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Abstract

We consider the problem of achieving a desired steady-state effect through periodic behavior for a class of control systems
with and without drift. The problem of using periodic behavior to achieve set-point regulation for the control systems with
drift is directly related to that of achieving unbounded effect for the corresponding driftless control systems. We prove that
in both cases, the ability to use periodic behavior, and more generally, bounded behavior, to achieve the desired goal implies,
under a certain topological condition, the non-holonomicity of the control systems. We also prove that under a regularity
condition, the resulting system trajectories must be area-generating in a precise sense.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the control system

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x1u2 − x2u1 − �x3, (1)

where x1, x2, x3 ∈ R and �>0. Does this system
admit a stable trajectory1 with x1, x2 time-periodic and

∗ Tel.: +1 6174960318; fax: +16174966404.
E-mail address:mansouri@deas.harvard.edu.
1 Throughout this paper, by trajectory, we meancontinuous
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x3 equal to an arbitrary constante >0? In other words,
canx3 be stabilized toe >0 through periodic behavior
in x1, x2? It is shown in[1] that the feedback control
law defined by(
u1

u2

)
=
(−�x2 + �(e − x3)x1

�x1 + �(e − x3)x2

)

gives rise to a closed-loop system which admits a
one-parameter family of orbitally asymptotically
stable periodic solutions

xp(t)=




√
�e
�

cos(�t + �)

√
�e
�

sin(�t + �)

e


 , 0���2�,
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realizing set point control through oscillatory behavior.
A generalization of (1) is given by

ẋ = u,

Ẋ = xuT − uxT − �X, (2)

wherex ∈ Rk andX ∈ so(k); here as well, a control
law is given in [1] that yields a closed-loop system
which admits stable quasi-periodic solutions.
Similar questions can be formulated for driftless

control systems as well. Consider the driftless version
of control system (1), defined by

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x1u2 − x2u1, (3)

where(x1, x2, x3) ∈ R3. Does this system have trajec-
tories with(x1, x2) time-periodic andx3 unbounded?
Clearly, one such trajectory is given through the feed-
back control lawu1 = −x2, u2 = x1. Indeed, with
this control law,x1, x2 are periodic functions of time,
x21 + x22 is constant, andx3(t) = (x21 + x22)t + x3(0).
Hence, except for the trivial trajectory with initial con-
ditionsx1 = x2 = 0, x3 is unbounded; in other words,
an “unbounded result” (x3) is obtained through a
“periodic action” (x1, x2). Consider now instead the
control system

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x1u1 + x2u2, (4)

obtained by slightly modifying control system (3). It
is easy to see that the trajectories of this system are
such thatx3 and x21 + x22 differ only by a constant.
Hence, there can be no trajectories withx1 and x2
time-periodic andx3 unbounded.
It is worth to note at this point that systems (1),

(2) and (3) are non-holonomic, whereas system (4)
is holonomic. This and similar observations lead to
the statement in[1] that “the appearance of time-
periodic phenomena in both man-made and biological
systems can often be traced to non-integrable effects
of the type that arises in nonlinear controllability”. The
goal of this paper is to make this statement precise
by proving that under a certain topological condition,

non-holonomicity is necessary for the trajectories con-
sidered above to arise, and that the key property of
these trajectories (which implies the non-holonomicity
of the control system) is not the time-periodicity of
a distinguished subset of their components, but rather
their boundedness.We shall also prove that these same
trajectories have to be area-generating, in a precise
sense to be described.

2. Non-integrability and topology

Letm, n ∈ N� and let� be anm-dimensional con-
nected manifold. Fori = 1, ..., m, let

gi : � × Rn → T (� × Rn),

(xa, xb) 
→ gi(xa, xb)

be C∞ vector fields on� × Rn, and letD denote
the distribution on� × Rn spanned by these vector
fields, that is, for all(xa, xb) ∈ � × Rn, D(xa, xb) is
the vector subspace ofT(xa,xb)(� × Rn) spanned by
{gi(xa, xb)}mi=1. Let

�a : � × Rn → �,
(xa, xb) 
→ xa

be the projection onto the first component. In all that
follows, we shall assume:

1. The differential d�a|(xa,xb) : D(xa, xb) → Txa�
is a vector space isomorphism for all(xa, xb) ∈
� × Rn.

2. For alli=1, ..., m, gi has no dependence onxb, that
is, there existC∞ mappingsg̃i : � → T (� × Rn)

such thatgi = g̃i ◦ �a .

