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Abstract

We consider the problem of achieving a desired steady-state effect through periodic behavior for a class of control systems
with and without drift. The problem of using periodic behavior to achieve set-point regulation for the control systems with
drift is directly related to that of achieving unbounded effect for the corresponding driftless control systems. We prove that
in both cases, the ability to use periodic behavior, and more generally, bounded behavior, to achieve the desired goal implies,
under a certain topological condition, the non-holonomicity of the control systems. We also prove that under a regularity
condition, the resulting system trajectories must be area-generating in a precise sense.
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1. Introduction

Consider the control system

X1 =u1,
X2 =uy,
X3 = X1U2 — XoU1 — 0X3, 1)

where x1, x2, x3 € R and o> 0. Does this system
admit a stable trajectotywith x1, x» time-periodic and

*Tel.: +16174960318; fax: +1617 496 6404.
E-mail addressmansouri@deas.harvard.edu
1 Throughout this paper, by trajectory, we meeontinuous
trajectory.

x3 equal to an arbitrary constant- 0? In other words,
canxs be stabilized t@ > 0 through periodic behavior
in x1, x2? It is shown in[1] that the feedback control
law defined by

(u1> <—a)xz+ﬂ(e—X3)x1>
uz)  \ x4 fle—x3)x
gives rise to a closed-loop system which admits a

one-parameter family of orbitally asymptotically
stable periodic solutions
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realizing set point control through oscillatory behavior.
A generalization of (1) is given by

X =u,

T—uxT—ocX,

X = xu (2)
wherex € R* and X € so(k); here as well, a control
law is given in[1] that yields a closed-loop system
which admits stable quasi-periodic solutions.

Similar questions can be formulated for driftless
control systems as well. Consider the driftless version

of control system (1), defined by

X1=u1,

X2 =u2,

®3)

where(x1, x2, x3) € R3. Does this system have trajec-
tories with (x1, x2) time-periodic andrz unbounded?
Clearly, one such trajectory is given through the feed-
back control lawu, = —x2, u2 = x1. Indeed, with
this control law,x1, x> are periodic functions of time,
x2 + x3 is constant, ands(r) = (x 4 x3)t + x3(0).
Hence, except for the trivial trajectory with initial con-
ditions x1 = x2 =0, x3 is unbounded; in other words,
an “unbounded result”xg) is obtained through a
“periodic action” (r1, x2). Consider now instead the
control system

X3 = X1Up — X2U1,

X1 =1u1,
X2 = uy,

(4)
obtained by slightly modifying control system (3). It

X3 = Xx1U1 + X2u2,

is easy to see that the trajectories of this system are

such thatrs and x? + x3 differ only by a constant.
Hence, there can be no trajectories with and x>
time-periodic andrz unbounded.

It is worth to note at this point that systems (1),
(2) and (3) are non-holonomic, whereas system (4)
is holonomic. This and similar observations lead to
the statement if1] that “the appearance of time-

periodic phenomena in both man-made and biological
systems can often be traced to non-integrable effects

of the type that arises in nonlinear controllability”. The

goal of this paper is to make this statement precise

by proving that under a certain topological condition,

non-holonomicity is necessary for the trajectories con-
sidered above to arise, and that the key property of
these trajectories (which implies the non-holonomicity
of the control system) is not the time-periodicity of

a distinguished subset of their components, but rather
their boundedness. We shall also prove that these same
trajectories have to be area-generating, in a precise
sense to be described.

