
Precise and Approximate Representation of
Numbers

• The Cartesian-Lagrangian representation of numbers.

• The homotopic representation of numbers

• Loops and deck transformations

• The maximal ideal representation

• The place cell representation

• The radix r representation



 Outline of the Day

9:30 - 10:45    Part 1. Examples and Mathematical Background
10:45 - 11:15  Coffee break

11:15-12:30    Part 2. Principal components, Neural Nets, and 
Automata

12:30 - 14:30   Lunch
2:30- 3:15     Part 3. Precise and Approximate Representation 

of Numbers
15:45 - 16:15   Coffee break
16:15 - 17:30   Part 4.  Quantum Computation



 The Usual Analog Computing Paradigm 

Problems arise because of the dynamic range is limited by  noise, 
and because of the flows often contain hyperbolic points that 
expand the dynamic range. These considerations may make it more 
desirable to compute the geometric mean  than the product, the 
average rather than the sum. 

Some experience indicates that this representation of data is 
limited to about one part in 256, or eight bits. 

Moreover this scheme is conceptually suspect in that it suggests
that it is possible to transmit information perfectly from one location 
to another at arbitrary transmission rates. It fails to acknowledge 
either limited dynamic range or limited bandwidth. 



 The Use of Time 

Consider the representation of numbers via pulse frequency modulation. 
If we can vary the pulse rate from 1 Hz. to 106 Hz. then we 
Can represent one part in 106.  However, if we can not reliably 
count pulses at a rate faster than one every T seconds it will take Tx106 
seconds to transmit one number. These and other considerations 
suggest that. In this setting it is worthwhile to think of the
communication constraints as limiting the signal space to a subset of 
the phase plane.

du/dt

u



 Channel Capacity

In this case the bit rate is ln 106 / Tx 106.  This model brings clearly 
into evidence the limitations on communication speed. It is impossible 
know both the value and the rate of change because it takes time to 
transmit this information.  This suggests a strong limitation on 
differential equations as computational models. 

Place cell representations must be specified by the lowest possible 
pulse rate and the highest possible pulse rate.  There are systems used 
Just to give some numbers, there is a part of the the auditory cortex 
for which these numbers are 50 and 250 respectively.) 
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The representation of a curve as a
time varying convex combination
of points.



Types of Quantizers

General Definition of “Digital” System

Partition the input space

u 7→ [u] =equivalence class

ẋ(t) = f(x(t), u(t)); y(t) = h(x(t))

such that

limt→∞x(t) = φ([u])



Types of Quantizers

In topology there is a distinction between

π0–the number of connected components
of a topological space and π1, the set of

equivalence classes of closed curves.
Ordinary quantizers can be thought of as
π0 quantizers. Pulse counters can be

thought of as π1 quantizers

(a) (b)



The Pulse Annulus and its Winding Number

du/dt

U

The annular characterization allows arbitrary spacing between pulses,
a characterization of a set of functions that is very different from, say,
the characterization of  band-limited functions.



Computing with Pulse Representations

A matched filter for pulses might take the
form

ẋ = − sin(2πx) + u

If the area under the pulse is near 1 and
if the refractory period is long enough,
this system will count pulses with no error.
In symbols
limt→∞ x(t) = ν[u] where ν denotes the

winding number in the annulus sense.



ẋ(t) = − sin x(t) + u(t)

u is “pulse-like” with area ≈ 2π

Suppose that x(0) ≈ 0

Is x(t) ≈ 2nπ most of the time?

Yes, if the pulses are sharp enough
x will advance in units of 2π

Applicable to
ẋ(t) = x(t) − x3(t) + u(t)



x(t) − x(0) − ∫ t
0 u(σ)dσ =

− ∫ t
0 sin x(σ)dσ

y(t) = x(t) − ∫ t
0 u(σ)dσ

y(t) − y(0) =

− ∫ t
0 sin(y(σ) +

∫ σ
0 u(η)dη)dσ

sin(y(σ) +
∫ σ
0 u(η)dη) =

sin y(σ) cos
∫ σ
0 u(η)dη)+

cos y(σ) sin
∫ σ
0 u(η)dη)