We shall, with some abuse of notation, henceforth
write gi(xa) instead ofgi(xa, xb) and we shall ex-
clusively consider the following classes of control
systems.

Definition 1. We define a driftless affine control
system by

(
ẋa
ẋb

)
=

m∑
i=1

gi(xa)ui ,
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and an affine control system with partial drift by(
ẋa
ẋb

)
=
(

0
c(xb)

)
+

m∑
i=1

gi(xa)ui ,

wherec : Rn → Rn is continuous, and fori=1, ..., m,
the control functionsui are functions ofxa, xb andt.

Note that the control system in Eq. (1) is a control
system with partial drift withm = 2, n = 1, � = R2,
and with

g1(x1, x2)=
( 1

0
−x2

)
, g2(x1, x2)=

( 0
1
x1

)
,

c(x3)= −�x3.

Similarly for the control system in Eq. (2), withm=k,
n= k(k − 1)/2, and� = Rk.
Consider the driftless control system in Definition

1; The following result specifies the linkage between
generating unbounded result (xb) with bounded action
(xa), the non-holonomicity of the control system, and
the topology of the domain� of thexa .

Theorem 1. Consider the driftless control system
given in Definition1,and assume there exists a trajec-
tory (xa, xb) : R+ → � × Rn such that(xb(t))t∈R+
is an unbounded subset ofRn andxa(t) ∈ K, for all
t ∈ R+, where K is a compact subset of�. Then

� simply-connected�⇒ D non-integrable.

Remark. Theorem 1 highlights a topological con-
straint to generating unbounded result (thexb vari-
able) using bounded action (thexa variable). It is an
interesting exercise to ponder the significance of this
theorem in light of the following simple example: The
rolling directed vertical coin on a planar surface covers
an unbounded distance through bounded action (the
configuration space of the coin isS1, hence compact),
though the rolling constraint is holonomic. In this ex-
ample, we have� = S1, m= 1, n= 2, and the vector
field g spanning the distributionD is given by

g = r cos�
�
�x

+ r sin �
�
�y

+ �
��

,

where� is the angular parameter of the coin,� is the
angle the vertical coin makes with thex-axis,r is the

radius of the coin, andx, y are planar Cartesian coor-
dinates. It is clear thatD satisfies all the assumptions
leading to Theorem 1. Sincem = 1, the distribution
D is integrable. Furthermore,S1 is compact. It fol-
lows therefore from Theorem 1 that the configuration
spaceS1 of the coin must be multiply-connected, and
indeed the fundamental group ofS1 is Z.

Proof of Theorem 1. Assume� is simply-connected
andD is integrable; we shall derive a contradiction.
D being assumed integrable, letM be the maximal
integral manifold ofD containing(xa(0), xb(0)) ∈
� × Rn. We have:

Proposition 1. The mapping�a : M → � is a cov-
ering map.

Proof. We first prove that�a : M → � is surjec-
tive. Let q ∈ �a(M), and letp ∈ �−1

a (q). Since
d�a :D(xa, xb) → Txa� is a vector space isomor-
phism for all(xa, xb) ∈ �×Rn, by the inverse function
theorem there exists an open neighborhoodUp ⊂ M

for the integral manifold topology ofM, and a neigh-
borhoodUq ⊂ � such that the restriction�a|Up :
Up → Uq is a diffeomorphism. This proves that the
mapping�a : M → � is a local diffeomorphism. It
then follows immediately that�a(M) is an open sub-
set of�. Let now q ∈ �a(M). Then there exists a
sequence(pn)n ⊂ M such that�a(pn) → q in �
asn → ∞. Let z ∈ Rn; then (q, z) ∈ � × Rn, and
consider the maximal integral manifoldM(q,z) of D
containing(q, z). By the local diffeomorphism prop-
erty of�a , there exists an open subsetU(q,z) of (q, z)
inM(q,z) for the integral manifold topology ofM(q,z),
and an open subsetUq of q in �, such that the restric-
tion�a|U(q,z) : U(q,z) → Uq is a diffeomorphism. Now,
for all y ∈ Rn, the imageU(q,z+y) of U(q,z) under the
diffeomorphism(xa, xb) 
→ (xa, xb+y) is an integral
manifold ofD containing the point(q, z+y); further-
more, there existsN ∈ N such thatk�N ⇒ �a(pk) ∈
Uq . In particular,�a(pN) ∈ Uq . Let y ∈ Rn such
that pN ∈ U(q,z+y). Such ay exists since�a|U(q,z) :
U(q,z) → Uq is a diffeomorphism, and�a(pN) ∈ Uq .
ThenM̃ =M ∪U(q,z+y) is a connected integral mani-
fold of D containing(xa(0), xb(0)), andM ⊂ M̃. By
maximality ofM, we must haveM̃ =M, and hence
(q, z + y) ∈ M, and thereforeq = �a(q, z + y) ∈
�a(M). Hence,�a(M) is a closed subset of�. Since�
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is connected,�a(M)= �, and therefore�a|M : M →
� is a surjective mapping.
It follows from the above that everyq ∈ � has an