2. Non-integrability and topology

Letm,n € N* and letQ be anm-dimensional con-
nected manifold. Foi =1, ..., m, let

g QxR'— T(Q xR,
(Xa, Xp) > gi(Xa, Xp)

be C* vector fields onQ x R", and letZ denote
the distribution on2 x R" spanned by these vector
fields, that is, for all(x,, xp) € Q x R*, (x4, xp) IS
the vector subspace df, \,) (2 x R") spanned by
{gi (xa, xp)}7" 4. Let

T, QxR — Q,
(Xa,xb) = xa

be the projection onto the first component. In all that
follows, we shall assume:

1. The differential @,|(y, x,) : Z(xa, xp) — Ty, 2
is a vector space isomorphism for &M, x,) €
Q x R".

2. Foralli=1, ..., m, g; has no dependence op, that
is, there exisC> mappingsg; : @ — T(2 x R")
such thatg; = g; o 7.

We shall, with some abuse of notation, henceforth
write g;(x,) instead ofg;(x,, xp) and we shall ex-
clusively consider the following classes of control
systems.

Definition 1. We define a driftless affine control
system by

i\ e
<)-Cb>—§gt(xa)uu
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and an affine control system with partial drift by

Xa
<xh> <C(xb)) Z gi(xq)u;,

wherec : R" — R"is continuous, and far=1, ..., m,
the control functions; are functions ofc,, x, andt.

Note that the control system in Eq. (1) is a control
system with partial drift withn =2, n =1, Q = R?,
and with

1 0
g1(x1, x2) = ( 0 ) . 82(x1,x2) = ( 1) ,
—X2 X1

c(x3) = —oxa.

Similarly for the control system in Eq. (2), with=k,
n=k(k —1)/2, andQ = R*.

Consider the driftless control system in Definition
1; The following result specifies the linkage between
generating unbounded resut}] with bounded action
(x4), the non-holonomicity of the control system, and
the topology of the domai of the x,.

Theorem 1. Consider the driftless control system
given in Definitionl, and assume there exists a trajec-
tory (x4, xp) : Rt — Q x R" such that(x, (1)), g+

is an unbounded subset Bf' and x,(7) € K, for all

t € RT, where K is a compact subset @f Then

Q simply-connected = & norrintegrable

Remark. Theorem 1 highlights a topological con-
straint to generating unbounded result (thevari-
able) using bounded action (thg variable). It is an

interesting exercise to ponder the significance of this tion Talu, -

theorem in light of the following simple example: The

radius of the coin, and, y are planar Cartesian coor-
dinates. It is clear tha¥ satisfies all the assumptions
leading to Theorem 1. Since = 1, the distribution
9 is integrable. Furthermore§! is compact. It fol-
lows therefore from Theorem 1 that the configuration
spaces? of the coin must be multiply-connected, and
indeed the fundamental group 6t is Z.

Proof of Theorem 1. AssumeQ is simply-connected
and & is integrable; we shall derive a contradiction.
2 being assumed integrable, Ikt be the maximal
integral manifold ofZ containing (x,(0), x5(0)) €

Q x R". We have:

Proposition 1. The mappingr, : M — Q is a cov-
ering map

Proof. We first prove thatt, : M — Q is surjec-
tive. Let g € m,(M), and letp € n;l(¢). Since
dn, : D (x4, xp) — Ty, Q2 is a vector space isomor-
phismforall(x,, x») € QxR", by the inverse function
theorem there exists an open neighborhébdc M
for the integral manifold topology dfl, and a neigh-
borhoodU, C € such that the restrictiom,|y,

U, — Uy is a diffeomorphism. This proves that the
mappingn, : M — Q is a local diffeomorphism. It
then follows immediately that, (M) is an open sub-
set of Q. Let nowq € n,(M). Then there exists a
sequencedp,), C M such thatr,(p,) — ¢q in Q
asn — oo. Letz € R"; then(q,z) € Q x R", and
consider the maximal integral manifold, .y of ¥
containing(q, z). By the local diffeomorphism prop-
erty of n,, there exists an open subggy, - of (¢, 2)

in M, . for the integral manifold topology o/, .,
and an open subsél, of gin ©, such that the restric-
: U,y — U, isadiffeomorphism. Now,
forally e R” the |mageU(q 24y Of Uig.2) under the

rolling directed vertical coin on a planar surface covers diffeomorphism(x,, x;) — (x4, xp +y) is an integral
an unbounded distance through bounded action (the manifold of Z containing the pointg, z + y); further-

