
Quantum Computing: NMR and Otherwise

• The NMR paradigm

• The quantum mechanics of spin systems.

• The measurement process

•  Berry’s phase in a quantum setting



 Outline of the Day

9:30-10:15       Part 1. Examples and Mathematical Background
10:45 - 11:15   Coffee break
11:15 - 12:30   Part 2. Principal components, Neural Nets, and 

Automata
12:30 - 14:30   Lunch
14:30 - 15:45   Part 3. Precise and Approximate Representation 

of Numbers
15:45 - 16:15   Coffee break
16:15-17-30 Part 4.  Quantum Computation



 Importance and Timeliness of Quantum 
Control and Measurement

1. NMR is the main tool for determining the structure of proteins, 
key to the utilization of gene sequencing results,  and it is now 
known that the existing methods are far from optimal. 

2. NMR is a widely used tool for noninvasive measurement of brain
structure and function but higher resolution is needed. 

3. Quantum control plays an essential role in any realistic plan for 
the implementation of a quantum computer. 

4. There  are beautiful things  to be learned by studying method-
ologies developed by  physicists and chemists working in these fields, 
especially in the area of nonlinear signal processing. 



Rough Abstract Version of the  NMR Problem

Consider a stochastic (via W  and n)  bilinear system of the form 

     dx/dt = (A +W + u(t)B(t))x +b + n(t)       y=cx

A given waveform u gives rise to an observation process y.  Given a 
prior probability distribution on the matrices  A and B  there exists  a 
conditional density for them. Find the input waveform u(t) which 
makes  the entropy of this conditional density as small as possible.  

In NMR the matrix A will have complex and lightly damped 
eigenvalues often in the range 107 /sec. Some structural properties of 
the system will be known and y may have more than one component. 
A popular idea is to pick u to generate some kind of resonance and get
information on the system from the resonant frequency.  Compare with 
optical spectroscopy in which identification is done by frequency. 



An Example to Fix Ideas

Let w and  n be white noise. The problem is to choose u to 
reduce the uncertainty in f, given the observation y.

Observe that there is a constant bias term. Intuitively 
speaking, one wants to transfer the bias present in 
x1 to generate a bias for the signal x2 which then shows up in y.
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Qualitative Analysis Based on the Mean
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If we keep u at zero there is no signal.  If we apply a pulse, rotating
the equilibrium state from x1 = 1, x2=0,x3=0 to x1 = 0, x2=1,x3=0, 
Then we get a signal that reveals the size of f. The actual signal with 
noise present can be expected to have similar behavior. 



The Continuous Wave Approach

Let u be “slowly varying sine wave” u=a sin( b(t) t) with b(t) = rt.
The benefit of the pulse goes away after the decay--the sine wave 
provides continuous excitation. 
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Possible Input-Output Response

Radio Frequency Pulse input

Free Induction
Decay response



The Linearization Dilemma

Small input makes linearization valid but gives small 
signal-to-noise ratio.  Large input give higher signal-to-noise
ratio but makes nonlinear signal processing necessary.
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The Linear System Identification Problem

Given a fixed but unknown linear system

dx/dt = Ax+Bw    ; y=cx + n

Suppose the A belongs to a finite set, compute the conditional 
probability of the pair (x,A) given the observations y. The solution is 
well known, in principle.  Run a bank of Kalman-Bucy filters, one for
each of the models. Each then has its own “mean” and “error variance”.
There is a key weighting equation associated with each model

d (ln α)/dt = xTCT(y-Cx)-(1/2)tr(CTC- Σ−1BΒΤΣ−1)(xxT-Σ)) 
              (weighting equation)

dx/dt = Ax-ΣCT(Cx- y)                            (conditional mean equation)

d Σ/dt = AΣ + ΣAT + BTB - ΣCT C Σ      (conditional error variance)



The Mult-Model Identification Problem

ρt(t,x,A) = L* ρ(t,x,A)-(Cx)2/2ρ t,x,A) +yCx ρ (t,x,A) 

This equation is unnormalized and can be considered to be vector 
equation with the vector having a as many components  as there are 
possible models. Assume a solution for a typical component of the 
form

ρi(t,x) = α i(t)(2πndetΣ )-1/2exp (x-xm) ΤΣ−1(x-xm)/2

dα i(t)/dt = …
dxi(t)/dt = …
dΣi(t)/dt = …

Consider the conditional density equation for the joint state-parameter
problem



The Linear System Identification Problem Again
When the parameters depend on a control it may be possible to 
influence the evolution of the weights in such a way as to reduce the 
entropy of the conditional distribution for the system identification. 