open neighborhoodUq ⊂ � such that

�−1
a (Uq)=

⋃
�∈	

U�,

where	 ⊂ Rn, U� ⊂ M for all � ∈ 	, U�1 ∩U�2 =∅
for �1 �= �2, andU� is diffeomorphic toUq for all
� ∈ 	. The local diffeomorphism property and the
surjectivity of �a then imply that�a : M → � is a
covering map ([3]). �

Consider now the identity map id� : � → �. Since
� is, by assumption, simply-connected, we can lift id�
to aC∞ mapf� : � → M such that�a ◦ f� = id�
andf�(xa(0))= (xa(0), xb(0)). HenceM is the graph
of theC∞ mapping�b ◦ f� : � → Rn, where�b :
�× Rn → Rn is the projection onto the second com-
ponent, and thereforexb =�b ◦f� ◦ xa . Sincexa(t) ∈
K, for all t ∈ R+, we havexb(t) ∈ �b ◦f�(K), for all
t ∈ R+. Since�b ◦ f� is C∞, and hence continuous,
�b◦f�(K) is a compact, hence bounded, subset ofRn,
and this contradicts the assumption that(xb(t))t∈R+ is
an unbounded subset ofRn. This concludes the proof
of Theorem 1. �

In order to relate driftless systems to systems with
partial drift, we prove the following lemma.

Lemma 1. Let c : Rn → Rn be continuous andy ∈
Rn with c(y) �= 0. Then, ∀ 0< �< 1

2, there exists
t0>0 such that∀t� t0 :
∥∥∥∥
∫ t

t0

c(xb(
))d


∥∥∥∥ ��(t − t0)‖c(y)‖,

where‖ · ‖ denotes the Euclidean norm onRn.

Proof. Let 0< �< 1
2; then

√
1− 2�>0, and since by

assumptionxb(t) → y as t → ∞, c is continuous,
and c(y) �= 0, there existst0>0 such that for all
t� t0 we have‖c(xb(t)) − c(y)‖�

√
1− 2�‖c(y)‖.

This then implies〈c(y), c(xb(t)) − �c(y)〉�0 for all
t� t0, where〈·, ·〉 denotes the Euclidean inner product

onRn. Now,

〈∫ t

t0

c(xb(
))d
, c(y)
〉

=
∫ t

t0

〈c(xb(
))− �c(y), c(y)〉d


+ �(t − t0)‖c(y)‖2

��(t − t0)‖c(y)‖2,

and sincec(y) �= 0 by assumption, the desired inequal-
ity follows from Cauchy-Schwarz’ inequality. �

The following result is the analog, for systems with
partial drift, of Theorem 1.

Theorem 2. Consider the control system with partial
drift given in Definition1; Assume there exists a tra-
jectory(xa, xb) : R+ → �× Rn such that{xb = y} is
an asymptotically stable surface of that system, where
y ∈ Rn and c(y) �= 0, andxa(t) ∈ K for all t ∈ R+,
where K is a compact subset of�; then

� simply-connected�⇒ D non-integrable.

Proof. Assume�1(�)= 0. Defining the functionyb :
R+ → Rn by yb(t)=xb(t)−

∫ t
0 c(xb(
))d
, we obtain

the driftless control system:

(ẋa(t), ẏb(t))= (ẋa(t), ẋb(t)− c(xb(t))

=
m∑
i=1

gi(xa(t))ui(xa(t), xb(t), t)

=
m∑
i=1

gi(xa(t))ui

(
xa(t), yb(t)

+
∫ t

0
c(xb(
))d
, t

)

=
m∑
i=1

gi(xa(t))ũi(xa(t), yb(t), t),

where fori = 1, ..., m, the functionsũi : � × Rn ×
R+ → R are the new controls. Now let 0< �< 1

2.
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By Lemma 1, there existst0>0 such that for allt� t0:

‖yb(t)‖�
∥∥∥∥
∫ t

t0

c(xb(
))d


∥∥∥∥−
∥∥∥∥
∫ t0

0
c(xb(
))d


∥∥∥∥
− ‖xb(t)‖

��(t − t0)‖c(y)‖ −
∥∥∥∥
∫ t0

0
c(xb(
))d


∥∥∥∥
− ‖xb(t)‖,

and sincexb(t) → y and c(y) �= 0 by assumption,
we have lim supt→∞‖yb(t)‖ = ∞, which implies
that (yb(t))t∈R+ is an unbounded subset ofRn. It
then follows from Theorem 1 that the distribution
D is non-integrable. This concludes the proof of
Theorem 2. �

3. Non-integrability and area generation

We shall now examine the particular trajectories
associated with the control systems in Definition 1.
Themain property of such trajectories is that they have
to be area-generating in a precise sense.We shall prove
this property for driftless control systems; the proof
carries over almost verbatim to control systems with
partial drift, along the lines of the proof of Theorem 2.
In what follows, we shall, with some abuse of notation,
denote by the same symbolxa both a point in� and its
expression in some local coordinate system—we are,
in effect, restricting ourselves to a coordinate chart on
�. Let xka (resp.x

k
b ) denote thekth component ofxa

(resp.xb). We have:

Lemma 2. The distributionD is defined by the van-
ishing of the exterior differential idealI in � × Rn

generated by the one forms{�k}nk=1, with�k =dxkb −∑m
l=1C

k
l dx

l
a , where theCkl : � → R are smooth

functions.

Proof. The vector fieldsgi : � → T (� × Rn) span-
ning the distributionD can be written

gi =
m∑
k=1

Aki
�

�xka
+

n∑
k=1

Bki
�

�xkb
,

where Aki : � → R (k = 1, ..., m) and Bki :
� → R (k = 1, ..., n) are smooth functions. Let
� = ∑m

k=1Ck dx
k
a + ∑n

k=1Dk dx
k
b be a 1-form in

� × Rn. For � to belong to the annihilator ofD
we need to have�(gi) = 0 for all i = 1, ..., m, or,
equivalently,

m∑
k=1

Aki Ck +
n∑
k=1

Bki Dk = 0, ∀i = 1, ..., m. (5)

Let A be them×m matrix with i, k entryAki , and let
B be them × n matrix with i, k entryBki ; similarly,
let C be them-vector with kth entryCk, andD the
n-vector with kth entryDk. The assumption on the
distributionD that the differential of the projection
map�a restricted toD be a vector space isomorphism
at each point implies that matrixA is invertible. Eq. (5)
can therefore be rewritten asC = A−1BD. Note that
A andB are smooth matrix-valued functions defined
on �. Now, for l = 1, ..., n, let Dl be then-vector
with lth entry−1 and all other entries 0, and letCl be
them-vectorCl = A−1BDl . The one-form�l defined
by �l = dxlb −∑m

k=1C
l
k dx

k
a is then in the annihilator

of D, with the Clk smooth real-valued functions on
�. Furthermore, since the forms�l , l = 1, ..., n are
linearly independent at each point, and sinceD is a
rankm distribution,D is defined by the vanishing of
the exterior differential idealI in � × Rn generated
by the one forms{�l}nl=1. �

Definition 2. The distributionD defined by the van-
ishing of the exterior differential idealI generated
by the 1-forms {�k = dxkb − ∑m

l=1C
k
l dx

l
a}nk=1 is

called regular if for allk ∈ {1, ..., n}, the one-form∑m
l=1C

k
l dx

l
a has constant rankrk in �.

Lemma 3. Assume the distributionD is regular, and
let l ∈ {1, ..., n}. Then there exists an open subset
V ⊂ �, an open neighborhoodU ⊂ Rm of the origin
(with coordinate functionsy1a , ..., y

m
a ), and a diffeo-

morphism� : U × Rn → V × Rn such that:

��(�l )=



dxlb − (y1a dy

2
a + y3a dy

4
a

+ · · · y2s−1
a dy2sa ), rl = 2s,

dxlb − (y1a dy
2
a + y3a dy

4
a

+ · · ·dy2s−1
a ), rl = 2s − 1.

Proof. SinceD is assumed regular, it follows from
Darboux’s normal form theorem[2,4], that there
exist open neighborhoodsV ⊂ �, U ⊂ Rm (with
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coordinate functionsy1a , ..., y
m
a ), and a diffeomor-

phism� : U → V such that:

��
(

n∑
k=1

Clk(xa)dx
k
a

)

=
{
y1a dy

2
a + y3a dy

4
a + · · · y2s−1

a dy2sa , rl = 2s,
y1a dy

2
a + y3a dy

4
a + · · ·dy2s−1

a , rl = 2s − 1.