configuration space of the coin §2, hence compact),
though the rolling constraint is holonomic. In this ex-
ample, we havé&2 = S1, m =1, n = 2, and the vector

field g spanning the distributio is given by
0 . 0 0
g=r cosq&aJrr smqﬁavL@,

whered is the angular parameter of the coihjs the
angle the vertical coin makes with theaxis,r is the

more, there existy € Nsuchthak>N = n,(px) €
Uy. In particular,n,(pn) € U,. Lety € R" such
that pv € Uqg,z+y)- Such ay exists sincen,|y,, ., :
Uy..) — Uy is a diffeomorphism, and, (py) € Uy.
ThenM =M U U(y,z+y) is a connected integral mani-
fold of Z containing(x,(0), x5(0)), andM C M. By
maximality of M, we must haveV = M, and hence
(g,z +vy) € M, and thereforey = n,(q,z + y) €
n,(M). Hences, (M) is a closed subset &1. Since2



4 A.-R. Mansouri / Systems & Control Lettei#d (111E) 111111

is connecteds, (M) = Q, and thereforer, |y : M —
Q2 is a surjective mapping.

It follows from the above that every € Q2 has an
open neighborhood, C 2 such that

n, U = U

reA

whereA C R",U; c Mforall A e A,U;,NU;, =0
for 21 # A2, and U, is diffeomorphic toU, for all

A € A. The local diffeomorphism property and the

surjectivity of n, then imply thatr, : M — Qis a
covering map[B]). O

Consider now the identity mapdd: Q — Q. Since
Qis, by assumption, simply-connected, we can liff id
to aC*® map fo : Q2 — M such thatr, o fo =idg
and fo(x4(0)) = (x4(0), x5(0)). HenceM is the graph
of the C* mappingn, o fo : 2 — R", wheremn, :

2 x R* — R" is the projection onto the second com-

ponent, and thereforg, =7, o fo 0 x,4. Sincex, (t) €
K, forallr € RT, we havex,(t) € m,o fo(K), for all

t € RT. Sincen;, o fo is C*, and hence continuous,
npo fo(K) is acompact, hence bounded, subsét’bf
and this contradicts the assumption that(t)), g+ is
an unbounded subset Bf*. This concludes the proof
of Theorem 1.

on R". Now,

t
</ c(xp (7)) dr, c(y)>
o

'
= / (c(xp(1)) — ac(y), c(y)) dr
1

0

+ a(t — to) [le() 1

>a(t — 10)lc)1?,

and since:(y) # 0 by assumption, the desired inequal-
ity follows from Cauchy-Schwarz’ inequality. [

The following result is the analog, for systems with
partial drift, of Theorem 1.

Theorem 2. Consider the control system with partial
drift given in Definitionl; Assume there exists a tra-
jectory (x4, xp) : RT — Q x R" such that{x;, = y} is
an asymptotically stable surface of that systerere

y e R" ande(y) # 0,andx,(¢t) € K forall t € R,
where K is a compact subset @f then

Q simply-connected = Z norrintegrable

Proof. Assumen1(£2) = 0. Defining the functiony, :
RT — R" by y, (1) =x5(t) — [ c(x5(1)) dr, we obtain

In order to relate driftless systems to systems with the driftless control system:

partial drift, we prove the following lemma.
Lemma 1. Letc : R" — R” be continuous ang €

R" with ¢(y) # 0. Then ¥V 0<a <3, there exists
to > 0 such thatvr >1g :

Za(t —to)llc(I,

t
/ c(xp()) dt
1

0

where|| - || denotes the Euclidean norm d&tf'.