Notice that for the example we could apply a π/2 pulse to move the
the bias to the lower block or we could let u be a sine wave with a 
slowly varying frequency and look for a resonance. It can be cast as
the optimal control (say with a minimum entropy criterion) of

d (ln α)/dt = xTCT(y-Cx)-(1/2)tr(CTC- Σ−1BΒΤΣ−1)(xxT-Σ))

dx/dt = A(u)x-ΣCT(Cx- y))

d Σ/dt = A(u) Σ + ΣA(u)T +BTB- -ΣCT C Σ 

pi=αi/(Σ αi)



Interpreting the Probability Weighting Equation

The first term changes α according to the degree of alignment between
the “conditional innovations” y-Cx,  and the conditional mean of x. 
It increases α  if  xTCT(y-Cx) is positive. What about

(1/2)tr(CTC- Σ−1BΒΤΣ−1)(xxT-Σ)

It compares the sample mean with the error covariance. Notice that 

CTC- Σ−1BΒΤΣ−1   = -dΣ−1 /dt - Σ−1A-ΑΤΣ−1

Thus it measures a difference between the evolution of the inverse error 
variance with and without driving noise and observation.



Controlling an Ensemble with a Single Control

dx1/dt = A(u)x1+Bw1    

dx2/dt = A(u)x2+Bw2

…………..

dxn/dt = A(u)xn+Bwn

y=(cx1 + cx2+ …+xn )  + n

The system is not controllable or observable.  There are 1023 copies 
of the same, or nearly the same, system. We can write an equation 
for the sample mean of the x’s, for the sample covariance, etc. 
Multiplicative control is qualitative different from additive.

The actual problem involves many copies with the same dynamics



The Concept of Quantum Mechanical Spin

First postulated as property of the electron for the purpose of 
explaining aspects of fine structure of spectroscopic lines, (Zeeman
splitting).  Spin was first incorporated into  a Schrodinger -like 
description of physics by Pauli and then treated in a definitive way 
by Dirac. Spin itself is measured in units of angular momentum as 
is Plank’s constant.  The gyromagnetic ratio links the angular 
momentum to an associated magnetic moment which, in turn,  
accounts for some of the measurable  aspects of spin. Protons were 
discovered  to have spin in the late 1920’s and in 1932 Heisenberg 
wrote a paper on nuclear structure in which the recently discovered 
neutron was postulated to have spin and a magnetic moment. 



Angular Momentum and Magnetic Moment

Spin (angular momentum)  relative to a fixed direction in space is 
quantized. The number of possible quantization levels depends 
on the total momentum.  In the simplest cases the total momentum is 
such that the spin can be only plus or minus 1/2.  Systems that consist 
of a collection of n such states give rise to a Hermitean density matrix
of dimension 2n .by   2n.

Wolfgang
Pauli

Werner
Heisenberg



The Pioneers of NMR, Fleix  Bloch and Ed Purcell

Bloch 
Nuclear Induction Purcell

Absorption

dM/dt = BXM+R(M-M0 )

Bloch constructed and important 
phenomenological equation, valid 
in a rotating coordinate system, 
which applies to a particular type of 
time varying magnetic field.   
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In a Stationary (Laboratory) Coordinate System

dx/dt = Ax + b
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Why are Radio Frequency Pulses  Effective

Let z be exp(-At)x  so that the equation for z takes the form

If Ax(0)=0 and if the frequency of u is matched to the frequency of
exp(At) there will be  secular terms and the solution for z will be
approximated by z(t) = exp(Ft)x(0).  Thus x is nearly exp(At)exp
(Ft)x(0).

dx/dt = (A+u(t)B)x

dz/dt = u(t)e-At BeAtz(t)



Distinguishing Two Modes of Relaxation

A view looking down on the transverse plane.
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Boltzmann Distribution for a Physical System
in Equilibrium at Temperature T

Because magnetic moments  that are 
aligned with the magnetic field have a 
little less energy than those opposing it, 
the Boltzmann distribution implies they
are favored.

E(x)

density

ρ(x)=(1/Z)exp-(E(x)/2kT)



Quantum Evolution Equations after Schrodinger

The last equation defines the so called density matrix of statistical 
mechanics and can be expressed in terms of the coefficients cij . These
coefficients are complex and it happens  that the coherence of the 
various quantum transitions is revealed by the off diagonal terms ρij  

  

ih
∂ψ
∂t

= Hψ

ψ i = ∑cijφj

ρ = 1
N

∑ψ iψ i
T

Schrodinger Equation for a particle

Expansion in terms of an orthonormal 
basis.

