand a group with

a topology such that multiplication and inver-
sion are continuous. (In this setting continuous

implies differentiable.)

We say that a group acts on a differentiable
manifold X via φ if φ : G×X → M is differen-

tiable and φ(G2G1, x) = φ(G2, φ(G1, x)).

The group of orthogonal matrices So(n) acts

on the n − 1-dimensional sphere via the action
φ(Θ, x) = Θx



More  Mathematics Background

Associated with every Lie group is a Lie alge-

bra L which may be thought of as describing
how G looks in a small set around the identity.

Abstractly, a Lie algebra is a vector space with
a bilinear mapping φ : L × L 7→ L such that

[L1, L2] = −[L2, L1]

[L1, [L2, L3]] + [L2, [L3, L1]] + [L3, [L1, L2]] = 0

The Lie algebra associated with the real orthog-
onal group is the set of skew- symmetric matri-
ces of the same dimension. The bilinear opera-
tion is given by [Ω1, Ω2] = Ω1Ω2 − Ω2Ω1.



A Little More Mathematics Background

Let Θ be an orthogonal matrix and let Q be a
symmetric matrix with eigenvalues λ1, λ2, ..., λn.
The formula ΘTQΘ defines a group action on

Sym(λ1, λ2, ..., λn). The set of orthogonal ma-
trices is of dimension n(n − 1)/2 and the space
Sym(Λ) is of dimension n(n+1)/2. This action

is basic to a lot Matlab!

The action of the group of unitary matrices on

the space of skew-hermitian matrices via (U, H) 7→
U †HU can be thought of as generalizing this ac-

tion. It is an example of a group acting on its
own Lie algebra. This is an adjoint action.



Still More Mathematics Background

Consider Lie algebras whose elements are n by

n matrices and Lie groups whose elements are
nonsingular n by n matrices. The mapping exp

: L 7→ eL sends the Lie algebra into the group
of invertible matrices. The identity P−1eLP =

eP−1LP defines the adjoint action.

If φ : G × X → X is a group action then there

is an equivalence relation on X defined by x ≈
y if y = φ(G1, x) for some G1 ∈ G. Sets of

equivalent points are called orbits. The subset

of H ⊂ G such that φ(H,x0) = x0 forms a

subgroup called the isotropy group t x0.



The Last for now,  Mathematics Background

Any L1 ∈ L defines via [L1, ·] : L → L, a
linear transformation on a finite dimensional

space. It is often written adL1
(·). adL1

(adL2
(·))

= [L1, [L2, ·]] defines a linear transformation on

L as well. The sum of the eigenvalues of this
map defines what is called the Killing form κ(L1, L2),
on L. For semisimple compact groups such as
the orthogonal or special unitary group, the
Killing form is negative definite and propor-
tional to the more familiar tr(Ω1Ω2).

The Killing form on G defines a metric on the

adjoint orbit called the normal metric.



Getting a Feel for the Normal Metric

Explanation: Consider perturbing Θ via Θ 7→
Θ(I + Ω). Linearizing the equation

ΘTQΘ = H

we get

HΩ + ΩTH = [H, Ω] = dH

Thus

Ω = ad−1
H (dH)

If H is diagonal then

ωij =
dhij

λi − λj



 Steepest Descent on an Adjoint Orbit

Let Q = QT and N = NT be symmetric ma-

trices and let Θ be orthogonal. Consider the
function trΘTQΘN thought of as a function on

the orthogonal matrices. Relative to the Killing
metric on the orthogonal group, the gradient
descent flow for minimizing this function is

Θ̇ = [ΘTQΘ, N ]Θ

If we let ΘTQΘ = H then the derivative of H
can be expressed as

Ḣ = [H, [H, N ]]



A Descent Equation on an Adjoint Orbit

Let Q = QT and N = NT be symmetric matri-

ces and let ψ(H) be a real valued function on
Sym(Λ). What is the gradient of ψ(H)? The

gradient on a Riemannian space is G−1dψ. On
Sym(Λ) the inverse of the Riemannian metric is
given by [H, [H, ·]]. and so the descent equation

is
Ḣ = −[H, [H, dψ(H)]]

Thus for ψ(H) =tr(HN) we have Ḣ = −[H, [H, N ]].
If N is diagonal then trHN achieves its mini-
mum when H is diagonal and similarly ordered
with −N .



A Descent Equation with Multiple Equilibria

If ψ(H) = −tr(diag(H)H) then Ḣ =
[H, [H, 2diag(H)]] Let Q = QT and N = NT

be diagonal matrices with distinct eigenvalues.
The descent equation is

Ḣ = −[H, [H, dψ(H)]]

Thus for ψ(H) =tr(HN) we have Ḣ = [H, [H,N ]]
If ψ(H) =diagH then Ḣ = 2[H, [H,diag(H)]]



A Descent Equation with Smoothing Added

Consider replacing the system

Ḣ = [H, [H, N ]]

with

Ḣ = [H, q(D)P ] ; p(D)P = [H,N ]

Here D = d/dt. This smooths the signals but
does not alter the equilibrium points. Stability

is un affected if q/p is a positive real function.



The Double Bracket Flow for Analog Computation

Principal Components in Rn

Learning without a teacher is
sometimes approached by

finding principal components.

Ẇ = x(t)xT (t) - forgetting term

ΘT (t)W (t)Θ(t) = diag(λ1..., λn)

Columns of Θ are “components’

The principal components are

assembled in a hidden layer
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Adaptive Subspace Filtering

Filter

t

frequency

power



Let u be a vector of inputs, and let Λ  be a diagonal  “editing”
matrix that selects energy levels that are desirable.  An adaptive
subspace filter with input u and output y can be realized by
implementing the equations

Some  Equations
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Neural Nets as Flows on Grassmann Manifolds

Denote by G(n, k) the space of k-planes in n-
space. This space is a differentiable manifold

that can be parameterized by the set of all k by

n matrices of rank k. It is a manifold. Adaptive

subspace filters steer the weights so as to define
a particular element of this space. Thus ΛΘ,

defines such a point if Λ looks like

Λ =


1 0 ... 0
0 1 ... 0

... ... ... ...

0 0 ... 1





Summary of Part 2

1. We have given some mathematical background necessary to 
work with flows on adjoint orbits and indicated some applications. 

 2. We have defined flows that will stabilize at invariant subspaces 
corresponding to the principal components of a vector process.  
These flows can be interpreted as flows that learn without a teacher. 

3.  We have argued that in spite of its limitations, steepest descent is 
usually the first choice in algorithm design. 

4. We have interpreted a basic neural network algorithm as a flow 
in a Grassmann manifold generated by a steepest descent tracking 
algorithm.
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