Proof. LetO<a < %; theny/1 — 22 > 0, and since by
assumptionx, () — y ast — oo, C is continuous,
and c¢(y) # 0, there existsg> 0 such that for all
t>1tg we have|c(xp (1)) — c(MII<vV1—2allc(y)].
This then implies(c(y), c¢(x,(t)) — ac(y)) >0 for all

(xXa (@), yp(1)) = (xa (1), Xp (1) — c(x5(1))

=Y gi(aO)ui(xa (). xp(1). 1)

i=1

= Z gi(.xa([))ui <Xa(t), yb(t)

i=1

t
+ / c(xp(7)) dr, t)
0

=Y gi(xa())iti (xa(t). yp(1). 1),
i=1

where fori =1, ..., m, the functionsii; : Q x R" x

t >tg, where(., -) denotes the Euclidean inner product R™ — R are the new controls. Now let 9« < %
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By Lemma 1, there existg > 0 such that for all > ro:
t fo
lyp D = / c(xp(r)) dr| — H/O c(xp(v)) dt
o
— lxs()l
o
zo(t — to)lcWIl — ”/0 c(xp(1)) dr
=[x,

and sincex,(t) — y andc(y) # 0 by assumption,
we have lim sup, llyy(?)]| = oo, which implies
that (y,(t)),cr+ is an unbounded subset &". It
then follows from Theorem 1 that the distribution
2 is non-integrable. This concludes the proof of
Theorem 2. O

3. Non-integrability and area generation

We shall now examine the particular trajectories them-vectorC’

Q x R". For o to belong to the annihilator of?
we need to haveo(g;) =0 for all i =1, ..., m, or,
equivalently,

m n

> AfCi+ ) BID=0, Vi=1..m. (5
k=1 k=1

Let A be them x m matrix withi, k entryAf, and let

B be them x n matrix with i, k entry Bl.k; similarly,
let C be them-vector with kth entry Cy, andD the
n-vector with kth entry D;. The assumption on the
distribution & that the differential of the projection
mapm, restricted toZ be a vector space isomorphism
at each point implies that matrixis invertible. Eq. (5)
can therefore be rewritten &= A~1BD. Note that
A andB are smooth matrix-valued functions defined
on Q. Now, for/ =1, ...,n, let D' be then-vector
with /th entry—1 and all other entries 0, and l€t be
=A~1BD!. The one-formw’ defined

associated with the control systems in Definition 1. by o' =dx} — >/ ; C! dx¥ is then in the annihilator
The main property of such trajectories is that they have of &, with the C,’( smooth real-valued functions on
to be area-generating in a precise sense. We shall proveQ. Furthermore, since the forms!, / =1, ...,n are
this property for driftless control systems; the proof |inearly independent at each point, and sirizds a
carries over almost verbatim to control systems with rank m distribution, Z is defined by the vanishing of
partial drift, along the lines of the proof of Theorem 2.  the exterior differential idea¥ in Q x R" generated
In what follows, we shall, with some abuse of notation, by the one formgw!}r_;. O
denote by the same symbgl both a point in2 and its
expression in some local coordinate system—we are, Definition 2. The distributionZ defined by the van-
in effect, restrlctlng ourselves to a coordinate chart on jshing of the exterior differential idea¥ generated
Q. Letx* (resp. xb) denote theth component of, by the 1-forms{wf = dxh S C, dxa}":
(resp. xb) We have: called regular if for allk € {1, ..., n}, the one—form
>/, CFdx! has constant rank; in Q.
Lemma 2. The distributionZ is defined by the van-
ishing of the exterior differential ideaV in Q x R"
generated by the one fornie*}?_,, with w* = dx} —
1 Crdxl, where theCf : Q@ — R are smooth
functions

Lemma 3. Assume the distributio is regular, and

let [ € {1,...,n}. Then there exists an open subset
V c ©, an open neighborhoot c R™ of the origin
(with coordinate functiong)l, ..., y™), and a diffeo-
morphism® : U x R" — V x R" such that

Proof. The vector fieldg; : Q@ — T(Q2 x R") span-

ning the distributionZ can be written dx} — (ya dya +y3dy?
0o o*@h=1 i S ey =2
§i=) Aizz Z s (y,l dy“ + 2
i a VIl =25 — 1.
where A{.‘ Q - R *k=1..,m) and B{‘ Proof. Since 2 is assumed regular, it follows from