The average behavior of many 
non-interacting particles



The Hilbert space which occurs in quantum mechanics is a space of
square integrable functions mapping the set of possible
configurations into the complex numbers. For pure spin systems,
unlike, say, the quantum description  of a harmonic oscillator,  the
Hilbert space is finite dimensional.

The Hilbert Space for Spin

John von
Neumann

Paul Dirac



The Meaning of the Density Matrix, Decoherence

Each ψ has a phase angle but only |ψ | is related to probability,
Thus for a single particle phase is not detectable.  However for two
noninteracting particles the relative phase angle matters.  The
size of the off-diagonals in ρ measures the consistency of the
relative phase angles.

Spin (angular momentum)  relative to a fixed direction in space is
quantized. The number of possible quantization levels depends
on the total momentum. In the simplest cases the total momentum is
such that the spin can be only plus or minus 1/2.  Systems that
consist of a collection of such states give rise to a density matrix of
dimension 2n .



The Density Equation from Statistical Mechanics

The density matrix satisfies a
linear equation derived from the
wave equation.  In studying NMR
it is almost always simplified by
eliminating many of the degrees of
freedom. The resulting equation
looks more complicated but it is
more easily related to
measurements.

The Bloch equation might be
regarded as an extreme
simplification of a reduced
equation of this form
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The complete density equation is isospectral because it is of the form
dρ/dt = [iH, ρ] form.  iH simply infinitesimally conjugates the initial
condition.  This gives the initial condition considerable significance.

The reduced equation comes about by  considering ρ to be a two by
two block and focusing on the 11 term. It is then no longer isospectral.
As a phenomenological equation the over-riding constraint applies to
the steady state, which must be the Boltzmann distribution.

Isospectral Equation from Statistical Mechanics



The Reduced Density Equation

For tractability, separate the “lattice dynamics” from the spin 
dynamics, replacing the former by an effective random term. 
The resulting equation is no longer isospectral but is 
asymptotically stable to an equilibrium consistent with the 
Boltzmann distribution. 

Think:  blue is infinite
dimensional and
isospectral, green is finite
dimensional (spin only
Hilbert space) and
isospectral. Orange is
spin only, finite
dimensional, not
isospectral, the “master
equation” as above.

ρ in Herm(λ , λ , ... )

Herm(σ , σ , ... ,σ )

1 2

1 2 ν

reachable set for σ

Thermal
Equilibrium



Control theory can help by solving the problem of transferring the
state of the reduced equation from its original value to an interesting
“excited” value in minimum time.  In this way the decoherence effects
are minimized.  For this purpose one may often ignore the dissipation
and treat the reduced equation as if it were on a co-adjoint orbit. In
this way the theory of controllability on Lie groups arises in the form

dx/dt = (A+uB)x

Controllability depends on the way in which A and B generate the
Lie algebra. In some situations the Lie group is a rank one symmetric
space and the time-optimal control can be solved for explicitly.
(see recent paper by Navin Khaneja et al. In Physics Review B.)

Back to Control Theory



Some Interesting Questions

1. We have framed the problem of optimal signal design in terms
of minimizing the entropy of the distribution associated with
conditional probabilities of the systems.  Conventional practice
in NMR makes extensive use of the Fourier Transform.  Can we
find a point of view from which the Fourier Transform defines an
optimal or nearly optimal,  i.e., conditional distribution generating,
filter?

2. Can we find effective means for designing pulse sequences for
point to point control on co-adjoint orbits of greater complexity?

3. Can we either improve on or prove the optimality of the various
“two dimensional” signal processing schemes now in use in NMR?



What Kind of a Research Program Makes Sense?

1. Alternative views of computation involving an analysis of different 
data representations schemes and computational methods is essential 
if we are to get past the current status.

2. We need a better understanding of how to make use of memory in 
computation, and situation recognition.  This includes an understanding
 of relational databases and their maintenance.

3. In some adaptive problems we might better think of A to Tree rather
 than A to D, so that we generate appropriate classification schemes. 

4. Many of the issues that come up here were first articulated as 
computer vision problems.  For example, the bottom/up --
top/down paradigm arises in that context. Computer vision is a 
continuing source of test cases.


