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Data Driven Sensing, Data Driven Computation  

1. In many situations ranging from medical diagnosis to analytical 
chemistry,the sequence of sensing procedures (tests) are determined 
sequentially, guided by the outcome of earlier tests. Acknowledging 
that each sensing procedure has an associated cost, finding the optimal
choice of a sensing sequence usually involves solving a dynamic 
programming problem. Sensing may be deterministic or probabilistic.

2. Although algorithms are designed to compute specific things such 
as eigenvalues, when the algorithm is computing something like a 
Fourier transform or Radon transform, it is simply  as transforming 
data. When the outcome of such transformation is to be used to help 
classify the original data, we may think of the application of the 
transform as being a type of sensing procedure, used for the purpose 
of detecting the presence or absence of a type of structure.  The 
decision procedure may be deterministic or probabilistic.



Optimal Sensing Requires Optimal of Excitation and Tuning  

1. When a sensing procedure involves simple observation there is no 
need to choose an excitation but it may be necessary to  choose certain 
parameters. More frequently,  sensing involves the introduction of 
signals or altered states intended to increase the usefulness of the 
subsequent measurements. Optimization when active sensing is 
involved involves additional complexity.

2. Is there a computational analog of active sensing? Many algorithms 
depend on parameters.  These must be set correctly if the algorithm is 
to be maximally useful.  When applying a discrete Fourier transform 
it is necessary to sample the continuous signal at some density. This 
parameter must be selected before the algorithm is applied even though 
this usually involves (human) guess work. Secondly, the “experimenter” 
must select which subset of the data to process. This is closely
analogous to the the choice of an optimal excitation. 



Two Examples  

We now more concrete examples of problems that can serve to 
motivate the point of view we have adopted.  Suitably generalized, 
these two examples are, in themselves, quite important and have been 
the subject of whole conferences. 

The first comes from the field of image understanding and the second 
from nuclear resonance spectroscopy, a key tool in the determination 
of the structure of proteins.   The first example serves to help frame the 
discussion of automatic algorithm selection whereas the second puts in 
concrete form questions of optimal sensing in a situation in which we 
must choose the right excitation if we are to get the informative 
answers. 



 



The Problem  

Find a line drawing that represents the framing present in the image 
and identifies the parts of the image that are not well represented by  
a line drawing.  

Issues to be clarified  include the identification of “correct” scale for 
analysis of the image and the role to be played by line detectors such 
as the Radon transform. 

Applying the Radon transform to the entire image is clearly not a good 
thing to do because there are no lines that extend over the whole image. 
Applying the Radon transform to blocks should be better but we need 
to determine a suitable block size.  How should this be done? 



 Transforms that Minimize the Description Length 

The goal of sensing is to reduce uncertainty.  When we have correctly 
identified an object or scene we can describe it more briefly than 
we can when it is not yet identified. The goal of algorithmic 
processing  is to find a description of the scene that is accurate and 
brief in terms of  a pre determined vocabulary.   

Of course the length of the description of a situation depends on the 
vocabulary that is available.  In vision processing by animals, the 
vocabulary can be thought of as the set of mutually understood signals 
used by different parts of the visual cortex.  On the time scale of 
day-to-day events, it can be thought of as being fixed.  It might 
include a signal for “horizontal line”, “to bright”, etc.  However, the 
vocabulary  might also include highly composite objects such as 
“tree” and “mother”. 









 The Block  Radon Transform Requires a Choice of Scale 

The sub image is 128 by 128 pixels.  Because it is not homogeneous 
we divide it into blocks before processing it. The size of the blocks is 
a parameter that must be selected before the algorithm can be run but 
only after the algorithm is run can we judge the success of  a certain 
parameter choice.  The next two images show the results of the choices 
16 by 16 and a 32 by 32.  
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What about other Transforms?

There is nothing special about the Radon transform and/or the edge 
detection algorithm we used to prepare for it. What about other
transformations of the data? The following slide shows the 16 by 16 
block Fourier transform of the 128 by 128 sub image.  Notice the lack 
of structure!  Thus if we were running a bank of speculative 
Computations and applying a minimum description criterion to select 
The one with the most explanatory power, we would prefer the 
Radon transform for this particular image. 
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 Signal Processing and Nuclear Magnetic Resonance

1. NMR is the main tool for determining the structure of proteins, 
key to the utilization of gene sequencing results,  and it is now 
known that the existing methods are far from optimal. 