Q2 — R (k=1,..,n) are smooth functions. Let
o= Y1 Cedxt + Y Drdx} be a 1-form in

Darboux’s normal form theorenj2,4], that there
exist open neighborhoodg C Q, U c R™ (with
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coordinate functionSyC},...,yg"), and a diffeomor-
phism¢ : U — V such that:

d)* (Z C]l{ (xa) dX(];)

k=1

|

Define the diffeomorphisn® by

yhdy2 + y3dyd 4+ y2 Ly, =25,

yidy2 4 y3dy? + . dyZt =25 — 1.

d:UxR"—> VxR,
Ya» xp) = P(ya, xp) = (P (¥a), Xp).

Then,
* (') = ¢* (d)cll7 — Z C,IC dxfj)
k=1
=d(x} o @) — @* (Z cl dx§>
k=1

=dx} — ¢* (Z Ci dxj;>
k=1

dx, — (ydy2 + y3dy}
+oy27ldy®), =2,
dx, — (yrdy? + y3dy}
4o dyZ T, =251

We shall call the (not necessarily unique) open sub-
setV of Q provided by Lemma 3 “distinguished chart
of Q". We can now state the main result relating the
nature of the trajectories arising from the control
of non-holonomic systems—in essence, for non-
holonomicity to be exploited, the trajectories have to
be area-generating in a very precise sense.

Theorem 3. Consider the driftless control system
given in Definition1. AssumeQ simply-connected
and & regular, and assume there exists a piecewise
C1 trajectory (x,, xp) : t — (xq(1), x5(¢)) such that
xq(t) € K, forall t e RT, where K is a compact sub-
set of a distinguished chart V &, and (x, (1)), g+ is

an unbounded subset Bf; then there exists an open
neighborhood/ ¢ R™ of the origin(with coordinate
functionsy?, ..., y), a diffeomorphism

y:U—>V,

Ya = Y (ya)

and integers, j € {1,...,m}, i # j, such that the
planar curve obtained by projecting the cur\be‘l o
7, oy onto the(y’, y/)-plane has infinite area

Proof. Note first that by Theorem 1 the distribution
2 is non-integrable. Lep : 1 — (x,(t), xp(¢)) de-
note the piecewis€! trajectory of the driftless con-
trol system; byy,, ,,; we shall denote the restriction
of y to [0, 11] C RT. SinceZ is assumed to be a reg-
ular distribution, it is given by the vanishing of the
one-forms{wf = dxf — Y CFdx!}7_,, where the
one-formsy_"; Cf dx!, have constant rank of2 for
all k. Hence, for all =1, ..., n:

xp,(t1) — x;,(t0) = / 3" Chxa) drf.

lig.11l k=1

Since ([lxy()1),cr+ is an unbounded subset @,
there exists € {1, ..., n} such that(|x] (t)]), .+ is un-
bounded. Letd be the diffeomorphism provided by
Lemma 3, and assume without loss of generality that
the rankr; is odd. Then

s—1
(o) =dxj — Y yF Ty —dy2
k=1

and therefore

xh (1) — xp(t0) = vZ2 (1) — yZ L(10)
s—1
+y /
vt

By assumptiony, (1) € Y~ 1(K) for all r € R, and
lpfl(K) is a compact, hence bounded, subseR6t
Hence, sincexf)(t)),ew is unbounded, there exists an

integerk such that(flrlonaoy“o” y2-tdy2), e is

unbounded, which, by Stokes’ theorem, is equivalent
to the area of the projection of the trajectapy 1o
40y onthe(y%*~1, y2%) plane being unbounded. This

concludes the proof of Theorem 3.1

2k—1 2k
v dyg
OTaOV[10,11]

4. Conclusion

We have proven that for a certain class of control
systems, the appearance of time-periodic, and even
more generally, bounded phenomena directly implies
the non-holonomicity of the control systems, modulo
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