Define the diffeomorphism� by

� : U × Rn → V × Rn,

(ya, xb) 
→ �(ya, xb)= (�(ya), xb).

Then,

��(�l )= ��
(
dxlb −

m∑
k=1

Clk dx
k
a

)

= d(xlb ◦ �)− ��
(

m∑
k=1

Clk dx
k
a

)

= dxlb − ��
(

m∑
k=1

Clk dx
k
a

)

=



dxlb − (y1a dy

2
a + y3a dy

4
a

+ · · · y2s−1
a dy2sa ), rl = 2s,

dxlb − (y1a dy
2
a + y3a dy

4
a

+ · · · dy2s−1
a ), rl = 2s − 1.

�

We shall call the (not necessarily unique) open sub-
setV of � provided by Lemma 3 “distinguished chart
of �”. We can now state the main result relating the
nature of the trajectories arising from the control
of non-holonomic systems—in essence, for non-
holonomicity to be exploited, the trajectories have to
be area-generating in a very precise sense.

Theorem 3. Consider the driftless control system
given in Definition1. Assume� simply-connected
andD regular, and assume there exists a piecewise-
C1 trajectory (xa, xb) : t 
→ (xa(t), xb(t)) such that
xa(t) ∈ K, for all t ∈ R+, where K is a compact sub-
set of a distinguished chart V of�, and(xb(t))t∈R+ is
an unbounded subset ofRn; then there exists an open
neighborhoodU ⊂ Rm of the origin(with coordinate
functionsy1a , ..., y

m
a ), a diffeomorphism

� : U → V ,

ya 
→ �(ya)

and integersi, j ∈ {1, ..., m}, i �= j, such that the
planar curve obtained by projecting the curve�−1 ◦
�a ◦ 
 onto the(yi, yj )-plane has infinite area.

Proof. Note first that by Theorem 1 the distribution
D is non-integrable. Let
 : t 
→ (xa(t), xb(t)) de-
note the piecewise-C1 trajectory of the driftless con-
trol system; by
[t0,t1] we shall denote the restriction
of 
 to [t0, t1] ⊂ R+. SinceD is assumed to be a reg-
ular distribution, it is given by the vanishing of the
one-forms{�k = dxkb −∑m

l=1C
k
l dx

l
a}nk=1, where the

one-forms
∑m
l=1C

k
l dx

l
a have constant rank on� for

all k. Hence, for alll = 1, ..., n:

xlb(t1)− xlb(t0)=
∫

[t0,t1]

n∑
k=1

Clk(xa)dx
k
a .

Since (‖xb(t)‖)t∈R+ is an unbounded subset ofR,
there existsl ∈ {1, ..., n} such that(|xlb(t)|)t∈R+ is un-
bounded. Let� be the diffeomorphism provided by
Lemma 3, and assume without loss of generality that
the rankrl is odd. Then

��(�l )= dxlb −
s−1∑
k=1

y2k−1
a dy2ka − dy2s−1

a ,

and therefore

xlb(t1)− xlb(t0)= y2s−1
a (t1)− y2s−1

a (t0)

+
s−1∑
k=1

∫
�−1◦�a◦
[t0,t1]

y2k−1
a dy2ka .

By assumption,ya(t) ∈ �−1(K) for all t ∈ R+, and
�−1(K) is a compact, hence bounded, subset ofRm.
Hence, since(xlb(t))t∈R+ is unbounded, there exists an
integerk such that(

∫
�−1◦�a◦
[t0,t]

y2k−1
a dy2ka )t∈R+ is

unbounded, which, by Stokes’ theorem, is equivalent
to the area of the projection of the trajectory�−1 ◦
�a◦
 on the(y2k−1

a , y2ka ) plane being unbounded. This
concludes the proof of Theorem 3.�

4. Conclusion

We have proven that for a certain class of control
systems, the appearance of time-periodic, and even
more generally, bounded phenomena directly implies
the non-holonomicity of the control systems, modulo
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a precise topological condition involving the funda-
mental group. We have also shown that subject to a
regularity condition, the resulting system trajectories
must be area-generating. Two main questions need to
still be resolved:

1. Simple connectedness of� is a sufficient condi-
tion which allowed lifting to the covering space;
however, it is not always a necessary condition.
Is it possible to refine the topological condition
on �? If so, this would allow the extension of
Theorem 1 to the case of a rolling rigid body, where
� = SO(3).

2. How does the regularity condition on the distri-
bution translate into properties of the vector fields
defining the distribution?
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