2. NMR is a widely used tool for noninvasive measurement of brain
structure and function but higher resolution is needed. 

3. There  are beautiful things  to be learned by studying the  methods
developed by  physicists and chemists working in these fields, 
especially in the area of nonlinear signal processing. 



Abstract Version of the  NMR Problem

Consider a stochastic (via W  and n)  bilinear system of the form 

     dx/dt = (A +W + u(t)B(t))x +b + n(t)       y=cx

A given waveform u gives rise to an observation process y.  Given a 
prior probability distribution on the matrices  A and B  there exists  a 
conditional density for them. Find the input waveform u(t) which 
makes  the entropy of this conditional density as small as possible.  

In NMR the matrix A will have complex and lightly damped 
eigenvalues often in the range 107 /sec. Some structural properties of 
the system will be known and y may have more than one component. 
A popular idea is to pick u to generate some kind of resonance and get
information on the system from the resonant frequency.  Compare with 
optical spectroscopy in which identification is done by frequency. 



An Example to Fix Ideas

Let w and  n be white noise. The problem is to choose u to 
reduce the uncertainty in f, given the observation y.

Observe that there is a constant bias term. Intuitively 
speaking, one wants to transfer the bias present in 
x1 to generate a bias for the signal x2 which then shows up in y.
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Qualitative Analysis Based on the Mean
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If we keep u at zero there is no signal.  If we apply a pulse, rotating
the equilibrium state from x1 = 1, x2=0,x3=0 to x1 = 0, x2=1,x3=0, 
Then we get a signal that reveals the size of f. The actual signal with 
noise present can be expected to have similar behavior. 



The Continuous Wave Approach

Let u be “slowly varying sine wave” u=a sin( b(t) t) with b(t) = rt.
The benefit of the pulse goes away after the decay--the sine wave 
provides continuous excitation. 
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Possible Input-Output Response

Radio Frequency Pulse input

Free Induction Decay
response



The Linearization Dilemma

Small input makes linearization valid but gives small 
signal-to-noise ratio.  Large input give higher signal-to-noise
ratio but makes nonlinear signal processing necessary.
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The Linear System Identification Problem

Given a fixed but unknown linear system

dx/dt = Ax+Bw    ; y=cx + n

Suppose the A belongs to a finite set, compute the conditional 
probability of the pair (x,A) given the observations y. The solution is 
well known, in principle.  Run a bank of Kalman-Bucy filters, one for
each of the models. Each then has its own “mean” and “error variance”.
There is a key weighting equation associated with each model

d (ln α)/dt = xTCT(y-Cx)-(1/2)tr(CTC- Σ−1BΒΤΣ−1)(xxT-Σ)) 
              (weighting equation)

dx/dt = Ax-ΣCT(Cx- y)                            (conditional mean equation)

d Σ/dt = AΣ + ΣAT + BTB - ΣCT C Σ      (conditional error variance)



The Mult-Model Identification Problem

ρt(t,x,A) = L* ρ(t,x,A)-(Cx)2/2ρ t,x,A) +yCx ρ (t,x,A) 

This equation is unnormalized and can be considered to be vector 
equation with the vector having a as many components  as there are 
possible models. Assume a solution for a typical component of the 
form

ρi(t,x) = α i(t)(2πndetΣ )-1/2exp (x-xm) ΤΣ−1(x-xm)/2

dα i(t)/dt = …
dxi(t)/dt = …
dΣi(t)/dt = …

Consider the conditional density equation for the joint state-parameter
problem



The Linear System Identification Problem Again
When the parameters depend on a control it may be possible to 
influence the evolution of the weights in such a way as to reduce the 
entropy of the conditional distribution for the system identification. 