But if u is “pulse-like”

cos(
∫ σ
0 u(η)dη) ≈ 1

sin(
∫ σ
0 u(η)dη) ≈ 0

in the sense that the integral of the
deviation is small



A Few Facts from the Topology of Adjoint Orbits

The n-dimensional orthogonal group So(n) is
an 2n−1-fold cover of Sym(Λ). Interpretation:

First of all Sym(Λ) is a manifold of the same
dimension as S0(n). Secondly, for each H ∈
Sym(Λ) there are 2n−1 different values of Θ such
that ΘT

i HΘi = H . If Θ(α) ∈ So(n) for α ∈
[0.1] defines a curve joining the identity to Θi

then there is a closed curve H(α) = ΘT (α)H0Θ(α)
in Sym(Λ). This shows that there are 2n−1 dis-

tinct elements of π1( Sym(Λ)).
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Moving Inverse Images Around

Consider the system

Θ̇ = [H, N ]Θ

with H considered to be an input, subject to the

constraint that H(0) = H(T ). Then the value
of Θ(T )Θ−1(0) is independent of the the details
of the path and only depends its homotopy class

in Sym(Λ)) There are 2n−1 distinct values for
Θ(T )Θ−1(0). These are seperated by at least π

units of length.



Using Systems with Many Stable Equilibria.

The system

Ḣ = [H[H, diag(H)]

has n! stable equilibria. If we add a control in
the form of a diagonal matrix U we can steer

the system between these equilibria, at will. By
coupling it with a slower time scale copy of the
system we can realiize automata as

Ḣ = [H[H, φ(U, J)]

J̇ = [J [J,H]

This is much more like standard digital imple-
mentations.



A second, completely different, way to achieve robustness of the
representation of a real number is to represent it as the redundant
weighted combination of fixed numbers.  The number is represented
by weights and a function of time is represented by a an evolution in
“weight space”. In the place cell picture the weights are organized
topographically.  It is also to think of them as being the coefficients in
a radix r representation,

                                x(t) =  Σ ai(t)ri

In this case there is no redundancy however.
More typically the situation is as suggested
On the right.

Robustness via Redundant Convex Combinations. 
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This representation of points is conceptually different from averages
In a probabilistic setting but when implemented it looks almost the
same.

Probabilities on Vectors Spaces Lead to Averages 



Conditional Density Flow Takes away More or Less

d
dt
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Fact: The conditional density for the usual gauss markov process
observed with additive white noise evolves as a Gaussian.

The argmax of a Gaussian can be computed via the mean. Thus  it
is possible to convert ordinary differential algorithms into  density
evolution equations which will do the same calculations.

It seems likely that the brute force way of doing this is not the most
efficient and from our knowledge of completely integrable systems
It seems likely that one can find soliton equations that will perform
these calculations robustly.

Computation with an Argmax (Place Cell) Representation



Conditional Density Equation:  x Real Valued

Let ρ(t, x) denote the conditional density
of x, given the past observations.

with no observations we have

∂ρ
∂t = Lρ

Observations is to change this to

∂ρ
∂t = Lρ − 1

2

∑
φ2

sk
(x)ρ +

∑ dysk

dt φsk
(x)ρ
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The Argmax Representation



A Distributed (Argmax)  Model for Analog Computation

∂ρ1(t,x)
∂t = Lρ1(t, x) + F1(ρ1, ...ρn)ρ1(t, x)

∂ρ2(t,x)
∂t = Lρ2(t, x) + F2(ρ1, ...ρn)ρ2(t, x)

............

∂ρn(t,x)
∂t = Lρn(t, x) + Fn(ρ1, ...ρn)ρn(t, x)



Summary of Part 3

1. Quantization is necessary for communication, computation,
reasoning and data storage. It must be adapted to the computational 
“hardware” available. 

2. Topological invariants are attractive examples of robust 
quantization and can be related to computation in some cases. 
There are arguments that show one can compute with this type of 
representational scheme. 

3. We have illustrated the realization of finite state machines using 
homotopy classes to represent states. 

4. Conditional probabilities evolve and their evolution defines 
one of the most basic analog computers. 