Notice that for the example we could apply a π/2 pulse to move the
the bias to the lower block or we could let u be a sine wave with a 
slowly varying frequency and look for a resonance. It can be cast as
the optimal control (say with a minimum entropy criterion) of

d (ln α)/dt = xTCT(y-Cx)-(1/2)tr(CTC- Σ−1BΒΤΣ−1)(xxT-Σ))

dx/dt = A(u)x-ΣCT(Cx- y))

d Σ/dt = A(u) Σ + ΣA(u)T +BTB- -ΣCT C Σ 

pi=αi/(Σ αi)



Interpreting the Probability Weighting Equation

The first term rewards α according to the degree of alignment between
the “conditional innovations” y-Cx,  and the conditional mean of x. 
It increases α  if  xTCT(y-Cx) is positive. What about

(1/2)tr(CTC- Σ−1BΒΤΣ−1)(xxT-Σ)

It compares the sample mean with the error covariance. Notice that 

CTC- Σ−1BΒΤΣ−1   = -dΣ−1 /dt - Σ−1A-ΑΤΣ−1

Thus it measures a difference between the evolution of the inverse error 
variance with and without driving noise and observation.



Controlling an Ensemble with a Single Control

dx1/dt = A(u)x1+Bw1    

dx2/dt = A(u)x2+Bw2

…………..

dxn/dt = A(u)xn+Bwn

y=(cx1 + cx2+ …+xn )  + n

The system is not controllable or observable.  There are 1023 copies 
of the same, or nearly the same, system. We can write an equation 
for the sample mean of the x’s, for the sample covariance, etc. 
Multiplicative control is qualitative different from additive.

The actual problem involves many copies with the same dynamics



A Unified Setting for Problems of this Type 
These two problems may appear to be very different.  One involves
algorithm selection and tuning, the other involves input selection to
improve observability. In the second case the optimal data processing
involves running a bank of filters generated from a single filter by a
parameter choice.  Can something of this type be optimal  in the first
cases well?

Fact 1, We can think of the discrete Fourier transform as being computed
by a filter bank and the same is true for the discrete Radon transform. We
can think of these as being different parametrized families of
computations.

Fact 2.  The optimal choice of family, on the other hand, depends on the
particular class of system to be identified.  Determining this requires
a more speculative (read higher level)  approach.



Prospects for a Useful Theory

Given the broad scope of the problem area, at
what level of generality can one hope for a the-

ory that is grounded in practical algorithms and

free of ad hoc assumptions?
Let us at least see what form these questions

take if we focus on a class of linear systems and
limit ourselves to the state estimation part.



Unification of Sensing and Control

The control can affect both the observation and
the dynamics. Consider special cases of

ẋ = A(u)x + b(u) y = C(u)x

e.g., for the case

ẋ = Ax + bw y = C(u)x + ν̇

we are led to the problem of controlling the Ric-
cati equation for the error variance

Σ̇ = AΣ + ΣAT + bbT − ΣCT (u)C(u)Σ

with the goal of minimizing Σ(T ).



More Generality

The Riccati equation for the error variance takes
the form

Σ̇ = A(u)Σ+ΣAT (u)+B(u)BT (u)−ΣCT (u)C(u)Σ

The special features of individual problems comes
in when we express the constrains on A(u), b(u)

and C(u).
Example 1: Suppose that the admissible val-
ues for C(u(t)) are the matrices with one 1.

How should we “look” and the state vector so
as to minimize tr(Σ) subject to this constraint?
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Example 2: Consider the simplified NMR model

introduced above

In this problem C and B are both constant.

The leverage that u has to reduce Σ comes from
the fact that it can rotate components of Σ into

a subspace where C has an effect.



Does this have any Points of Contact with Biology?

In order to make contact with as wide a circle of ideas as possible, 
we end with  two  isolated remarks about some analogous ideas in 
biology.  The connections are lose and will only be useful if they 
prove to be  suggestive.   





Hermann von Helmholtz, 1821-1894

“Theoretical natural science must, therefore, if it is not to rest
content with a partial view of the nature of things, take a position
in harmony with the present conception of simple forces and the
consequences of this conception. Its task will be completed when
the reduction of phenomena to simple forces is completed…”



Helmholtz, 1894

The famous Holmholtz experiment showing that humans can
direct visual attention without physical motion.
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Conclusions
1. We developed the point of view that running an algorithm on
data is just a type of sensing and  in this way reduced the main
steps in system identification to a common framework.

2. Each identification step has a cost associated with it.  In some
cases this is the cost of making a measurement (cost of a test) and
in some cases this is the cost of running an algorithm.

3. In some settings we see that the conditional density is generated
by running a bank of filters.  In special case this bank of filters can
be thought of as computing a discrete Fourier transform but more
often,  simply  something analogous to it.

4. A universal  performance measure  associated with such systems
involves the length of the  minimum description.


